Nonradical Trapping Pathway for Reactions of Nitroxides with Rhodium Porphyrin Alkyls Bearing β-Hydrogens and Subsequent Carbon–Carbon Bond Activation

Kin Wah Mak, Siu Kwan Yeung, and Kin Shing Chan*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received February 27, 2002

Summary: A novel nitroxide-induced hydrogen atom abstraction and β -elimination of rhodium porphyrin alkyls has been observed. Subsequent carbon–carbon bond activation of methyl-substituted nitroxides by the rhodium(II) porphyrin radical yielded rhodium porphyrin methyl complexes.

2,2,6,6-Tetramethylpiperidinoxy (TEMPO) and related nitroxide radicals have been extensively used as efficient radical traps in organic, bioorganic, and organometallic chemistry. The estimations of bond dissociation energies of metal-alkyl bonds by kinetic methods using nitroxides as radical traps have been successfully accomplished in vitamin B_{12} and related models,^{1,2} cyclopentadienylmetal alkyl complexes,³ and ruthenium porphyrin alkyl complexes.^{4,5} These radicals, however, can behave as reagents rather than as innocuous traps in the reactions with organometallics. An interesting comment was made by James and Dolphin in the report on $Ru(oep)(CH_3)_2$ and $Ru(oep)(C_6H_5)_2$ reactivity (oep = octaethylporphyrin dianion): "the rate of decomposition of $Ru(oep)(CH_3)_2$ was found to be dependent on the concentration of TEMPO which also appears to react with Ru(oep)CH₃".⁵ Nitroxides are well-known ligands for a variety of transition-metal complexes.^{6,7} TEMPO has been reported to react with the porphyrin Ru(oep)-CH₃ to yield Ru(oep)CO.⁷ We have also reported recently that rhodium(II) porphyrin also reacts with nitroxides in a carbon-carbon bond activation (CCA) to yield methylrhodium porphyrin.⁸ In the course of investigating the mechanism of 1,2-rearrangements of rhodium

Figure 1. Structures of rhodium porphyrins.

porphyrin alkyls,⁹ we have observed that TEMPO did not act as an innocuous radical trap but reacted directly with rhodium porphyrin alkyls bearing β -hydrogens via a novel β -hydrogen abstraction/elimination process to generate rhodium porphyrin radicals, which then underwent aliphatic CCA with nitroxides.

The results of the thermal reactions of TEMPO and rhodium porphyrin alkyls are summarized in Table 1 (Figure 1, eq 1). Rh(bocp)CH₃ (**3a**) was formed unex-

pectedly from the thermolysis of **3** with TEMPO (5 equiv). Rh(bocp)CH₂CH₂Ph was consumed within the first 1 h of the reaction without any Rh(bocp)CH₃ formed, as determined by TLC analysis. The rate of disappearance of **3** was therefore found to be much faster than that of 1,2-rearrangement into Rh(bocp)CH-(Ch₃)Ph (10 h at 80 °C).^{9a} Then, after a total reaction time of 7 h, Rh(bocp)CH₃ was formed in 45% isolated yield. Increasing the amount of TEMPO to 15 equiv did not increase the rate of disappearance of **3** but accelerated the rate of the formation and the yield of product **3a** (90 min and 81%). Therefore, a stable rhodium

 $[\]ast$ To whom correspondence should be addressed. E-mail: ksc@ cuhk.edu.hk.

^{(1) (}a) Halpern, J. *Polyhedron* **1998**, *7*, 1483–1490. (b) Ng, F. t. T.; Rempel, G. L.; Mancuso, C.; Halpern, J. *Organometallics* **1990**, *9*, 2762–2772.

⁽²⁾ Koenig, T. W.; Hay, B. P.; Finke, R. G. *Polyhedron* **1988**, *7*, 1499–1516.

⁽³⁾ Mancuso, C.; Halpern, J. *J. Organomet. Chem.* **1992**, *428*, C8–C11.

⁽⁴⁾ Collman, J. P.; McElwee, L.; Brothers, P. J.; Rose, R. J. Am. Chem. Soc. **1986**, *108*, 1332–1333.

⁽⁵⁾ Ke, M.; Rettig, S. J.; James, B. R.; Dolphin, D. J. Chem. Soc., Chem. Commun. **1987**, 1110–1111.

<sup>Chem. Commun. 1987, 1110–1111.
(6) (a) Felthouse, T. R.; Dong, T.-Y.; Hendrickson, D. N.; Shieh, H.-S.; Thompson, M. R. J. Am. Chem. Soc. 1986, 108, 8201–8214. (b)
Cogne, A.; Grand. A.; Rey, P. J. Am. Chem. Soc. 1987, 109, 7927–</sup> 7929. (c) More, J. K.; More, K. M.; Eaton, G. R.; Eaton, S. S. Pure Appl. Chem. 1990, 62, 241–246. (d) More, K. M.; Eaton, G. R.; Eaton, S. S.; Hankovszky, O. H.; Hideg, K. Inorg. Chem. 1989, 28, 1734–1743.
(7) Selyer, J. W.; Fanwick, P. E.; Leidner, C. R. Inorg. Chem. 1992,

³¹, 699–3700. (8) Tse, M. K.; Chan, K. S. *J. Chem. Soc., Dalton Trans.* **2001**, 510–511.

^{(9) (}a) Mak, K. W.; Chan, K. S. *J. Am. Chem. Soc.* **1998**, *120*, 9686–9687. (b) Mak, K. W.; Chan, K. S. *J. Chem. Soc., Dalton Trans.* **1999**, 3333–3334.

Scheme 1. Proposed Mechanism for the

Formation of Rh(por)CH₃ from Rh(por)CH₂CH₂R

→ (por)RhH +

TEMPO ____ (por)Rh^{II} + TEMPO-H

CCA

(por)Rh

TEMPO-H

Rh(por)CH₃

 $Rh(por)CH_2CH_2R \longrightarrow Rh(por) + CH_2CH_2Ph$

Table 1. Summary of Thermolysis of (Porphyrinato)rhodium Alkyls with TEMPO

complex	amt of TEMPO (equiv)	temp (°C)	time for disappearance of complex	total reacn time	Rh(por)CH ₃ ; yield, %
Rh(ttp)CH ₂ CH ₂ Ph (1)	5	80	48 h	6 days	1a ; 70 ^b
Rh(bttp)CH ₂ CH ₂ Ph (2)	5	80	48 h	6 days	2a ; 25^{b}
Rh(bocp)CH ₂ CH ₂ Ph (3)	5	80	15 min	7 h	3a ; 45 ^b
Rh(bocp)CH ₂ CH ₂ Ph (3)	15	80	15 min	90 min	3a ; 81 ^a
Rh(bocp)CH(CH ₃)Ph (4)	5	120	3 days	3 days	3a ; 70 ^b
$Rh(bocp)CH_2CH_2CN$ (5)	10	120	12 h	24 h	3a ; 86 ^b
$Rh(ttp)CH_2CH_3$ (6)	10	120	$\mathbf{N}\mathbf{A}^{c}$	14 days ^c	1a ; 10 ^d (51 ^e)
$Rh(ttp)CH_2CH_2CH_3$ (7)	10	120	7 days	7 days	1a ; 74 ^b

^{*a*} Isolated yield from column chromatography. ^{*b*} Estimated yields from ¹H NMR integration. ^{*c*} Only 19% of starting material converted. ^{*d*} Based on 100% of starting material. ^{*e*} Based on 19% starting material converted.

porphyrin intermediate likely formed. More electron rich porphyrin rhodium alkyls such as **1** and **2** reacted with excess TEMPO similarly. The reactivity appeared to decrease with the increasing strength of the β -C-H bond (**3** vs **5**, **1** vs **6** and **7**).

To elucidate the mechanism of the formation of Rh-(por)CH₃ complexes, the ¹³C-enriched phenylethyl rhodium complex ***3** was reacted with TEMPO (eq 2). The

Rh(bocp)*CH₂CH₂Ph
$$\xrightarrow{\text{TEMPO}}_{C_6D_6}$$
 Rh(bocp)CH₃ + * \xrightarrow{Ph} (2)
*3 80 °C, 1 h ^{3a} ≈ 20 %

methyl ligand of **3a** formed from the reaction was found to be unenriched with ¹³C and appeared as a broad singlet at -4.84 ppm in the ¹H NMR spectrum of the reaction mixture without any ¹J_{C-H} coupling observed. This ruled out the possibility that the methyl ligand came from the α -carbon of the phenylethyl ligand of **3**.

From the proton-coupled ¹³C NMR spectrum of the reaction mixture of ***3** with TEMPO, two enhanced triplets at 73.7 and 113.8 ppm with ¹*J*_{C-H} values equal to 148 and 157 Hz, respectively, were observed. At least two products were therefore formed. The resonance at 113.8 ppm was assigned to the terminal sp² carbon of styrene and was quantified in 20% yield by ¹H NMR spectroscopy (cf. δ (C₆H₅CH=*C*H₂) 112.3 ppm, ¹*J*_{C-H}-(CH₂=*C*H₂) = 156 Hz in CDCl₃).^{10a} However, the signal at 73.7 ppm could not be unambiguously assigned and is unlikely to be TEMPO-*CH₂CH₂Ph.^{10b} Therefore, the CH₂-CH₂Ph fragment remained intact and the Rh-C bond was cleaved in the reaction.

The reaction of of Rh(por)CH₂CH₂R with TEMPO to form Rh(por)CH₃ appears to involve a two-step process with the formation of a rhodium porphyrin radical intermediate. The activation of the reaction by the coordination of TEMPO to Rh(por)CH₂CH₂R is also possible. The first step likely involves the generation of the rhodium(II) porphyrin radicals, and the second step is possibly the CCA of TEMPO with Rh^{II}(por) radical to produce Rh(por)CH₃.⁸ Three mechanistic possibilities exist for the generation of Rh(por) radicals (Scheme 1): (A) homolysis of a rhodium–alkyl bond, (B) β -hydride elimination of Rh(por)CH₂CH₂R to Rh(por)H–hydrogen abstraction with TEMPO,¹¹ and (C) β -hydrogen abstraction of Rh(por)CH₂CH₂R with TEMPO–Rh–C homolysis.

 \sim (H₃C⁷_{CH₃}

Mech. A

Mech. B

Mech. C

Rh(por)CH₂CH₂R -

Mechanism A is disfavored on the basis of the unlikely homolysis of the rather strong Rh-C bond at 120 °C $(BDE \approx 60 \text{ kcal/mol})^{12,13}$ as well as the absence of PhCH₂CH₂-TEMPO in the presence of an excess of the efficient spin trap TEMPO. Though mechanism B is apparently supported by the established intermediate of Rh(por)H, generated via β -hydride elimination in the 1,2-rearrangements of Rh(por)CH₂CH₂R,⁹ the rates of disappearance of the starting materials were, however, much faster in the presence of TEMPO. In the absence of TEMPO, the 1,2-rearrangements of Rh(bocp)CH₂CH₂-Ph and Rh(ttp)CH₂CH₂Ph took 10^{9a} and 144 h,^{9b} respectively. Therefore, Rh(por)CH₂CH₂Ph must react with TEMPO directly. Furthermore, Rh(bocp)CH₂CH₂-CN did not undergo any significant 1,2-rearrangement after heating in benzene at 150 °C for 11 days. No Rh-(bocp)H was formed, as no rearrangement was observed. However, it reacted with TEMPO at 120 °C within 2 days to give **3a**. Therefore, the presence of Rh(por)H is ruled out. Mechanism C remains the most probable. Abstraction of the fairly weak C–H bond α to Ph, CN, and Me groups in these rhodium complexes is energetically feasible at the reaction temperature of 80-120 °C, and the reaction rates increased as the C-H bond strengths decreased (BDE(PhCH₂-H) = 88 kcal/mol,¹³

^{(10) (}a) Pretsch, E.; Seibl, J.; Simon, W.; Clerc, T. *Tables of Spectral Data for Structure Determination of Organic Compounds*, Springer-Verlag: Berlin, Heidelberg, 1989; pp C172–C173, C225. (b) Patel, V. F.; Pattenden, G. *J. Chem. Soc., Perkin Trans. 1* 1990, 2703–2708.
(11) Chan, K. S.; Leung, Y.-B. *Inorg. Chem.* 1994, *33*, 3187.

^{(12) (}a) Wayland, B. B. *Polyhedron* **1988**, 7, 1545–1555. (b) Wayland, B. B.; Ba, S.; Sherry, A. *J. Am. Chem. Soc.* **1991**, *113*, 5305–5311.

⁽¹³⁾ Li, G.; Zhang, F. F.; Pi, N.; Chen, H. L.; Zhang, S. Y.; Chan, K. S. *Chem. Lett.* **2001**, 284–285.

In summary, we have identifed a nonradical trapping pathway for reactions of TEMPO nitroxide with rhodium porphyrin alkyls bearing β -hydrogens and subsequent carbon–carbon bond activation via rhodium porphyrin radicals. The innocuous nature of TEMPO as a radical trap in the determination of metal alkyls of organometallics, especially stronger ones, needs to be viewed cautiously.

Acknowledgment. We thank the Research Grants Council of Hong Kong of the SAR of China for financial support (No. CUHK 4202/99p).

OM0201718

⁽¹⁴⁾ McMillen. D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493–532.

⁽¹⁵⁾ Mahoney, L. R.; Mendenhall, G. D.; Ingold, K. U. J. Am. Chem. Soc. **1973**, *95*, 8610–8614.