Double C-H Activation on Osmium and Ruthenium Centers: Carbene vs Olefin Products

Dmitry G. Gusev^{*} and Alan J. Lough[†]

Wilfrid Laurier University, Department of Chemistry, Waterloo, Ontario N2L 3C5, Canada

Received May 3, 2002

Summary: Cyclometalation of bis(di-tert-butylphosphino)pentane (D^tBPP) and subsequent product dehydrogenation take place in reactions of D^tBPP with $[OsCl_6]^{2-1}$ and $[RuCl_2(p-cymene)]_2$ to give the M(IV) dihydrides, $MH_2CI[CH(C_2H_4PBu^{t_2})_2]$, and the (alkylidene)osmium and (olefin)ruthenium complexes $OsHCl[=C(C_2H_4PBu^t_2)_2]$ and RuHCl/Bu^t₂PCH₂CH₂((E)-CH=CH)CH₂PBu^t₂].

Bulky diphosphine ligands often generate unusual metal chemistry.¹ "Pincer" complexes of cyclometalated 1,3-bis((di-tert-butylphosphino)methyl)benzene have demonstrated exceptional thermal stability along with high reactivity and found important applications in synthesis and catalysis.¹ Considerable interest in C-H bond activation and alkane dehydrogenation prompted us to study reactions of a related diphosphine, 1,5-bis(di-tertbutylphosphino)pentane (D^tBPP),² with ruthenium and osmium halides. We now report the observation of dehydrogenation of the alkane chain of D^tBPP on Ru and Os centers and the isolation of novel group 8 metal carbene and olefin complexes.

When [Et₄N]₂OsCl₆³ was heated with D^tBPP^{2b,f} under H₂, the cyclometalated complex $OsH_2Cl[CH(C_2H_4PBu^t_2)_2]$ (1) was obtained⁴ in good yield (Scheme 1). Thermal dehydrogenation of 1 afforded the carbene OsHCl- $[=C(C_2H_4PBu^{t_2})_2]$ (2).⁵

The identity of 1 follows from the NMR spectra and was confirmed by a crystal structure determination (Figure 1).⁶ The inequivalent hydrides at δ –23.8 (H_a) and -18.8 (H_b) exchange sites above -40 °C and coalesce at 38 °C (ΔG^{\ddagger} = 13.2 kcal/mol⁷). $T_1(\text{min})$ times for H_a in $\boldsymbol{1}$ and in the OsHD isotopomer^8 of $\boldsymbol{1}$ are 109 and 257 ms, respectively (-80 °C, 300 MHz). This

Shaw, B. L. Chem. Commun. 1979, 498. (b) Al-Salem, N. A.; Empsall, Shaw, B. L. Chem. Commun. **1979**, 498. (b) Al-Salem, N. A.; Empsall, H. D.; Markham, R.; Shaw, B. L.; Weeks, B. J. Chem. Soc., Dalton Trans. **1979**, 1972. (c) Crocker, C.; Errington, R. J.; Markham, R.; Moulton, C. J.; Odell, K. J.; Shaw, B. L. J. Am. Chem. Soc. **1980**, 102, 4373. (d) Crocker, C.; Errington, R. J.; Markham, R.; Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. **1982**, 387. (e) Crocker, C.; Empsall, H. D.; Errington, R. J.; Hyde, E. M.; McDonald, W. S.; Markham, R.; Norton, M. C.; Shaw, B. L.; Weeks, B. J. Chem. Soc., Dalton Trans. **1982**, 1217. (f) Timmer, K.; Thewissen, D. H. M. W.; Marsman, J. W. Recl. Trav. Chim. Pays-Bas **1988**, 107, 248. (g) McLoughlin, M. A.; Elesher, R. J.; Kaska, W. C. Orranometallics **1994**. McLoughlin, M. A.; Flesher, R. J.; Kaska, W. C. Organometallics 1994, 13, 3816.

(3) Gusev, D. G.; Dolgushin, F. M.; Antipin, M. Y. Organometallics 2001, 20, 1001.

Figure 1. Partial structures of 1 and 2 with the ellipsoids set at 30% probability level. Key parameters (distances in Å and angles in deg) are as follows. 1: Os-C3 = 2.089(3), Os-Cl = 2.4168(7), C3-H3a = 1.00(3); P1-Os-P2 =166.45(3), C3-Os-Cl = 149.2(1), H1os-Os-H2os =60.2(14), C3-Os-H2os = 68.4(11), H1os-Os-Cl = 82.3-(9), C2-C3-Os = 116.8(2). **2**: Os-C3 = 1.911(3), Os-Cl= 2.4388(9); P1-Os-P2 = 166.94(3), C3-Os-Cl = 170.6(1),C2-C3-Os = 124.8(2).

C18

Scheme 1

corresponds to a $H_a \cdots H_b$ distance of 1.68 Å.⁹ The proton α -CH resonance of **1** is shifted upfield to δ 0.31. In the carbon spectrum, the α -CH resonance is deshielded (δ

^{*} To whom correspondence should be addressed. E-mail: dgoussev@wlu.ca.

Current address: Department of Chemistry, X-ray Laboratory, University of Toronto, Toronto, Ontario M5S 3H6, Canada.

⁽¹⁾ Recent reviews: (a) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750. (b) Vigalok, A.; Milstein, D. Acc. Chem. Res. 2001, 34, 798. (c) Jensen, C. M. Chem. Commun. 1999, 2443. (d) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870.
(2) (a) Crocker, C.; Errington, R. J.; McDonald, W. S.; Odell, K. J.;

⁽⁴⁾ A mixture of $[Et_4N]_2OsCl_6$ (2.8 g, 4.22 mmol), D'BPP (1.67 g, 4.63 mmol), and triethylamine (1.28 g, 12.65 mmol) in 15 mL of pentan-2-ol was stirred under H_2 for 72 h at 140 °C. A solid crystallized upon slow cooling. The product was filtered, washed with 3 imes 5 mL of methanol, and dried in vacuo for 1 h. Yield: 2.00 g (81%) of a moderately air-sensitive solid containing 1 and 13% of 2. Anal. Calcd for C₂₁H₄₇ClosP₂ (587.24): C, 42.95; H, 8.07. Found: C, 42.95; H, 8.22. IR (Nujol and KBr): ν (OsH) 2207, 2225 cm⁻¹; ν (η^2 -CH) 2633 cm⁻¹. ¹H NMR (-40 °C, CD₂Cl₂): δ -23.81 (dt, ³J_{HH} = 18.3 Hz, ²J_{HP} = 10.3 Hz, ¹H, Os*H*), -18.80 (m, ³J_{HH} = 6.0 Hz, ²J_{HP} = 10.3 Hz, ¹H, Os*H*), -18.80 (m, ³J_{HH} = 6.0 Hz, ²J_{HP} = 10.3 Hz, ¹H, Os*H*). ¹H-1H, Os *H*), -18.80 (m, ${}^{3}J_{HH} = 6.0$ Hz, ${}^{2}J_{HP} = 10.3$ Hz, 1H, Os *H*), 'H-{ ${}^{31}P$ } NMR (-40 °C, CD₂Cl₂): δ 0.31 (m, 1H, α -CH), 1.17 (s, 18H, Bu¹), 1.27 (s, 18H, Bu¹), 1.23 (m, 2H, β -CH₂), 1.51 (ddd, ${}^{2}J_{HH} = 14.7$ Hz, ${}^{3}J_{HH} = 13.1, 7.2$ Hz, 2H, γ -CH₂), 2.12 (dd, ${}^{2}J_{HH} = 14.7$ Hz, ${}^{3}J_{HH} = 6.1$ Hz, 2H, γ -CH₂), 2.33 (ddd, ${}^{2}J_{HH} = 13.5$ Hz, ${}^{3}J_{HH} = 7.2, 2.2$ Hz, 2H, β -CH₂). ${}^{13}C{}^{1}H$ } NMR (20 °C, CD₂Cl₂): δ 26.1 (vt, ${}^{v}J = 11.2$ Hz, γ -CH₂), 29.4, 29.8 (vt, ${}^{v}J = 2.7$ Hz, CH₃), 35.3 (vt, ${}^{v}J = 10.1$ Hz, PC), 39.5 (vt, ${}^{v}J = 9.0$ Hz, PC), 47.2 (vt, ${}^{v}J = 6.6$ Hz, β -CH₂), 84.45 (t, ${}^{2}J_{CP} = 3.4$ Hz, α -CH). ${}^{31}P{}^{1}H$ } NMR (20 °C, CD₂Cl₂): δ 80.5 (s, ${}^{1}J_{POs} = 202$ Hz).

84.4) and shows a reduced ${}^{1}J_{C-H}$ coupling of 106 Hz, similar to ${}^{1}J_{C-H} = 104$ Hz for (η^{2} -CH)Ir in IrH₂[CH(C₂H₄-PBut₂)₂].^{2g} We similarly assign an agostic structure to 1. The IR spectrum of 1 shows an absorption at 2633 cm^{-1} due to the agostic ν_{C-H} . The Os–C3–H3a angle is reduced to 90.7(18)° in the crystal structure. This (η^2 -CH)Os bonding is weak, and the Os-H3a distance is long, 2.33(3) Å.

NMR spectra of the hydrido carbene 2 show the characteristic resonances of OsH at δ –26.08 and Os= C at δ 280.5. The formation of **2** was also confirmed by a crystal structure determination (Figure 1).¹⁰ The molecular geometry of **2** is square pyramidal. The Os= C distance is 1.911(3) Å: that is, shorter than the corresponding 1.997(5) Å bond in the related iridium carbene IrCl[= $C(C_2H_4PBu_2)_2$].^{2e}

To prepare Ru analogues, we reacted D^tBPP with $[RuCl_2(p-cymene)]_2$ and obtained the two isomers **3** and 4 in a 1.5:98.5 ratio.¹¹ Limited NMR information available for **3** is consistent with the monohydride carbene

5639 independent reflections (R(int) = 0.033), $R1(I > 2\sigma(I)) = 0.0255$, wR2(all data) = 0.0516.

(7) Oki, M. In *Applications of Dynamic NMR Spectroscopy to Organic Chemistry*; VCH: Deerfield Beach, FL, 1985; Chapter 1.
(8) Deuterated 1 was prepared from 2 in CD₂Cl₂ under D₂.¹H and D₂ U (140)

 2 H NMR spectra showed deuterium incorporation in the β -CH $_2$ (14% **D**), α -CH (85% **D**), and H_a and H_b sites (64% **D**). A second treatment of this solution under D₂ afforded OsD₂[CD(CD₂CH₂PBu^t₂)₂]. Deuteration caused pronounced isotope shifts of H_a (-90 °C): from δ -24.202 [CD-OsH₂] to -23.926 [CH-OsH₂] ($\Delta\delta$ = 0.276) and from δ -24.157 [CD–OsHD] to –23.883 [CH–OsHD] ($\Delta \delta$ = 0.274). In the ¹³C NMR spectrum (20 °C), α -CD was shifted to δ 82.10 vs δ 84.45 for α -CH ($\Delta\delta$ = 2.35). Agostic bonding of C-D might be weaker than that of C-H.

(9) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 3027

(10) Crystal data for 2: C21H45ClOsP2, dark brown, monoclinic, P21/ c, $0.20 \times 0.20 \times 0.20$ mm, a = 12.0114(3) Å, b = 16.2190(5) Å, c = 13.0071(4) Å, $\alpha = 90^{\circ}$, $\beta = 104.1340(10)^{\circ}$, $\gamma = 90^{\circ}$, V = 2457.24(12) Å³, Z = 4, 150 K, $\lambda = 0.710$ 73 Å, $2.94 = \theta = 27.51^{\circ}$; 20 523 total reflections, 5622 independent reflections (R(int) = 0.034), $R1(I > 2\sigma(I)) = 0.0258$, wR2(all data) = 0.0584.

(11) A mixture of [RuCl₂(cymene)]₂ (1.47 g, 4.80 mmol), D^tBPP (1.85 g, 5.13 mmol), and lutidine (0.53 g, 4.93 mmol) in *tert*-butyl alcohol was stirred for 5 h at 90 °C. The product crystallized overnight and was filtered, washed with 4×3 mL of methanol, and dried in vacuo for 3 h. Yield: 2.05 g (86%). The product can be exposed to air for hours without decomposition. Anal. Calcd for $C_{21}H_{45}CIRuP_2$ (496.06): C, 50.85; H, 9.14. Found: C, 50.76; H, 9.24. IR (Nujol): ν (RuH) 2098 cm⁻¹. Selected NMR data in CD_2Cl_2 are as follows. ¹H NMR: δ –28.06 (ddd, $^{2}J_{HP} = 21.6, 16.8 \text{ Hz}, {}^{3}J_{HH} = 2.3 \text{ Hz}, 11\text{ H}, \text{Ru}H_{\text{A}}), -23.98 \text{ (ddd, } {}^{2}J_{HP} = 20.1, 14.5 \text{ Hz}, {}^{3}J_{HH} = 2.6 \text{ Hz}, 11\text{ H}, \text{Ru}H_{\text{B}}). {}^{1}\text{H} \{{}^{3}\text{P}\} \text{ NMR: } \delta 2.68 \text{ (m}, \delta 2.68 \text{ (m})$ 20.1, 14.5 HZ, ${}^{5}J_{HH} = 2.6$ HZ, 1H, ${}^{6}RU_{FB}$. ${}^{1}H_{2}^{3}H_{P}^{3}$ NMR: δ 2.58 (m, 1H, β -CH_A), 2.83 (m, ${}^{3}J_{HH} = 9.6$, 6.9, 3.9, 2.6 HZ, 1H, β -CH_B), 3.77 (m, ${}^{3}J_{HH} = 9.6$, 6.3, 1.8 HZ, 1H, α -CH_B), 4.05 (m, ${}^{3}J_{HH} = 9.0$, 6.0, 5.7, 2.7 HZ, 1H, α -CH_A), ${}^{3}I_{P}^{1}H^{1}$ NMR: δ -23.0, 87.1 (d, ${}^{2}J_{PP} = 282$ HZ, isomer A), -7.2, 84.7 (d, ${}^{2}J_{PP} = 298$ HZ, isomer B). ${}^{13}C_{1}^{1}H_{1}$ NMR: δ 39.4 (d, $J_{CP} = 19.0$ HZ, β -CH_A), 43.9 (d, $J_{CP} = 15.6$ HZ, β -CH_B), 66.8 (dd, $J_{CP} = 1.9$, 2.1 HZ, α -CH_B), 77.8 (dd, $J_{CP} = 2.1$, 1.0 HZ, α -CH_A). NOE was in **4B**; these hydrogens showed no ${}^{3}J$ coupling. In contrast, α -CH_A and β -CH_B were coupled to RuH (${}^{3}J$ = 2.3, 2.6 Hz) and did not show an NOE with the hydride.

Figure 2. Partial structures of 4A (bottom) and 4B (top) with the ellipsoids set at the 30% probability level. Key parameters (distances in Å and angles in deg): Ru-C3 =2.213(4), Ru-C3* = 2.132(8), Ru-C2 = 2.312(5), Ru-C2* $= 2.140(10), C2-C3 = 1.404(6), C2^*-C3^* = 1.401(13), Ru-$ Cl1 = 2.4028(7), P1-Ru-P2 = 171.53(2), C3-Ru-Cl1 = $162.9(1), C3^*-Ru-Cl1 = 166.8(2).$

Scheme 2

structure shown in Scheme 2. The hydride resonance is observed at δ –21.16 (t, ² J_{HP} = 17.9), and the hydridecoupled ³¹P NMR spectrum shows a doublet at δ 95.1.

In CD_2Cl_2 , the major product **4** itself is a 1:1 mixture of isomers of RuHCl[^tBu₂PCH₂CH₂((E)-CH=CH)CH₂-PBu^t₂] (**4A**,**B**). Single-crystal X-ray analysis established the presence of **4A**,**B** in a 2:1 ratio in the solid state (Figure 2).¹² The two molecular structures differ only by the configuration of the *trans*-pent-2-ene chain: the α -CH–RuH fragment is anti in **4A** and syn in **4B**. The Ru-C distances vary greatly in 4A,B (from 2.132 to 2.312 Å); however, the C=C bond lengths are the same at 1.401-1.404 Å. NMR data¹¹ for **4** are in full agreement with the X-ray structures and show no formation of a Z isomer in solution.¹³

Complexes 3 and 4 give the Ru(IV) dihydride RuH₂-Cl[CH(C₂H₄PBu^t₂)₂] (5) in CD₂Cl₂ under H₂ and RuD₂- $Cl[CD(CD_2CH_2PBu^t_2)_2]$ under D₂. NMR data for 5 are indicative of a structure similar to that of 1.14 Evidence for weak agostic bonding in 5 is furnished by the

⁽⁵⁾ The dihydride 1 (1.55 g) was treated in 10 mL of refluxing tertbutyl alcohol for 5 h under nitrogen. The carbene product 2 crystallized upon cooling. The mother liquor was removed with a pipet, and the solid was rinsed with 2×3 mL of methanol and dried in vacuo for 1 h. Yield: 1.39 g (90%). Anal. Calcd for C₂₁H₄₅ClOsP₂ (585.22): C, 43.10; H, 7.75. Found: C, 43.11; H, 7.85. IR (Nujol): ν (OsH) 2211 cm⁻¹. ¹H NMR (C₆D₆): δ -24.75 (t; ²J_{HP} = 14.6 Hz, 1H, Os*H*). ¹H(³P) NMR (C₆D₆): δ 0.00 (ddd, ²J_{HH} = 19.5 Hz, ³J_{HH} = 5.4, 9.0 Hz, 2H, β -CH₂), 0.95 (ddd, ²J_{HH} = 19.5 Hz, ³J_{HH} = 5.9, 84 Hz, 2H, β -CH₂), 1.26 (s, 18H, Bu¹), 1.33 (s, 18H, Bu¹), 1.70 (ddd, ²J_{HH} = 14.5 Hz, ³J_{HH} = 5.9, 9.0 Hz, 2H, γ -CH₂), 1.88 (ddd, ²J_{HH} = 14.5 Hz, ³J_{HH} = 8.4, 5.4 Hz, 2H, γ -CH₂), ¹³C{¹H} NMR (CD₂Cl₂): δ 24.2 (vt, ^vJ = 10.7 Hz, γ -CH₂), 29.8, 30.2 (vt, ^vJ = 2.7 Hz, CH₃), 36.6 (vt, ^vJ = 9.5 Hz, PC), 400 (vt, ^vJ = 8.9 Hz, PC), 67.3 (vt, ^vJ = 9.3 Hz, β -CH₂), 280.5 (t, ²J_{CP} = 1.2 Hz, C=Os). ³¹P{¹H} NMR (CD₂Cl₂): δ 83.8 (s, ¹J_{POs} = 213 Hz). (6) Crystal data for 1: C₂₁H₄₇ClOsP₂, dark green, monoclinic, P2₁/c, 0.14 × 0.08 mm, a = 12.3848(2) Å, b = 14.3125(2) Å, c = 14.6526(3) Å, α = 90°, β = 106.4130(10)°, γ = 90°, V = 2491.44(7) Å³, Z = 4, 150 K, λ = 0.710 73 Å, 2.85 = 0 = 27.48°, 15 682 total reflections, 5639 independent reflections (R(int) = 0.033), R1(I > 2\sigma(I)) = 0.0255, h. Yield: 1.39 g (90%). Anal. Calcd for C21H45ClOsP2 (585.22): C, 43.10;

⁽¹²⁾ Crystal data for 4: C₂₁H₄₅ClRuP₂, dark red, monoclinic, P2₁/c, 0.14 × 0.26 × 0.30 mm, a = 12.0212(2) Å, b = 16.2095(2) Å, c = 12.8917(2) Å, $\alpha = 90^{\circ}$, $\beta = 103.291(7)^{\circ}$, $\gamma = 90^{\circ}$; V = 2444.76(9) Å³, Z = 4, 150 K, $\lambda = 0.710$ 73 Å, $2.9 = \theta = 25.1^{\circ}$, 19 070 total reflections, 4312 independent reflections (R(int) = 0.026), R1($I > 2\sigma(I)$) = 0.0298, wR2(all data) = 0.0757.

^{(13) (}E)-olefin complexes have also been obtained in dehydrogenation reactions of diphosphinoalkanes on rhodium:2c Bennett, M. A.; Neumann, H. Aust. J. Chem. 1980, 33, 1251

⁽¹⁴⁾ NMR data for 5 are as follows. ¹H NMR (-20 °C, CD₂Cl₂): δ 16.80 (t, ${}^{2}J_{HP} = 13.5$ Hz, 2H, RuH₂), 1.17, 1.26 (vt, ${}^{v}J = 6.5$ Hz, 36H, - 10.80 (t, ²J_{HP} - 13.3 Hz, 2H, RuH₂), 1.17, 1.26 (vt, ³J - 0.5 Hz, 36H, CH₃), 1.50 (m, 4H, γ , β -CH₂), 1.92 (m, 2H, γ -CH₂), 2.04 (m, 1H, α -CH), 2.43 (m, 2H, β -CH₂). ³¹P{¹H} MR (20 °C, CD₂Cl₂): δ 90.8 ¹³C{¹H} MR (-20 °C, CD₂Cl₂): δ 90.8 ¹³C{¹H} MR (-20 °C, CD₂Cl₂): δ 23.3 (vt, ^vJ = 8.6 Hz, γ -CH₂), 28.7, 28.9 (CH₃), 34.3 (vt, ^vJ = 7.8 Hz, PC), 35.9 (vt, ^vJ = 7.0 Hz, PC), 44.0 (vt, ^vJ = 7.2 Hz, β -CH₂), 86.9 (t, ²J_{CP} = 1.3 Hz, α -CH).

observation of ${}^{1}J_{\rm CH} = 111$ Hz for CH–Ru. The exchangeaveraged RuH₂ resonance undergoes decoalescence at -80 °C to give an AB system (δ –15.87, –18.10; $\Delta G^{\ddagger} =$ 8.1 kcal/mol⁷) that shows a quantum exchange coupling¹⁵ of 435 Hz between the hydrides at –110 °C. The T_1 (min) value for the hydrides is 76.5 ms (–85 °C, 300 MHz), corresponding to an H····H distance of 1.55 Å,⁹ if the phosphine contribution to the relaxation rate is 3.9 s⁻¹ as in **1**.

Dihydride **5** is unstable under vacuum, unlike the analogous RhHCl[CH(C₂H₄PBu^t₂)₂], and undergoes dehydrogenation to give **3** and **4** in the original 1.5:98.5 ratio. The loss of H₂ presumably results in formation of 14-electron RuCl[CH(C₂H₄PBu^t₂)₂] that can give carbene and olefin complexes **3** and **4** by α - and β -hydrogen elimination, respectively (Scheme 3).

In summary, we have observed double C-H activation reactions of D^tBPP on osmium and ruthenium. The

chemistry of these metals is qualitatively different, and the novel products show a thermodynamic preference for different hydrocarbon isomers: carbene for Os and olefin for Ru. New electronically unsaturated complexes are reactive species of interest for future synthetic, catalytic, and theoretical research.

Acknowledgment. D.G.G. thanks the WLU, NSERC, and Research Corp. for funding.

Supporting Information Available: Tables of atomic coordinates, bond lengths and angles, and anisotropic thermal parameters for complexes **1**, **2**, and **4**. This material is available free of charge via Internet at http://pubs.acs.org.

OM020355M

^{(15) (}a) Heinekey, D. M.; Hinkle, A. S.; Close, J. D. *J. Am. Chem. Soc.* **1996**, *118*, 5353. (b) Sabo-Etienne, S.; Chaudret, B. *Chem. Rev.* **1998**, *98*, 2077.