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Summary: The first tris-metalated silane, [(µ2-CO)Cp2-
(OC)2Fe2][Cp(OC)2Fe]SiH, was prepared via photoreac-
tion of Cp(OC)2Fe-CH3 with the bis(ferrio)silane [Cp-
(OC)2Fe]2SiH2.

Hydrosilanes are attractive synthetic precursors for
the preparation of a vast number of silicon-containing
compounds, including metal silyl complexes, available
via oxidative addition to electronically unsaturated
metal complexes. This route gives access to diverse
SiR2H and SiRH2 metal complexes, but SiH3 derivatives
starting from SiH4 have been realized only in a few
cases.2 A more effective access to SiH3 and even Si2H5
metal complexes involves Cl/H exchange at the silicon
of the corresponding metallo-chlorosilanes LnM-Si(R)-
Cl2 (R ) H, Cl, SiCl3; LnM ) Cp(OC)(L)Fe, Cp(OC)2Ru,
Cp(OC)2(Me3P)W; L ) CO, PR3),3 a process which allows
us to study the chemistry of these special silyl complexes
in a broader range. In this context, it has been demon-
strated that the metal-bound SiH3 group is a valuable
synthetic tool for the generation of metallo-silanetriols
via oxygenation reactions,4 or silylidyne metal clusters
with the silicon surrounded by a maximum of four
transition-metal groups.2a,5 Application of a Cl/H ex-
change reaction for the generation of SiH2-bridged
dinuclear complexes LnM-SiH2-MLn is an attractive
goal, since the known synthetic procedure for these
species involves volatile silicon reagents requiring
special synthetic procedures: e.g., the dihalosilanes

H2SiX2 (X ) Cl, I), the metalation of which yields the
(OC)4Co-,6 Cp(OC)2Fe-7 and (OC)5Mn-substituted7,8

derivatives. Other preparations involve the reaction
of KSiH3 with Cp2TiCl2, leading to (µ2-SiH2)(TiCp2)2, 9

or of SiH4 with (C5Me5)Mn(CO)2(THF), yielding
[C5Me5(OC)2Mn(H)]2SiH2.10 We here report the realiza-
tion of SiH2 formation at iron centers via the Cl/H
exchange route and the use of the resulting bis(metallo)-
silane for generation of the first SiH-functionalized tris-
(metallo)silane.

When the sodium metalate Na[Fe(CO)2Cp], sus-
pended in cyclohexane, was treated with the (ferrio)-
dichlorosilane 1, the bis(ferrio)chlorosilane 3 11 was
obtained (Scheme 1), which on treatment with LiAlH4
in diethyl ether produces the SiH2 species 5 in moderate
yield (57%). The ruthenium homologue 6 is obtained via
analogous metalation of 2 and hydrogenation of the
binuclear species 4 in 64% yield.12

The low values of ν̃SiH (2037 and 2025 cm-1) and 1JSiH
(166 and 136 Hz) indicate electron rich Si-H bonds in
5 and 6.13 Slow condensation of n-pentane into a
saturated solution of 5 in benzene resulted in the growth
of pale yellow crystals. The molecular structure of 5 was
verified by single-crystal X-ray diffraction,14 showing the
typical pseudotetrahedral coordination of the Fe ligands
and a significant deviation from the ideal tetrahedral
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H.; Möller, S.; Thum, G.; Reising, J.; Gbureck, A.; Nagel, V.; Fickert,
C.; Kiefer, W.; Nieger, M. Eur. J. Inorg. Chem. 1999, 1597-1605.

(4) (a) Malisch, W.; Lankat, R.; Schmitzer, S.; Reising, J. Inorg.
Chem. 1995, 34, 5701-5702. (b) Malisch, W.; Jehle, H.; Möller, S.;
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substitution geometry at silicon (Fe1-Si-Fe2 )
123.48(6)°) due to the bulkiness of the iron fragment
(Figure 1). A view along the Fe1-Si axis reveals a
distorted staggered conformation with the following
pairs of substituents in trans positions: CO/Fe2,
CO/H1, and Cp/H2. The Fe-Si bond distances
(2.3435(12) and 2.3393(12) Å) correspond to the sum of
covalence radii of iron and silicon.15

Hydrogen bonds between Cp protons and carbonyl
groups of neighboring molecules are linking the indi-
vidual monomers to a chain structure (Figure 2). One
of the metal fragments (Fe2) is involved in three
H(Cp)‚‚‚CO interactions using both carbonyl groups and
one Cp hydrogen; the other (Fe1) has a single hydrogen
bond with a Cp proton.16

Selected bond lengths (Å) and angles (deg) for 5 are
as follows: Fe1-C11, 1.744(3); Fe1-C12, 1.747(3);
O11-C11, 1.151(4); O12-C12, 1.138(4); O21‚‚‚H16,
2.714; O22‚‚‚H25, 2.626; Fe1-Si-Fe2, 123.48(6); Si1-
Fe-C11, 88.77(10); Si-Fe1-C12, 83.39(10); C11-Fe1-
C12, 93.85(14).

Highly light sensitive 5 is rapidly converted upon UV
irradiation into the bis(ferrio)silane [Cp(OC)Fe]2(µ2-CO)-
(µ2-SiH2) (7) with elimination of CO. 7 is obtained as a
dark red crystalline solid and is characterized by an
additional µ2-CO bridge and an Fe-Fe bond (Scheme
2).17,18

Moreover, 7 forms a mixture of a trans (7a) and cis
isomers (7b). As a consequence, the 1H NMR spectrum
of 7 shows two sets of signal patterns for the SiH
protons, with an AB coupling (2JHSiH ) 22 Hz) for the
dominating cis isomer 7b (74%) having the hydrogen
atoms in different chemical environments, while the two
equivalent SiH2 protons of the trans isomer 7a (26%)
give rise to a singlet signal.

A dynamic isomerization processsfound between the
different diastereomers of silylene complexes [Cp(OC)-
Fe]2(µ2-CO)(µ2-SiR2) (R ) alkyl, aryl) using temperature-
dependent NMR spectra19scould not be observed in the
case of 7a,b due to insufficient thermal stability.20

The SiH functionality of the silicon iron compound 5
offers excellent possibilities for further metalation of the
Si atom, which has been realized via the oxidative
additon of an SiH unit of 5 to the methyl iron complex
Cp(OC)2Fe-CH3. When a solution of 5 in benzene was
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Figure 1. Molecular structure of [Cp(OC)2Fe]2SiH2 (5).

Figure 2. Hydrogen-bonded chain structure of 5.

Scheme 1

Scheme 2
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irradiated for 9 h with UV light in the presence of
Cp(OC)2Fe-CH3, the dark red tris(metallo)silane 8 is
formed (Scheme 3, path A).21 The µ2-silylene species 7
is likely to be an intermediate in this process.

All three possible isomers were observed in the 1H
NMR spectrum of 8. The trans isomer 8a was formed
in marginal amounts only (4%) and could be easily
identified from its three separate Cp signals of identical
intensity (4.25, 4.53, and 4.54 ppm). In context with the
favored cis arrangement of the endocyclic Fe ligands,

the cis(H) form 8b, with minimal steric repulsion of the
ring ligands, is the main isomer (76%), in comparison
to the cis(Fe) form 8c. The identity of 8b could be
verified by a 1H/1H NOE spectrum, which shows a
coupling between the SiH moiety (8.53 ppm) and the
two endocyclic Cp ligands (4.28 ppm).

The 29Si resonances of 8b,c were detected at remark-
ably low field (293.67 and 276.31 ppm), a consequence
of the paramagnetic contribution of the three transition-
metal fragments to the chemical shift.13 The strong
electron release of the three iron substituents with
respect to the silicon is particularly evident in the SiH
stretching mode (2012 cm-1), which is shifted to even
lower frequencies by 25 cm-1 compared to the SiH mode
in the bis-metalated system 5. The same effect can be
observed in the 1JSiH coupling constant of 8b (143 Hz),
which is 23 Hz smaller than that of 5.

Attempts to perform the well-established H/Co(CO)4
exchange3a on 5 using Co2(CO)8 yieldssprobably via the
originally expected spirocyclic compound µ2-{[Cp(OC)2-
Fe]2Si}-Co2(CO)6(µ2-CO)sthe silylidyne tricobalt cluster
9, which is isolated in 34% yield (Scheme 3, path B).3a

Additional formation of the heterobinuclear complex
10 22 indicates cleavage of the Fe-Si bond in the
proposed intermediate by HCo(CO)4, which is generated
during the metalation process.

The first metalation experiments of the bis(ferrio)-
silane 5 indicate a high reactivity of the electron-rich
SiH moiety, which in our experience should offer further
interesting exchange reactions, including e.g. the inser-
tion of oxygen to give hydroxy-functionalized deriva-
tives.23 For this process not only the bis(metallo)silanes
5 and 7 but especially the tris-metalated species 8
appear to be attractive precursors.
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