Downloaded by CARLI CONSORTIUM on June 29, 2009 Published on June 11, 2002 on http://pubs.acs.org | doi: 10.1021/om0201922

$[(\mu_2-CO)Cp_2(OC)_2Fe_2][Cp(OC)_2Fe]SiH: A$ SiH-Functionalized Tris(metallo)silane. Synthesis from [Cp(OC)₂Fe]₂SiH₂¹

Wolfgang Malisch,* Matthias Vögler, Harald Käb, and Hans-Ulrich Wekel

Institut für Anorganische Chemie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

Received March 7, 2002

Summary: The first tris-metalated silane, $[(\mu_2-CO)Cp_2-$ (OC)₂Fe₂][Cp(OC)₂Fe]SiH, was prepared via photoreaction of $Cp(OC)_2Fe-CH_3$ with the bis(ferrio)silane [Cp- $(OC)_2Fe]_2SiH_2.$

Hydrosilanes are attractive synthetic precursors for the preparation of a vast number of silicon-containing compounds, including metal silyl complexes, available via oxidative addition to electronically unsaturated metal complexes. This route gives access to diverse SiR₂H and SiRH₂ metal complexes, but SiH₃ derivatives starting from SiH₄ have been realized only in a few cases.² A more effective access to SiH₃ and even Si₂H₅ metal complexes involves Cl/H exchange at the silicon of the corresponding metallo-chlorosilanes L_nM-Si(R)- Cl_2 (R = H, Cl, SiCl_3; L_nM = Cp(OC)(L)Fe, Cp(OC)_2Ru, $Cp(OC)_2(Me_3P)W; L = CO, PR_3)$,³ a process which allows us to study the chemistry of these special silyl complexes in a broader range. In this context, it has been demonstrated that the metal-bound SiH₃ group is a valuable synthetic tool for the generation of metallo-silanetriols via oxygenation reactions,⁴ or silylidyne metal clusters with the silicon surrounded by a maximum of four transition-metal groups.^{2a,5} Application of a Cl/H exchange reaction for the generation of SiH₂-bridged dinuclear complexes L_nM-SiH₂-ML_n is an attractive goal, since the known synthetic procedure for these species involves volatile silicon reagents requiring special synthetic procedures: e.g., the dihalosilanes

(2) (a) Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175-292. (b) Cundy, C. S.; Kingston, B. M.; Lappert, M. F. Adv. Organomet. Chem. 1973, 11, 253–330. (c) Tilley, T. D. In The Chemistry of Organic Silicon Compounds, Patai, S., Rappoport, Z., Eds.; Wiley-Interscience: Chichester, U.K., 1989; Chapter 24. (3) (a) Malisch, W.; Wekel, H.-U.; Grob, I.; Köhler, F. H. Z. Naturforsch. 1982, 37B, 601–609. (b) Schmitzer, S.; Weis, U.; Käb, H_2SiX_2 (X = Cl, I), the metalation of which yields the $(OC)_4Co^{-6}$ Cp $(OC)_2Fe^{-7}$ and $(OC)_5Mn$ -substituted^{7,8} derivatives. Other preparations involve the reaction of KSiH₃ with Cp₂TiCl₂, leading to $(\mu_2$ -SiH₂)(TiCp₂)₂, ⁹ or of SiH₄ with (C₅Me₅)Mn(CO)₂(THF), yielding $[C_5Me_5(OC)_2Mn(H)]_2SiH_2$.¹⁰ We here report the realization of SiH₂ formation at iron centers via the Cl/H exchange route and the use of the resulting bis(metallo)silane for generation of the first SiH-functionalized tris-(metallo)silane.

When the sodium metalate Na[Fe(CO)₂Cp], suspended in cyclohexane, was treated with the (ferrio)dichlorosilane 1, the bis(ferrio)chlorosilane 3¹¹ was obtained (Scheme 1), which on treatment with LiAlH₄ in diethyl ether produces the SiH₂ species 5 in moderate yield (57%). The ruthenium homologue 6 is obtained via analogous metalation of 2 and hydrogenation of the binuclear species **4** in 64% yield.¹²

The low values of $\tilde{\nu}_{SiH}$ (2037 and 2025 cm⁻¹) and ¹J_{SiH} (166 and 136 Hz) indicate electron rich Si-H bonds in 5 and 6.13 Slow condensation of *n*-pentane into a saturated solution of 5 in benzene resulted in the growth of pale yellow crystals. The molecular structure of 5 was verified by single-crystal X-ray diffraction,¹⁴ showing the typical pseudotetrahedral coordination of the Fe ligands and a significant deviation from the ideal tetrahedral

⁽¹⁾ Synthesis and Reactivity of Silicon Transition Metal Complexes, 49. Part 48: Malisch, W.; Hofmann, M.; Nieger, M. Novel Silanols and Siloxanes Substituted with the Ferriomethyl Fragment Cp(OC)₂FeCH₂. In Organosilicon Chemistry IV: From Molecules to Materials, Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, Germany, 1999; pp 446– 450.

H.; Buchner, W.; Malisch, W.; Polzer, T.; Posset, U.; Kiefer, W. Inorg. Chem. 1993, 32, 303-309. (c) Malisch, W.; Lankat, R.; Schmitzer, S. *Chem.* **1993**, *32*, 303–309. (c) Malisch, W.; Lankat, K.; Schmitzer, S.; Pikl, R.; Posset, U.; Kiefer, W. *Organometallics* **1995**, *14*, 5622–5627. (d) Malisch, W.; Möller, S.; Fey, O.; Wekel, H.-U.; Pikl, R.; Posset, U.; Kiefer, W. *J. Organomet. Chem.* **1996**, *507*, 117–124. Malisch, W.; Lankat, R.; Seelbach, W.; Reising, J.; Noltemeyer, R.; Pikl, U.; Posset, U.; Kiefer, W. *Chem. Ber.* **1995**, *128*, 1109–1115. (e) Malisch, W.; Jehle, H.; Möller, S.; Thum, G.; Reising, J.; Gbureck, A.; Nagel, V.; Fickert, C.; Kiefer, W.; Nieger, M. *Eur. J. Inorg. Chem.* **1999**, 1597–1605. (4) (a) Malisch, W.; Lankat, R.; Schmitzer, S.; Reising, J. *Inorg. Chem.* **1905**, *34*, 5701–5702. (b) Malisch, W.: Jehle, H.; Möller, S.;

Chem. **1995**, *34*, 5701–5702. (b) Malisch, W.; Jehle, H.; Möller, S.; Saha-Möller, C.; Adam, W. *Eur. J. Inorg. Chem.* **1998**, 1585–1587. (5) Vahrenkamp, H.; Steiert, D.; Gusbeth, P. *J. Organomet. Chem.*

^{1981, 209,} C17.

⁽⁶⁾ Aylett, B. J.; Campbell, J. M. J. Chem. Soc. A **1969**, 2110.
(7) Aylett, B. J.; Colquhoun, H. M. J. Chem. Res., Synop. **1977**, 6,

^{148.}

⁽⁸⁾ Abraham, K.; Urry, G. Inorg. Chem. 1973, 12, 2850-2856.

 ⁽⁹⁾ Hencken, G.; Weiss, E. Chem. Ber. 1973, 106, 1747.
 (10) Herrmann, W. A.; Voss, E.; Guggolz, E.; Ziegler, M. L. J. Organomet. Chem. 1985, 284, 47-57

^{(11) (}a) For [Cp(OC)₂Fe]₂Si(Cl)H (**3**) see: Malisch, W.; Ries, W. Chem. Ber. **1979**, *112*, 1304–1315. (b) [Cp(OC)₂Ru]₂Si(Cl)H (**4**): ¹H NMR (C_6D_6) δ 4.64 (s, 1H, SiH), 4.50 (s, 10 H, C_5H_5); ²⁹Si{¹H} NMR (C₆D₆) δ 98.75; IR (benzene) $\tilde{\nu}_{SiH}$ 2050 (br), $\tilde{\nu}_{CO}$ 2019 (s), 1993 (s), 1973 (vs), 1959 (vs), 1933 (vs) cm⁻¹. Anal. Calcd for C₁₄H₁₁ClO₄Ru₂Si: C, 33.04; H, 2.18. Found: C, 32.68; H, 2.06. Mp: 86 °C dec.

⁽¹²⁾ $[Cp(OC)_2Fe]_2SiH_2$ (5): ¹H NMR $(C_6D_6)^{\circ} \delta$ 5.07 (s, ¹J_{HSi} = 166 Hz, (12) $[Cp(OC)_{2}Cq]_{2}Sin_{2}$ (3). If NMR (C₆D₆) δ 3.07 (5), $\beta_{H_{1}}$ = 106 f12, 2 H, SiH), 4.28 (s, 10 H, C₅H₅); ${}^{13}C({}^{1}H)$ NMR (C₆D₆) δ 216.13 (CO), 84.33 (C₅H₅); ${}^{29}Si$ NMR (C₆D₆) δ 23.1 (t, ${}^{1}J_{SiH}$ = 166 Hz); IR (cyclo-hexane) $\tilde{\nu}_{SiH}$ 2037 (w), $\tilde{\nu}_{CO}$ 1992 (vs), 1954 (s), 1944 (vs) cm⁻¹. Anal. Calcd for C₁₄H₁₂Fe₂O₄Si: C, 43.79; H, 3.15. Found: C, 43.62; H, 3.23. [Cp(OC)_{2}Ru]_{2}SiH_{2} (6): 14 H NMR (C₆D₆) δ 4.77 (s, 2H, ${}^{1}J_{HSi}$ = 136 Hz, SiH) 4.50 (c, 10 H, C H); IB (n protector) \tilde{n}_{2}^{2} 2009 (c) SiH), 4.50 (s, 10 H, C₅H₅); IR (*n*-pentane) $\tilde{\nu}_{SiH}$ 2025 (w), $\tilde{\nu}_{CO}$ 2000 (s), 1983 (vs), 1972 (s), 1943 (vs) cm⁻¹. Anal. Calcd for C₁₄H₁₂O₄Ru₂Si: C, 35.44; H, 2.55. Found: C, 35.31; H, 2.43. (13) (a) Mitchell, T. N.; Marsmann, H. *J. Organomet. Chem.* **1978**,

^{150, 171. (}b) Brinckmann, F. E.; Coyle, T. D. J. Phys. Chem. 1968, 72, 660.

⁽¹⁴⁾ Crystal data of **5**: C₁₄H₁₂Fe₂O₄Si, *M*_r = 382.02, triclinic, space group *P*I (No. 2), *Z* = 2, *a* = 6.318(3) Å, *b* = 10.652(4) Å, *c* = 12.453(7) Å, *α* = 67.8845(6)°, *β* = 75.3508(6)°, *γ* = 72.7943(6)°, *V* = 732.1(7) Å³, *d*_{calcd} = 1.742 g/cm³, μ(Mo Kα) = 20.7 cm⁻¹, 2θ_{max} = 54°, *T* = 293 K, R1(*I* > 2σ(*I*)) = 0.028, wR2 = 0.032, GooF = 1.002 for 3011 reflections and 238 parameters.

Figure 1. Molecular structure of [Cp(OC)₂Fe]₂SiH₂ (5).

Figure 2. Hydrogen-bonded chain structure of 5.

Scheme 1

substitution geometry at silicon (Fe1–Si–Fe2 = 123.48(6)°) due to the bulkiness of the iron fragment (Figure 1). A view along the Fe1-Si axis reveals a distorted staggered conformation with the following pairs of substituents in trans positions: CO/Fe2, CO/H1, and Cp/H2. The Fe–Si bond distances (2.3435(12) and 2.3393(12) Å) correspond to the sum of covalence radii of iron and silicon.¹⁵

Hydrogen bonds between Cp protons and carbonyl groups of neighboring molecules are linking the individual monomers to a chain structure (Figure 2). One of the metal fragments (Fe2) is involved in three $H(Cp)\cdots CO$ interactions using both carbonyl groups and one Cp hydrogen; the other (Fe1) has a single hydrogen bond with a Cp proton.¹⁶

Selected bond lengths (Å) and angles (deg) for **5** are as follows: Fe1-C11, 1.744(3); Fe1-C12, 1.747(3); O11-C11, 1.151(4); O12-C12, 1.138(4); O21····H16, 2.714; O22····H25, 2.626; Fe1-Si-Fe2, 123.48(6); Si1-Fe-C11, 88.77(10); Si-Fe1-C12, 83.39(10); C11-Fe1-C12, 93.85(14).

Highly light sensitive **5** is rapidly converted upon UV irradiation into the bis(ferrio)silane $[Cp(OC)Fe]_2(\mu_2$ -CO)- $(\mu_2$ -SiH₂) (**7**) with elimination of CO. **7** is obtained as a dark red crystalline solid and is characterized by an additional μ_2 -CO bridge and an Fe–Fe bond (Scheme 2).^{17,18}

Moreover, **7** forms a mixture of a trans (**7a**) and cis isomers (**7b**). As a consequence, the ¹H NMR spectrum of **7** shows two sets of signal patterns for the SiH protons, with an AB coupling (${}^{2}J_{\text{HSiH}} = 22$ Hz) for the dominating cis isomer **7b** (74%) having the hydrogen atoms in different chemical environments, while the two equivalent SiH₂ protons of the trans isomer **7a** (26%) give rise to a singlet signal.

A dynamic isomerization process—found between the different diastereomers of silylene complexes [Cp(OC)-Fe]₂(μ_2 -CO)(μ_2 -SiR₂) (R = alkyl, aryl) using temperature-dependent NMR spectra¹⁹—could not be observed in the case of **7a**,**b** due to insufficient thermal stability.²⁰

The SiH functionality of the silicon iron compound **5** offers excellent possibilities for further metalation of the Si atom, which has been realized via the oxidative additon of an SiH unit of **5** to the methyl iron complex $Cp(OC)_2Fe-CH_3$. When a solution of **5** in benzene was

⁽¹⁵⁾ Sheldrick, W. S. In *The Chemistry of Organic Silicon Compounds*; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989.

⁽¹⁶⁾ A detailed survey of hydrogen bonding in structurally related dinuclear transition-metal complexes has been provided by Braga et al. (see: Braga, D.; Grepioni, F.; Biradha, K.; Pedireddi, V. R.; Desiraju, G. R. *J. Am. Chem. Soc.* **1995**, *117*, 3156–3166). However, [Cp- $(OC)_2Fel_2SiH_2$ (**5**) is, to our knowledge, the first bis-metalated silane for which intermolecular bonding is described.

^{(17) &}lt;sup>1</sup>H NMR (C₆D₆): **7a** (trans), δ 6.83 (s, ²H, SiH), 4.30 (s, 10H, C₅H₅); **7b** (cis), δ 7.04, 6.43 (AB, ²J_{HSIH} = 22 Hz, 2 H, SiH), 4.10 (s, 10H, C₅H₅). ¹³C₁⁽¹H} NMR (C₆D₆): **7a** (trans), δ 286.21, 218.46 (CO), 84.90 (C₅H₅); **7b** (cis), δ 272.32, 212.32 (CO), 83.83 (C₅H₅). ²⁹Si{¹H} NMR (C₆D₆): **7a** (trans), δ 286.21, 218.46 (CO), 80, 90 (C₅H₅); **7b** (cis), δ 272.32, 212.32 (CO), 83.83 (C₅H₅). ²⁹Si{¹H} NMR (C₆D₆): δ 185.30 (trans); 180.93 (cis). IR (cyclohexane): $\tilde{\nu}_{SiH}$ 2015 (w), $\tilde{\nu}_{CO}$ 1994 (m), 1973 (vs), 1955 (s), 1940 (m), 1792 (s) cm⁻¹. Anal. Calcd for C₁₃H₁₂Fe₂O₃Si: C, 43.86; H, 3.40. Found: C, 43.42; H, 3.31.

⁽¹⁸⁾ In contrast, the ruthenio derivative **6** is photochemically stable under the same conditions. This is a remarkable difference from the μ_2 -CH₂ homologue, which can be photochemically converted into [Cp-(OCRu]₂(μ_2 -CO)(μ_2 -CH₂). See: (a) Lin, Y. C.; Calabrese, J. C.; Wreford, S. S. *J. Am. Chem. Soc.* **1983**, *105*, 1679–1680. (b) Davies, D. L.; Dyke, A. F.; Knox, S. A. R.; Morris, M. J. *J. Organomet. Chem.* **1981**, *215*, C30.

irradiated for 9 h with UV light in the presence of $Cp(OC)_2Fe-CH_3$, the dark red tris(metallo)silane **8** is formed (Scheme 3, path A).²¹ The μ_2 -silylene species **7** is likely to be an intermediate in this process.

All three possible isomers were observed in the ¹H NMR spectrum of **8**. The trans isomer **8a** was formed in marginal amounts only (4%) and could be easily identified from its three separate Cp signals of identical intensity (4.25, 4.53, and 4.54 ppm). In context with the favored cis arrangement of the endocyclic Fe ligands,

(20) DFT calculations at the B3PW91/6-311+G(d) level of theory (geometries of **7a**, **b** and the transition state calculated with B3PW91/6-31G(d)) predict an activation barrier of E_a (cis/trans) = 89.9 kJ mol⁻¹ and E_a (trans/cis) = 88.6 kJ mol⁻¹. These values are in good agreement with the experimental results obtained by Ogino for the isomerization of the complexes [Cp(OC)Fe]₂(μ_2 -CO)(μ_2 -SiHR) (R = *t*Bu, CHPh).¹⁹ (21) ¹H NMR (C_6D_6): **8a** (trans), δ 8.15 (1H, SiH), 4.54, 4.53, 4.25

(21) ¹H NMR (C₆D₆): **8a** (trans), δ 8.15 (1H, SiH), 4.54, 4.53, 4.25 (5 H, C₅H₅); **8b** (cis-H), δ 8.53 (1H, ¹*J*_{SiH} = 143 Hz, SiH), 4.48 (5H, C₅H₅), 4.28 (10H, C₃H₅); **8c** (cis-Fe), δ 7.49 (1H, SiH), 4.40 (10H, C₃H₅), 4.24 (5H, C₅H₅). ¹³C{¹H} NMR (C₆D₆) for three isomers: δ 214.57, 215.25, 222.60 (CO); 84.38, 84.65, 85.11, 85.48, 85.63, 86.84, 88.48 (C₃H₅). ²³Si{¹H} NMR (C₆D₆): δ 293.67 (*cis*-H), 276.31 (*cis*-Fe). IR (cyclohexane): $\tilde{\nu}_{SiH}$ 2012 (w, br); $\tilde{\nu}_{CO}$ 1987 (s), 1956 (s), 1945 (s), 1781 (vs) cm⁻¹. Anal. Calcd for C₂₀H₁₆Fe₃O₅Si (531.97): C, 45.16; H, 3.03. Found: C, 44.48; H, 3.16.

the cis(H) form **8b**, with minimal steric repulsion of the ring ligands, is the main isomer (76%), in comparison to the cis(Fe) form **8c**. The identity of **8b** could be verified by a 1 H/ 1 H NOE spectrum, which shows a coupling between the SiH moiety (8.53 ppm) and the two endocyclic Cp ligands (4.28 ppm).

The ²⁹Si resonances of **8b**,**c** were detected at remarkably low field (293.67 and 276.31 ppm), a consequence of the paramagnetic contribution of the three transitionmetal fragments to the chemical shift.¹³ The strong electron release of the three iron substituents with respect to the silicon is particularly evident in the SiH stretching mode (2012 cm⁻¹), which is shifted to even lower frequencies by 25 cm⁻¹ compared to the SiH mode in the bis-metalated system **5**. The same effect can be observed in the ¹J_{SiH} coupling constant of **8b** (143 Hz), which is 23 Hz smaller than that of **5**.

Attempts to perform the well-established H/Co(CO)₄ exchange^{3a} on **5** using Co₂(CO)₈ yields—probably via the originally expected spirocyclic compound μ_2 -{[Cp(OC)₂-Fe]₂Si}-Co₂(CO)₆(μ_2 -CO)—the silylidyne tricobalt cluster **9**, which is isolated in 34% yield (Scheme 3, path B).^{3a} Additional formation of the heterobinuclear complex **10**²² indicates cleavage of the Fe–Si bond in the proposed intermediate by HCo(CO)₄, which is generated during the metalation process.

The first metalation experiments of the bis(ferrio)silane **5** indicate a high reactivity of the electron-rich SiH moiety, which in our experience should offer further interesting exchange reactions, including e.g. the insertion of oxygen to give hydroxy-functionalized derivatives.²³ For this process not only the bis(metallo)silanes **5** and **7** but especially the tris-metalated species **8** appear to be attractive precursors.

Acknowledgment. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (Schwerpunktprogramm "Spezifische Phänomene in der Siliciumchemie"; SFB 347 "Selektive Reaktionen metallaktivierter Moleküle") as well as from the Fonds der Chemischen Industrie.

Supporting Information Available: Text giving full experimental procedures and characterization data for the bisand tris(metallo)silanes **5**–**8** and tables giving data from the X-ray crystallographic analysis of **5**. This material is available free of charge via the Internet at http://pubs.ac.org.

OM0201922

^{(19) (}a) Malisch, W.; Ries, W. Angew. Chem. **1978**, *90*, 140–141. (b) Tobita, H.; Kawano, Y.; Ogino, H. *Chem. Lett.* **1989**, 2155. (c) Kawano, Y.; Tobita, H.; Ogino, H. *Organometallics* **1992**, *11*, 499. (d) Luh, L.-S.; Wen, Y.-S.; Tobita, H.; Ogino, H. *Bull. Chem. Soc. Jpn.* **1997**, *70*, 2193–2200. (e) Ogino, H.; Tobita, H. *Adv. Organomet. Chem.* **1998**, *42*, 223–290.

^{(22) (}a) Manning, A. R. J. Chem. Soc. A 1971, 2321–2325. (b) Madach, T.; Vahrenkamp, H. Chem. Ber. 1980, 113, 2675–2685.
(23) Malisch, W.; Vögler, M.; Schumacher, D.; Nieger, M. Organo-

metallics, submitted for publication.