Alkyne Coupling Reactions Mediated by Iron(II) Complexes: Highly Chemo- and Regioselective Formation of *η***6-Coordinated Arene and Pyridine Complexes**

Karine Ferré,[†] Loïc Toupet,[‡] and Véronique Guerchais*,†

Institut de Chimie de Rennes, UMR CNRS-Universite´ *de Rennes 1 6509, "Organome*´*talliques* et Catalyse", Campus de Beaulieu, 35042 Rennes Cedex, France, and Groupe Matiere *Condense*´*e, UMR CNRS-Universite*´ *de Rennes 1 6626, Campus de Beaulieu, 35042 Rennes Cedex, France*

Received March 8, 2002

Summary: Reaction of the bis(acetonitrile) complex 1 with HC \equiv *CPh affords the (allyl)carbene complex* **3***, which results from a head-to-tail coupling of two alkynes. The tris(acetonitrile) complex [Fe(C5Me5)(CH3CN)3][PF6] (2) mediates highly chemo- and regioselective [2* + *²* + *2] cycloaddition reactions of C[≡]C and C[≡]N triple bonds, providing access to π-arene and -pyridine complexes. The pyridine complex 5a has been characterized by an X-ray crystal structure.*

Activation of alkynes by transition-metal complexes has attracted considerable attention during the past few decades, allowing the discovery of new C-C bondforming reactions. In this context, Ru-catalyzed reactions of alkynes and related stoichiometric reactions have been extensively developed.¹ In contrast, corresponding studies on related iron complexes have been less explored and the use of iron(II) complexes containing a cyclopentadienyl-based ligand has not been reported.2 This led us to investigate the chemistry of the readily accessible iron bis(acetonitrile) and tris(acetonitrile) complexes $[Fe(C₅Me₅)(CH₃CN)₂(PMe₃)][PF₆] (1)³$ and $[Fe(C_5Me_5)(CH_3CN)_3][PF_6]$ (2)³ in order to determine their potential utility in synthesis. We report that compounds **1** and **2** are able to promote $C-C$ bond alkyne coupling reactions such as dimerization and $[2 + 2 + 2]$ cycloaddition⁴ reactions. The first iron(II)mediated cycloaddition reactions of $C\equiv C$ and $C\equiv N$ triple bonds is presented. High chemoselectivity is

observed, depending on the nature of the alkyne. These reactions selectively provide access to *π*-arene and the hitherto unknown π -pyridine complexes of iron. The convenient synthesis of iron sandwich complexes is very attractive, since they constitute an important class of molecules as organometallic "electron reservoirs" ⁵ and, when these complexes are attached to dendrimers, applications in anionic recognition were found. 6

Oxidative coupling of two alkynes can be mediated by the bis(acetonitrile) complex **1**. Treatment of **1** with phenylacetylene in $CH₂Cl₂$ affords the allylcarbene complex **3**, in which the phenyl substituents are exclusively located in the 1- and 3-positions (Scheme 1). As previously proposed for the related Ru complex,⁷ the mechanism may involve a ferracyclopentadiene intermediate which results from a head-to-tail coupling of two molecules of alkynes; then PMe₃ migrates to the less hindered electrophilic carbon atom.

The presence of two labile ligands allows a dimerization reaction to occur, whereas cycloaddition takes place

[†] Institut de Chimie de Rennes.

 $^\ddag$ Groupe Matière Condensée.

⁽¹⁾ For recent reviews, see: (a) Grotjahn, D. B. In *Comprehensive Organometallic Chemistry II*; Hegedus, L. S., Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, U.K., 1995; Vol. 12. (b) Naota, T.; Takaya, H.; Murahashi, S.-I. *Chem. Rev*. **1998**, *98*, 2599. (c) Bruneau, C.; Dixneuf, P. H. *Acc. Chem. Res.* **1999**, *32*, 311. (d) Trost, B. M.; Toste, D.; Pinkerton, A. B. *Chem. Rev*. **2001**, *101*, 2067.

⁽²⁾ Knoch, F.; Kremer, F.; Schmidt, U.; Zenneck, U.; Le Floch, P.; Mathey, F. *Organometallics* **1996**, *15*, 2713. Schmidt, U.; Zenneck, U. *J. Organomet. Chem.* **1992**, *440*, 187.

⁽³⁾ Catheline, D.; Astruc, D. *Organometallics* **1984**, *3*, 1094. (4) For $[2 + 2 + 2]$ cycloadditions mediated by Ru complexes, see:
(a) Lindner, E.; Jansen, R.-M.; Mayer, H. A.; Hiller, W.; Fawzi, R.
Organometallics **1989**, *8*, 2355. (b) Yamamoto, Y.; Ogawa, R.; Itoh, K.
Chem. Commu 4310. (d) Yamamoto, Y.; Ogawa, R.; Itoh, K. *J. Am. Chem. Soc.* **2001**, *123*, 6189. (e) Yamamoto, Y.; Takagishi, H.; Itoh, K. *J. Am. Chem. Soc.* 2001, *123*, 61*89. (e)* Partici, P.; Verrazzani, A.; Vitulli, G.; Baldwin, Walter, O.; Dinjus, E.; Arzberger, S.; Görls, H. J. Prakt. Chem. 1999, *341*, 801.

⁽⁵⁾ For leading references, see: (a) Hamon, J. R.; Astruc, D.; Michaud, P. *J. Am. Chem. Soc.* **1981**, *103*, 758. (b) Astruc, D.; Blais, J.-C.; Cloutet, E.; Djakovitch, L.; Rigaut, S.; Ruiz, J.; Sartor, V.; Valério,
C. *Top. Curr. Chem.* **2000**, *210*, 229.
(6) Valério, C.; Alonso, E.; Ruiz, J.; Blais, J.-C.; Astruc, D. *Angew.*

Chem., Int. Ed. **1999**, *38*, 1747.
(7) Such behavior has been recently reported for the related Ru
complex; see: (a) Mauthner, K.; Soldouzi, K. M.; Mereiter, K.; Schmid,
R.; Kirchner, K. *Organometallics* **1999**, *18*, E.; Mereiter, K.; Schmid, R.; Kirchner, K. *Organometallics* **2001**, *20*, 3851.

in the case of the tris(acetonitrile) derivative **2**. Complex **2** reacts with 3 equiv of HC=CR ($R = Ph$, Hex) in CH₂- $Cl₂$ (room temperature) to give the arene complexes [Fe- $(C_5Me_5)(1,2,4-C_6H_3R_3)[P\ F_6]$ (R = Ph (**4a**), Hex (**4b**)) in 65% yield (Scheme 2). Despite the presence of acetonitrile in **2**, homocyclotrimerization of terminal alkynes occurs. NMR analyses of the crude reaction mixtures show that compounds **4** are formed with high selectivity (ca. 95%, based on Fe-arene protons by NMR). No reaction occurs with the disubstituted alkynes $PhC \equiv$ CPh and $EtC \equiv CEt$, probably due to the steric bulk of the C_5Me_5 ligand.⁸

In sharp contrast, by using alkynes having a heteroatom bonded to the propargyl position such as ethyl propiolate and 1-(dimethylamino)-2-propyne, the reaction affords *π*-pyridine complexes instead of arene complexes. Treatment of **2** with HC=CR ($R = CO₂Et$, CH₂NMe₂) in CH₂Cl₂ gives the π -2-Me-4,6-R₂-pyridine complex **5** ($R = CO_2Et$ (**5a**), CH_2NMe_2 (**5b**)) (Scheme 2). Heterocyclotrimerization of two alkynes and one acetonitrile occurs; the latter comes from **2**. In both cases, the coordination of the heterocycle is characterized in the 1H NMR spectra by an upfield shift of the aromatic protons. In the ${}^{1}H$ NMR spectrum (CDCl₃) of **5b**, the aromatic protons give rise to singlets at *δ* 6.00 and 5.89 in agreement with an asymmetrically 2,4,6 trisubstituted structure. The structure of the first *π*-pyridine of iron, **5a**, has been confirmed by an X-ray diffraction analysis (Figure 1).⁹ The Fe- (C_5Me_5) centroid and Fe-(pyridine) centroid distances (1.688 and 1.542 Å, respectively) are very comparable to that of the arene complex $[Fe(C_5Me_5)(\eta^6-C_6Et_5H)][PF_6].^8$

Figure 1. ORTEP drawing of **5a**. Selected bond distances (Å) and angles (deg): $Fe-(C_5Me_5)$ centroid = 1.688, Fe-(pyridine ring) centroid $= 1.542$, Fe-C(pyridine ring) $=$ 2.082 (range $2.044(3)-2.109(3)$), Fe $-N = 2.069(3)$, N-C(11) $= 1.368(4)$, N-C(15) $= 1.374(4)$; N-C(11)-C(17) $= 114.8$ -(3), $C(12)-C(11)-C(17) = 122.1(3)$, $C(14)-C(15)-C(16) =$ 122.5(3), C(16)-C(15)-N = 116.6(3), C(14)-C(13)-C(20) $= 118.1(3), C(12) - C(13) - C(20) = 123.1(3).$

Complexes $[Fe(C_5Me_5)(arene)]^+$ are accessible from the bromo precursor $[Fe(C_5Me_5)(CO)_2(Br)]$ under drastic reaction conditions, the presence of $AICI₃$ being required.5a We found that complex **2** is inert toward ligand-exchange reactions involving hexamethylbenzene and 2,6-dimethylpyridine. Therefore, the above approach constitutes an alternative method to prepare mixed-sandwich iron(II) derivatives under mild conditions.

By using CH_3CN as solvent instead of CH_2Cl_2 , no reaction occurs except with ethyl propiolate. The coordinating solvent acetonitrile inhibits alkyne complexation, but the presence of a better ligand such as a carbonyl group in $HC = CCO₂Et$ allows the reaction to proceed. Remarkably, the reaction of **2** in the presence of $HC=CCO_2Et$ (CH₃CN) leads to the formation of the free pyridine derivative $[2\text{-Me-3,6-(CO₂Et)₂-C₅H₂N]$ (6) in 73% yield vs **2** (Scheme 3). However, we were not able to idenfy any organometallic products from the reaction mixture. The nature of the solvent has a dramatic effect on the reaction product, and it is noteworthy that a different regioisomer of the pyridine ring is formed. The aromatic protons of **6** appear in the ¹H NMR spectrum (CDCl₃) as low-field doublets at δ 8.30 and 8.00.

The above results show that the formation of pyridines, as complexes or not, is controlled by the presence of a heteroatom. As suggested by the dimerization reaction, we assume that a metallacyclopentadiene intermediate, resulting from coupling of the two coordinated alkyne molecules, is initially formed.10 However,

^{(8) (}a) Hamon, J.-R.; Saillard, J.-Y.; Toupet, L.; Astruc, D. *J. Chem. Soc., Chem. Commun.* **1989**, 1662. (b) Hamon, J.-R.; Astruc, D. *Organometallics* **1989**, *8*, 2243.

⁽⁹⁾ Crystal data for **5a**: yellow needles were grown by slow diffusion
of Et₂O in an acetone solution of **5a**, FeC₂₂H₃₀NO₄PF₆, *M*_τ = 573.29,
monoclinic, space group *P2*₁/n, *Z* = 4, *a* = 7.9282(2) Å, *b* $\rho_{\text{calcd}} = 1.515 \text{ g cm}^{-3}$, $\bar{F}(000) = 1184$. A total of 5732 reflections were
measured. The agreement factors for the 3376 observations with *I* >
 $2\sigma(\hbar)$ are $R = 0.056$ and $R_w = 0.145$. A Nonius Kanna CCD instrument was used, with graphite-monochromated Mo Κα radiation ($λ = 0.71073$ was used, with graphite-monochromated Mo Κα radiation (*λ* = 0.710 73
Å). The whole structure was refined by full-matrix least-squares
techniques on *F* ², with hydrogens refined using the Riding mode.

coordination of the $C\equiv C$ bond of the third molecule of alkyne could be inhibited by the presence of the heteroatom. Only a molecule of acetonitrile could interact and then insert into the Fe-C bond to afford the observed product.

The formation of the π -pyridine complexes **5** (CH₂- $Cl₂$) is deduced to arise from an initial head-to-tail oxidative coupling step, whereas that of the iron-free pyridine **6** (CH3CN) results from a tail-to-tail coupling, showing the crucial role of the solvent. For the *π*-arene complexes **4**, the regiochemistry of the metallacycloaddition should be similar to that of **5** and **3**, since all these reactions are performed in $CH₂Cl₂$.

In conclusion, we developed alkyne coupling reactions at an iron(II) center including highly chemo- and regioselective $[2 + 2 + 2]$ cycloadditions, the formation of pyridine derivatives being heteroatom-assisted. These results show that labile complexes of iron, **1** and **2**, are promising candidates for other C-C bond-forming reactions, and this clearly opens up new prospectives for the development of iron chemistry.

Supporting Information Available: This material is available free of charge via the Internet at http://pubs.acs.org. OM0201967

^{(10) (}a) Vollhardt, K. P. C.; *Angew. Chem.*, *Int. Ed. Engl.* **1984**, *23*, 539. (b) Bönnemann, H. *Angew. Chem., Int. Ed. Engl.* **1985**, *24*, 248. (b) Lautens, M.; Klute, W.; Tam, W. *Chem. Rev.* **1996**, *96*, 49.