Synthesis and Characterization of R₂SbH, R₂BiH, and $\mathbf{R}_{2}\mathbf{Bi}-\mathbf{BiR}_{2}$ [**R** = (**Me**₃**Si**)₂**CH**]

Gábor Balázs, Hans Joachim Breunig,* and Enno Lork Fachbereich 2 (Chemie) der Universität Bremen, D-28334 Bremen, Germany

Received March 13, 2002

Summary: $R_2SbH(\mathbf{1})$ and $R_2BiH(\mathbf{2})$ $[R = (Me_3Si)_2CH]$ are formed by reactions of the corresponding chlorides with $LiAlH_4$. **1** is stable up to $100 \circ C$. Decomposition of **2** at room temperature leads to $R_2Bi-BiR_2$ (**3**) and H_2 . The crystal structure of 3 consists of molecules in a near trans conformation. ¹H NMR studies of **3** in C_6D_6 show that the diastereotopic Me₃Si groups become equivalent with increasing concentration and temperature.

Stibine, bismuthine, EH_3 (E = Sb, Bi), and many organic derivatives, REH₂ and R₂EH, decompose at or below room temperature with formation of H_2 , E, R_3E , or compounds with E-E bonds.¹ Usually hydrides of bismuth are less stable than the corresponding antimony derivatives. Stable organostibines ($RSbH_2$, R =2,6-(2,4,6-iPr₃C₆H₂)₂C₆H₂,² Me₃SiCH₂,³ Me₃CCH₂,⁴ iBu,⁵ Ph,⁶ p-Tol;⁷ R₂SbH, R = Mes,⁸ Me₃SiCH₂,³ Me₃CCH₂,⁴ ⁱBu,⁵ Ph,⁶ ^tBu⁹) and also a stable bismuthine R₂BiH (R $= 2,6-Mes_2C_6H_3)^{10}$ were obtained with protection of the Sb-H or Bi-H function by bulky organic groups. In our previous work we studied a sterically protected primary alkylstibine, RSbH₂, and the related distibine R(H)Sb- $Sb(H)R [R = (Me_3Si)_2CH]$.¹¹ We report here on the stable secondary stibine R_2SbH (1) [R = (Me_3Si)_2CH] and on the corresponding bismuthine, R_2BiH (2) [R = (Me₃-Si)₂CH], which decomposes with formation of the novel dibismuthine $R_2Bi-BiR_2$ (3) [R = (Me₃Si)₂CH].

The history of dibismuthines dates back to 1934, when Paneth reported the formation of Me₂Bi-BiMe₂.¹² Since then, several other organo derivatives were synthesized and their chemistry was summarized in reviews.¹³ Only three dibismuthines, $R_2Bi-BiR_2$ (R = Ph,¹⁴ Me₃Si,¹⁵ R₂

917.

$$R_{2}SbCl \xrightarrow{+ LiAH_{4}} R_{2}SbH$$
1

$R = (Me_3Si)_2CH$

= $(CMe=CH)_2^{16}$, were fully characterized by X-ray diffractommetry. Preliminary structural data were reported for Me₂Bi-BiMe₂.¹⁷ The phosphorus analogue¹⁸ of **3** is remarkable because of the easy cleavage of the P-P bond with formation of persistent [(Me₃Si)₂CH]₂P• radicals in solution and in the gas phase. Also the analogous arsenic radical is known.¹⁹ Dissociation of 3 to [(Me₃Si)₂CH]₂Bi• radicals was not established. Apparently the steric protection by (Me₃Si)₂CH groups is insufficient for the stabilization of this species. The synthesis of [(Me₃Si)₂CH]₃Bi shows that also three of these groups can be introduced at bismuth.²⁰

The stibine **1** is obtained in 66% yield by reacting R_2 -SbCl [R = $(Me_3Si)_2CH$] with LiAlH₄ in Et₂O at -50 °C (Scheme 1).²¹ It is a colorless, air-sensitive liquid (mp -14 °C) which distills at 105 °C (3 10⁻³ mbar) and is stable at room temperature for a long time. Attempts to synthesize the distibine R₂Sb-SbR₂ or the radical R₂-Sb[•] by heating a solution of **1** in C_6D_6 in sealed tubes to 105 °C for several hours or by exposition to UV light were not successful. No signs of decomposition of 1 were observed under these conditions.

The identity of **1** was proven by elemental analyses, by observation of the molecular ion in the mass spectra, and by analysis of the NMR spectra. The ¹H NMR

⁽¹⁾ Wiberg, N., Ed. Holleman-Wiberg, Lehrbuch der Anorganischen Chemie; Walter de Gruyter: Berlin, 1995; pp 91-100.

⁽²⁾ Twamley, B.; Hwang, C.-S.; Hardman, N. J.; Power, P. P. J. Organomet. Chem. 2000, 609, 152.

⁽³⁾ Hendershot, D. G.; Berry, A. D. J. Organomet. Chem. 1993, 449, 119.

⁽⁴⁾ Hendershot, D. G.; Pazik, J. C.; Berry, A. D. Chem. Mater. 1992, 4, 833.

⁽⁵⁾ Berry, A. D. Polyhedron 1999, 18, 2609.

⁽⁶⁾ Wiberg, E.; Mödritzer, K. Z. Naturforsch. 1957, 12b, 128.

 ⁽⁷⁾ Breunig, H. J.; Probst, J. J. Organomet. Chem. 1998, 571, 297.
 (8) Cowley, A. H.; Jones, R. A.; Nunn, C. M.; Westmoreland, D. L.

Angew. Chem. 1989, 101, 1089; Angew. Chem., Int. Ed. Engl. 1989, 28, 1018

⁽⁹⁾ Issleib, K.; Hamann, B.; Schmidt, L. Z. Anorg. Allg. Chem. 1965, 339, 298.

 ⁽¹⁰⁾ Hardman, N. J.; Twamley, B.; Power, P. P. Angew. Chem. 2000, 112, 2884; Angew. Chem., Int. Ed. 2000, 39, 2771.
 (11) Balázs, G.; Breunig, H. J.; Lork, E.; Offermann, W. Organo-

metallics 2001, 20, 2666.

⁽¹²⁾ Paneth, F. A. Trans. Faraday Soc. 1934, 30, 179.

^{(13) (}a) Ashe, A. J., III. Adv. Organomet. Chem. **1990**, 30, 77. (b) Breunig, H. J. In The chemistry of organic arsenic, antimony and

bismuth compounds; Patai, S. J., Ed.; Wiley: Chichester, 1994; p 441. (14) (a) Calderazzo, F.; Poli, R. *J. Chem. Soc., Dalton Trans.* **1984**, 2365. (b) Whitmire, K. H.; Cassidy, J. M. *Acta Crystallogr.* **1992**, *C48*,

⁽¹⁵⁾ Mundt, O.; Becker, G.; Rössler, M.; Witthauer, C. Z. Anorg. Allg. Chem. 1983, 506, 42

⁽¹⁶⁾ Ashe, A. J., III; Kampf, J. W.; Puranik, D. B.; Al-Taweel, S. M. Organometallics 1992, 11, 2743.

⁽¹⁷⁾ Mundt, O.; Riffel, H.; Becker, G.; Simon, A. Z. Naturforsch. 1988, 43b, 952.

⁽¹⁸⁾ Hinchley, S. L.; Morrison, C. A.; Rankin, D. W. H.; Macdonald, C. L. B.; Wiacek, R. J.; Cowley, A. H.; Lappert, M. F.; Gundersen, G.; Clyburne, J. A. C.; Power, P. P. *Chem. Commun.* **2000**, 2045.

⁽¹⁹⁾ Gynane, M. J. S.; Hudson, A.; Lappert, M. F.; Power, P. P.; Goldwhite, H. J. Chem. Soc., Dalton Trans. 1980, 2428.

⁽²⁰⁾ Murray, B.; Hvoslef, J.; Hope, H.; Power, P. P. Inorg. Chem. 1983, 22, 3421.

⁽²¹⁾ Synthesis of 1: 1.232 g (2.592 mmol) of [(Me₃Si)₂CH]₂SbCl in 30 mL of Et₂O was added dropwise to a suspension of 0.108 g (2.8481 mmol) of LiAlH₄ in 15 mL of Et₂O at -50 °C. The reactions mixture was allowed to warm to room temperature and filtered through a glass frit covered with kiselguhr. Removal of the solvent and distillation at frit covered with kiselguhr. Removal of the solvent and distillation at 105 °C (6×10^{-3} mbar) gave 0.752 g (65.96%) of 1 as a colorless liquid. ¹H NMR (200 MHz, C₆D₆, 25 °C, TMS): δ 0.19 (s, ²J_{SIH} = 5.6 Hz, ¹J_{CH} = 118.47 Hz, 18H; CH₃) 0.21 (s, ²J_{SIH} = 6.08 Hz, ¹J_{CH} = 118.44 Hz, 18H; CH₃) 0.30 (d, ³J_{HH} = 4.0 Hz, ²J_{SIH} = 6.08 Hz, ¹J_{CH} = 118.44 Hz, 13H; CH₃) 0.30 (d, ³J_{HH} = 4.0 Hz, ²J_{SIH} = 8.12 Hz, 1H; CH) 3.11 (t, ³J_{HH} = 4.0 Hz, 1H; SbH). ¹³C NMR (50 MHz, C₆D₆, 25 °C, TMS): δ -1.30 (s; CH) 2.31 (s, ¹J_{SIH} = 50.84 Hz; CH₃) 2.61 (s, ¹J_{SIH} = 50.38 Hz; CH₃). IR (Et₂O): ν 1840 cm⁻¹ (SbH). MS (70 eV): m/z (ω) 440 (30) [M⁺], 425 (20) [M⁺ - CH₃], 280 (50) [(Me₃Si)₂CHSb⁺], 73 (100) [Me₃Si⁺], Anal. Calcd for C₁₄H₃₉Sb_SSi₄: C, 38.08: H. 8.90. Found: C, 38.10: Si⁺]. Anal. Calcd for C₁₄H₃₉Sb₁Si₄: Ć, 38.08; Ĥ, 8.90. Found: Ć, 38.10; H. 8.80.

Figure 1. ¹H NMR (200 MHz) spectra of 3. Left: in C₆D₆ at 25 °C with variation of the concentration. Center: in C₆D₅- CD_3 , $c = 3.3 \times 10^{-4}$ mol L⁻¹ at different temperatures. Right: in C₆D₅CD₃, $c = 8.35 \times 10^{-6}$ mol L⁻¹ at different temperatures. The signals marked with * correspond to $R_3Bi [R = (Me_3Si)_2CH]$.

 $R = (Me_3Si)_2CH$

spectrum of 1 in C₆D₆ contains two singlet signals for the diastereotopic Me₃Si groups, a doublet for the CH, and a triplet for the SbH protons. The constant for the coupling between the CH and SbH protons (${}^{3}J_{HH} = 4.0$ Hz) is smaller than for $(Me_3Si)_2CHSbH_2$ (³J_{HH} = 5.86 Hz).¹¹ Also in the ¹³C NMR spectra in C₆D₆ the expected signals were observed. The IR spectrum of a solution of 1 in diethyl ether shows a strong signal for the SbH stretching vibration at 1840 cm⁻¹. This value compares well with those found for (Me₃CCH₂)₂SbH⁴ (1840 cm⁻¹) or (Me₃SiCH₂)₂SbH³ (1835 cm⁻¹).

The synthesis of **2** was performed by reaction of R₂-BiCl with LiAlH₄ in Et₂O at - 80 °C. 2 is a colorless compound stable in Et₂O or C_6H_6 only below -20 °C. At room temperature after a short time the solution becomes red due to the formation of **3** (Scheme 2). The ¹H NMR spectrum²² of **2** contains two singlet signals for the diastereotopic Me₃Si groups, one doublet signal for the CH groups, and a signal for the BiH proton, which is broadened due to quadrupolar coupling with the Bi nucleus. The observation of two signals for the Me₃Si groups of **1** and **2** proves that the molecules have stable pyramidal configurations in solution. The Bi-H stretching vibration in 2 is observed in the IR spectrum at 1690 cm⁻¹. For Ar₂BiH (Ar = 2,6-Mes₂C₆H₃)¹⁰ the ν -(Bi-H) signal appears at 1759 cm^{-1} .

The synthesis of 3 is achieved in 73% yield when the solution of **2** is warmed to room temperature until the evolution of H₂ is finished.²³ **3** is a dark red crystalline solid, soluble in organic solvents and stable in the solid state for a long time. Solutions of 3 in hydrocarbons decompose however slowly at room temperature with formation of the cyclobismuthines $(RBi)_n$ $(n = 3, 4)^{24}$ and R₃Bi. ¹H NMR spectra in C₆D₆ at room temperature show the expected signals for intact, inversion stable molecules of 3, i.e., two singlet signals for the diastereotopic Me₃Si groups and a singlet for the CH protons, only at high dilution ($c = 6.97 \times 10^{-7}$ mol L⁻¹). When the concentration is continually increased the two singlets become less intense and a new broad signal emerges in the region of the methyl protons. Cooling the concentrated solution leads to two separate singlet signals again, however with different chemical shifts compared to the spectra at low concentration (Figure 1). In C₆D₅CD₃ with $c = 3.3 \times 10^{-4}$ mol L⁻¹ the coalescence temperature for this process is -4 °C. The free activation enthalpy ΔG^{\ddagger} is 14.66 kcal mol⁻¹. Much higher energies are required for inversion-rotation processes of tetraorganodiphosphines which occur with ΔG^{\ddagger} values between 22.5 and 24 kcal mol⁻¹.²⁵

The spectral changes show that at high temperature and high concentration a dynamic process takes place leading to equivalence of the Me₃Si groups. A possible mechanism is proposed in Scheme 3. It implies an exchange of the R₂Bi units between associated molecules resulting in the inversion of the pyramidal configuration

⁽²²⁾ Spectroscopic data for **2**: ¹H NMR (200 MHz, C₆D₆, 25 °C, TMS): δ 0.17 (s, ² $J_{\rm SHH}$ = 6.32 Hz, ¹ $J_{\rm CH}$ = 118.32 Hz, 18H; CH₃) 0.26 (s, ² $J_{\rm SHH}$ = 6.58 Hz, ¹ $J_{\rm CH}$ = 118.3 Hz, 18H; CH₃) 0.87 (d, ³ $J_{\rm HH}$ = 4.2 Hz, 0.26 (s, 0.26 Mz, 0.26 2H; CH) 3.24 (s, br, 1H; BiH). IR (petroleum ether): v 1690 cm⁻¹ (Bi-H).

⁽²³⁾ Synthesis of 3: 2.198 g (3.908 mmol) of [(Me₃Si)₂CH]₂BiCl in 80 mL of Et_2O was added dropwise to a suspension of 0.163 g (4.289 mmol) of LiAlH₄ in 20 mL of Et_2O at -80 °C. The reactions mixture was allowed to warm to room temperature and filtered through a glass frit covered with kiselguhr when the solution became red. The resulting solution was reduced to ca. 10 mL. After several days at -28 °C 1.508 g (73.24%) of red crystals of **3** (mp 104 °C) was formed. ¹H NMR (200 MHz, C₆D₆, 25 °C, TMS): δ 0.22 (s, ²J_{SH} = 6.14 Hz, ¹J_{CH} = 118.32 Hz, 18H; CH₃) 0.42 (s, ²J_{SH} = 6.48 Hz, ¹J_{CH} = 118.28 Hz, 18H; CH₃) 1.18 (s, ²J_{SH} = 7.74 Hz, 1H; CH). ¹³C NMR (50 MHz, C₆D₆, 25 °C, TMS): (b) $S_{\text{SH}} = 7.74$ Hz, in, Ch). C third (30 MHz, C₆D₆, 25 C, 1MS): δ 3.18 (s; CH₃) 3.55 (s; CH₃). MS (70 eV): m/z (%) 527 (30) [{(Me₃Si)}(Me₃Si)_2CH₂Bi⁺], 368 (15) [(Me₃Si)_2CHBi⁺], 353 (15) [(Me₃Si)(Me₂Si)-CHBi⁺], 73 (100) [Me₃Si⁺]. Anal. Calcd for C₂₈H₇₆Bi₂Si₄: C, 31.86; H, 7.26. Found: C, 31.30; H, 6.96.

⁽²⁴⁾ Breunig, H. J.; Rösler, R.; Lork, E. Angew. Chem. 1998, 110, 3361; Angew. Chem., Int. Ed. 1998, 37, 3175.
(25) Lambert, J. B.; Jackson, G. F., III; Mueller, D. C. J. Am. Chem.

Soc. 1970, 92, 3093.

at bismuth comparable to the Walden inversion in the $S_N 2$ mechanism.²⁶ The diastereotopic species observed at low temperature is possibly a loosely associated dimer of molecules with frozen inversion. Intermolecular association giving dimers or trimers was also observed in solutions of Me_4P_2 and $Me_2Ph_2P_2$.²⁷ Association in solution²⁸ and the formation of chains^{29,30} are also not unusual for distibines or dibismuthines. The reversible dissociation of **3** with formation of R_2Bi • radicals would also lead to equivalent Me_3Si groups. This process should however prevail at low concentration, which is in contrast to our observations. Dissociation is possible in the gas phase. EI-mass spectra of **3** contain signals for R_2Bi^+ ions at highest mass.

Single crystals of 3 suitable for X-ray structure analysis are obtained from a solution in petroleum ether at -28 °C. The crystals belong to the monoclinic space group P1 (No. 2) with one molecule in the asymmetric unit.³¹ The structure of **3** is depicted in Figure 2. It consists of R₂Bi-BiR₂ molecules with a near trans (antiperiplanaric) conformation (lp-Bi-Bi-lp 164.23- $(3)^{\circ}$, lp = assumed direction of the lone pairs at Bi). The bis(trimethylsilyl)methyl ligands in the R₂Bi fragments are orientated almost perpendicular to each other. They adopt a near syn-anti conformation with two pairs of H–C–Bi–C dihedral angles of 0.1°, 5° and 130°, 134°. Bending of the ligands away from the central part of the molecule leads to dissimilar Bi-C-Si angles (106-111°, 120-123°) at each ligand. Also the wide range of the bond angles around bismuth (87-111°) reflects the steric strain in this molecule.

Figure 2. ORTEP-like representation of the crystal structure of 3. The ellipsoids represent 30% probability. The hydrogen atoms belonging to the CH₃ groups are omitted for clarity. Selected distances (Å) and angles (deg): Bi(1)-Bi(2) = 3.0534(13), Bi(1)-C(1) = 2.347(10), Bi(1)-C(2) =2.319(10), Bi(2)-C(3) = 2.336(10), Bi(2)-C(4) = 2.344(11),Si(1)-C(1) = 1.880(11), Si(2)-C(1) = 1.865(11), Si(3)-C(2)= 1.872(12), Si(4)-C(2) = 1.894(11), Si(5)-C(3) = 1.873(11), Si(6)-C(3) = 1.894(12), Si(7)-C(4) = 1.880(13), Si-(8)-C(4) = 1.896(11); Bi(2)-Bi(1)-C(1) = 89.3(3), Bi(2)-Bi(1)-C(2) = 111.4(3), Bi(1)-Bi(2)-C(3) = 108.6(3), Bi(1)-Bi(2)-C(4) = 86.6(3), C(1)-Bi(1)-C(2) = 99.7(4), C(3)-C(3)Bi(2)-C(4) = 103.7(4), Bi(1)-C(1)-Si(1) = 110.9(4), Bi(1)-Si(1) = 110.9(4), Bi(1)-Si(1)-Si(1) = 110.9(4), Bi(1)-Si(1)-C(1)-Si(2) = 120.2(5), Bi(1)-C(2)-Si(3) = 105.9(5), Bi(1)-Si(2)-Si(3) = 105.9(5), Bi(1)-Si(2)-SC(2)-Si(4) = 123.4(6), Bi(2)-C(3)-Si(5) = 125.3(6), Bi(2)-C(3)-Si(5) = 125.3(6), Bi(2)-C(3)-Si(3) = 125.3(6), Bi(3)-C(3)-Si(3) = 125.3(6), Bi(3)-Si(3)-Si(3) = 125.3(6), Bi(3)-Si(3)-C(3)-Si(6) = 104.2(5), Bi(2)-C(4)-Si(7) = 119.5(5), Bi(2)-Si(7) = 1C(4)-Si(8) = 110.0(5), = C(1)-Bi(1)-Bi(2)-C(3) = -170.7(4),C(1)-Bi(1)-Bi(2)-C(4) = -67.4(4), C(2)-Bi(1)-Bi(2)-C(3)= 89.2(4), C(2) - Bi(1) - Bi(2) - C(4) = -167.5(4), H(1) - C(1) - C(1)Bi(1)-Bi(2) = 22.12(4), H(2)-C(2)-Bi(1)-Bi(2) = 93.15(4), H(3)-C(3)-Bi(2)-Bi(1) = 95.87(4), H(4)-C(4)-Bi(2)-Bi(2)-Bi(2)-Bi(2)Bi(1) = 21.50(4), H(1)-C(1)-Bi(1)-C(2) = 133.73(4), H(2)-C(2)-Bi(1)-C(1) = 0.11(4), H(3)-C(3)-Bi(2)-C(4) = 4.87(4),H(4)-C(4)-Bi(2)-C(3) = 129.82(4).

Nevertheless the Bi–Bi bond length (3.0534(13) Å) corresponds to a normal bismuth–bismuth single bond as found in Ph₄Bi₂ (2.990(2) Å;^{14a} 2.988(1) Å^{14b}), (Me₃-Si)₄Bi₂ (3.035(3) Å),¹⁵ or R₄Bi₄ (R = (Me₃Si)₂CH; mean 3.005 Å).²⁴

The comparison of **3** with the corresponding diphosphine reveals similarities with respect to the conformational preferences. Due to the larger size of the bismuth atoms compared with phosphorus, there is however less steric repulsion between the bulky alkyl groups and, consequently, despite a weaker E-E bond the dissociation with formation of R_2E^{\bullet} radicals is less favored for E = Bi than for E = P.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft for the financial support.

Supporting Information Available: Experimental details, spectra, and complete X-ray crystallographic data for [(Me₃Si)₂CH]₂Bi–Bi[CH(SiMe₃)₂]₂ (**3**). This material is available free of charge via the Internet at http://pubs.acs.org.

OM020202Z

⁽²⁶⁾ Huheey, J. E.; Keiter, E. A.; Keiter, R. L. *Anorganische Chemie*, 2nd ed.; Walter de Gruyter: Berlin, 1995; p 278.

⁽²⁷⁾ McFarlane, H. Č. E.; McFarlane, W. Chem. Commun. 1972, 1189.

⁽²⁸⁾ Breunig, H. J.; Gülec, S. In *Unkonventionelle Wechselwirkungen* in der Chemie metallischer Elemente; VCH: Weinheim, 1992; p 218. (29) Becker, G.: Mundt, O. In *Unkonventionelle Wechselwirkungen*

⁽²⁹⁾ Becker, G.; Mundt, O. In Unkonventionelle Wechselwirkungen in der Chemie metallischer Elemente; VCH: Weinheim, 1992; p 199.
(30) Breunig, H. J.; Silvestru, C.; Althaus, H. Chem. Rev. 1999, 99, 3277.

⁽³¹⁾ Crystallographic data for C₂₈H₇₆Bi₂Si₈: triclinic, space group $P\overline{I}$ (No. 2), radiation Mo K α ($\lambda = 0.71073$ Å), a = 9.461(5) Å, b = 11.585-(4) Å, c = 23.285(6) Å, $\alpha = 100.85(2)^\circ$, $\beta = 96.73(3)^\circ$, $\gamma = 108.16(3)^\circ$, V = 2339.0(16) Å³, Z = 2, absorption coefficient 7.734 mm⁻¹, F(000) 1044, crystal size $0.2 \times 0.3 \times 0.5$ mm³, T = 173 K, θ range for data collection 2.59–27.50°, index range $-12 \le h \le 1$, $-14 \le k \le 14$, $-30 \le I \le 30$, 12 612 reflection collected, 10 514 independent reflections (R(int) = 0.0340), completeness to $\theta = 27.50^\circ$ 97.8%, absorption correction empirical (Difabs), refinement method full-matrix least-squares on F^2 , data/restraints/parameters 10514/0/369, goodness-of-fit an F^2 1.049, final R indices ($I \ge 2\sigma(I)$) R1 = 0.0584, wR2 = 0.1399, final R indices (all data) R1 = 0.0932, wR2 = 0.1599, largest difference peak and hole 2.882/-2.448 e Å⁻³.