Nature of the Metal-Ligand Bond in M(CO)₅PX₃ Complexes (M = Cr, Mo, W; X = H, Me, F, Cl): Synthesis, **Molecular Structure, and Quantum-Chemical** Calculations

Gernot Frenking,^{*,†} Karin Wichmann,[†] Nikolaus Fröhlich,[†] Joseph Grobe,^{*,‡} Winfried Ğolla,[‡] Duc Le Van,[‡] Bernt Krebs,[‡] and Mechtild Läge[‡]

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35039 Marburg, Germany, and the Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 8, 48149 Münster, Germany

Received April 19, 2002

The syntheses of the phosphane complexes $M(CO)_5PH_3$ (M = Mo, W), $W(CO)_5PD_3$, and $W(CO)_5PF_3$ and the results of X-ray structure analyses of $W(CO)_5PH_3$ and $Mo(CO)_5PCl_3$ are reported. Quantum-chemical DFT calculations of the geometries and M-P bond dissociation energies of $M(CO)_5PX_3$ (M = Cr, Mo, W; X = H, Me, F, Cl) have been carried out. There is no correlation between the bond lengths and bond dissociation energies of the M-P bonds. The PMe₃ ligand forms the strongest and the longest M-P bonds of the phosphane ligands. The analysis of M–PX₃ bonds shows that PCl₃ is a poorer σ donor and a stronger π (P) acceptor than the other phosphanes. The energy decomposition analysis indicates that the M-P bonds of the PH_3 and PMe_3 complexes have a higher electrostatic than covalent character. The electrostatic contribution is between 56 and 66% of the total attractive interactions. The orbital interactions in the $M-PH_3$ and $M-PMe_3$ bonds have more σ character (65–75%) than π character (25–35%). The M–P bonds of the halophosphane complexes M(CO)₅PF₃ and M(CO)₅PCl₃ are nearly half covalent and half electrostatic. The π bonding contributes \sim 50% to the total orbital interaction.

Introduction

Phosphanes PX₃ are, besides CO, the most ubiquitous ligands in transition-metal chemistry. Metal complexes with phosphane ligands are interesting not only for academic research. Numerous representatives have been used as powerful catalysts in homolytically catalyzed chemical reactions which are important for industrial purposes.¹ It is well-known that the chemical behavior of PX₃ complexes can be modulated by the choice of the atom or group X. To tune the properties of the compounds, it is helpful to understand the nature of the M-PX₃ interactions.

Phosphane complexes of the type $M(CO)_5PX_3$ (M = Cr, Mo, W; X = H, Me, F, Cl, Br) are of considerable interest both in preparative coordination chemistry and in studies of transition-metal-phosphorus bonds of lowoxidation-state compounds. Thus, the tungsten complex W(CO)₅PH₃ has been used for the synthesis of a series of primary and secondary phosphanes in the coordination sphere of tungsten.² On the other hand, the halogenophosphane complexes $M(CO)_5PX_3$ (X = Cl, Br) are suitable precursors for the generation of cluster compounds, as demonstrated by the work of Huttner et al.3

During the past few decades the nature of the metalphosphorus bond has been the subject of several theoretical studies⁴⁻¹⁶ and was investigated by a variety of

Am. Chem. Soc. 1983, 105, 7033-7037. (b) Marynick, D. S. J. Am. Chem. Soc. 1984, 106, 4064-4065.

- (7) Orpen, A. G.; Connelly, N. G. J. Chem. Soc., Chem. Commun. 1985, 1310-1311.
 - (8) Pacchioni, G.; Bagus, P. S. *Inorg. Chem.* **1992**, *31*, 4391–4398.
 (9) Van Wüllen, C. *J. Comput. Chem.* **1997**, *18*, 1985–1992.
 (10) Jacobsen, H.; Berke, H. *Chem. Eur. J.* **1997**, *3*, 881–886.
- (11) Bowmaker, G. A.; Schmidbaur, H.; Krüger, S.; Rösch, N. Inorg. Chem. 1997, 36, 1754-1757.
- (12) Kaupp, M. Chem. Ber. 1996, 129, 535-544.
- (13) Gonzáles-Blanco, Ò.; Branchadell, V. Organometallics 1997, 16, 5556-5562.
- (14) (a) Dapprich, S.; Frenking, G. *Organometallics* **1996**, *15*, 4547–4551. (b) Frenking, G.; Dapprich, S.; Meisterknecht, T.; Uddin, J. NATO Sci. Ser. C **2000**, *546*, 73–89.
- (15) Ruiz-Morales, Y.; Ziegler, T. J. Phys. Chem. A 1998, 102, 3970-

[†] Philipps-Universität Marburg

[†]Westfälische Wilhelms-Universität Münster. (1) Cornils, B., Herrmann, W. A., Eds. *Applied Homogeneous Catalysis with Organometallic Compounds*, VCH: Weinheim, Germany, 1996.

⁽²⁾ Nief, N.; Mercier, F.; Mathey, F. J. Organomet. Chem. 1987, 328, 349 - 355.

⁽³⁾ Lang, H.; Huttner, G.; Zsolnai, L.; Mohr, G.; Sigwarth, B.; Weber, U.; Orama, O.; Jibril, I. J. Organomet. Chem. 1986, 304, 157-179.

⁽⁴⁾ Reviews: (a) Fantucci, P. *Comments Inorg. Chem.* **1992**, *13*, 241–260. (b) Dias, P. B.; Minas de Piedade, M. E.; Martinho Simoes, J. A. *Coord. Chem. Rev.* **1994**, *135/136*, 738–807. (c) Alyea, E. C.; Song, S. *Comments Inorg. Chem.* **1996**, *18*, 145–164. (d) Alyea, E. C.; Song, S. Comments Inorg. Chem. **1996**, *18*, 189–221. (5) (a) Xiao, S.; Trogler, W. C.; Ellis, D. E.; Berkovich-Yellin, Z. J.

^{(6) (}a) Braga, M. *Inorg. Chem.* **1985**, *24*, 2702–2706. (b) Braga, M. *Quim. Nova* **1988**, *11*, 71–75.

^{3976.} (16) (a) Fernandez, A. L.; Wilson, M. R.; Prock, A.; Giering, W. P. *Organometallics* 2001, *20*, 3429–3435. (b) Golovin, M. N.; Rahman, M. M.; Belmonte, J. E.; Giering, W. P. *Organometallics* 1985, *4*, 1981.
(c) Rahman, M. M.; Liu, H. Y.; Prock, A.; Giering, W. P. *Organome-*

experimental techniques.^{4,17-20} However, the results obtained so far have led to controversial discussions, in particular with respect to the role of $M \rightarrow P$ back-bonding and the possible bonding mechanisms as well as about the σ and π contributions to the bond. The interpretation of IR data of phosphane complexes by means of the Cotton-Kraihanzel force-field technique²¹ led to the following order of π -acceptance: $PF_3 > PCl_3 > P(OR)_3$ > PR_3 .²² The strength of the $M \rightarrow PX_3 \pi$ -back-donation has also been estimated from NMR spectroscopic data. Wang et al. measured the oxygen-17 quadrupole constants of (CO)₅W-PR₃ complexes and came to the conclusion that PMe₃ is a stronger π -accepting ligand than NMe₃ but weaker than P(OMe)₃.¹⁹ Alyea and Song reported experimental ⁹⁵Mo, ³¹P, and ¹³C NMR chemical shifts of $(CO)_n Mo - (PR_3)_{6-n}$ (n = 3-5) complexes.²⁰ The interpretation of the results and a reexamination of the various parameters used to evaluate σ and π contributions to the M-P bond led them to suggest that PCl₃ should be a weak π -acceptor.^{4c,d} However, a recent theoretical study of ⁹⁵Mo and ³¹P NMR chemical shifts of (CO)₅MoPR₃ by Ruiz-Morales and Ziegler showed that PCl₃ is actually a very strong π -acceptor that is stronger than PF₃ and, particularly, PH₃ and PMe₃.¹⁵

To gain a better insight into the M–P bond description, further information resulting from advanced theoretical calculations and additional structural data are necessary. Of particularly great help would be the structure determination of the parent complexes $M(CO)_5PH_3$ (M = Cr, Mo, W), which have been known from the work of Fischer and co-workers²³ for about 30 years. Therefore, we have put considerable effort into the preparation of some representatives and into the isolation of suitable single crystals for X-ray diffraction studies. An X-ray structure analysis of Cr(CO)₅PH₃ has been reported before by Huttner.²⁴ However, because of structural disorder it was not possible to give reliable bond lengths and angles of the PH₃ ligand. Here we report the first X-ray structure analysis of a transitionmetal phosphane complex with one PH₃ ligand, W(CO)₅-PH₃, which gives experimental bond lengths and angles. We also carried out theoretical investigations of the structures and the bonding situation of M(CO)₅PX₃ (M = Cr (1), Mo (2), W (3); X = H (a), Me (b), F (c), Cl (d)).

The quantum-chemical calculations of the geometries and bond dissociation energies and the theoretical analysis of the (CO)₅M-PX₃ bonding were carried out using gradient-corrected DFT methods. We analyzed the electronic structure and the energy of the M–P bonds. The changes in the σ and π charges were investigated by NBO²⁵ population analysis. The contributions of electrostatic and covalent attraction to the M-PR₃ bonding and the strength of the σ and π contributions to the orbital interactions have been determined by the ETS²⁶ energy partitioning analysis. The same methods have recently been used by us to analyze the bonding in carbonyl complexes,²⁷ group 13 diyl complexes,²⁸ and complexes with cyclic π ligands.²⁹ Details about the ETS analysis are given there and in the Experimental Section.

The experimental results obtained are based on a novel effective synthesis of the complexes M(CO)₅PH₃ $(M = Mo (2a), W(3a)), W(CO)_5 PD_3 (3e), and W(CO)_5 PF_3$ (3c) as well as on X-ray diffraction analyses of 3a and Mo(CO)₅PCl₃ (2d). As the latter complex was described in the literature^{3,18c} to be unstable, no structural data are known so far.

We wish to comment on the way the topic of π -acceptor strength of ligands is frequently addressed and discussed in the literature. Many workers take the correlation between a measured quantity, such as a vibrational frequency or a force constant, NMR chemical shift components, or coupling constants, and selected theoretical data such as orbital populations as a measure of π -acceptor strength. While such procedures may be helpful to establish an ordering scheme of the ligands, they can be deceptive, because any observable quantity is the result of the *total* interactions between the ligand and the complex fragment. Without an explicit analysis of the actual changes of the σ and π charges and the associated effects on the observed properties, any statement about π -acceptor strength remains a speculation. For example, the QALE (quantitative analysis of ligand effects)¹⁶ method has been developed as a mathematical tool to correlate the properties of phosphane ligands with so-called stereoelectronic parameters, which are then suggested as an indicator of π -acceptor strength. It is questionable whether a good correlation between different parameters is indicative of a real physical change in the electronic structure. We also want to point out that the relative π -acceptor strength of ligands can only be established with respect to a given complex fragment. Two ligands may have a reverse π -acceptor strength in combination with complex fragments of two different metals. Therefore, a description of the π -acceptor strength of ligands without a metal donor fragment as reference seems questionable. Finally, we want to mention that π -acceptor interactions may have different effects on experimental parameters. Vibrational spectra, NMR chemical shifts or coupling constants, and bond energies are affected to a different extent by π -acceptor interac-

tallics 1987, 6, 650. (d) Rahman, M. M.; Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics 1989, 8, 1. (e) Liu, H. Y.; Eriks, K.; Giering, W. P.; Prock, A. *Inorg. Chem.* **1989**, *28*, 1759. (f) Liu, H. Y.; Eriks, K.; Prock, A.; Giering, W. P. *Organometallics* **1990**, *9*, 1758. (g) Wilson, M. R.; Woska, D. C.; Prock, A. *Organometallics* **1993**, *12*, 1742.

^{(17) (}a) Graham, W. A. G. *Inorg. Chem.* **1968**, *7*, 315–321. (b) Nolan, S. P.; Hoff, C. D. *J. Organomet. Chem.* **1985**, *290*, 365–373.

^{(18) (}a) Davies, M. S.; Pierens, R. K.; Aroney, M. J. J. Organomet. Chem. 1993, 458, 141-146. (b) Aroney, M. J.; Buys, I. E.; Davies, M. S.; Hambley, T. W. *J. Chem. Soc., Dalton Trans.* **1994**, 2827–2834. (c) Davies, M. S.; Aroney, M. J.; Buys, I. E.; Hambley, T. W.; Calvert, J. L. *Inorg. Chem.* **1995**, *34*, 330–336.

⁽¹⁹⁾ Wang, S. P.; Richmond, M. G.; Schwartz, M. J. Am. Chem. Soc. 1992, 114, 7595-7596.

 ⁽²⁰⁾ Alyea, E. C.; Song, S. Inorg. Chem. 1995, 34, 3864–3873.
 (21) Cotton, F. A.; Kraihanzel, C. S. J. Am. Chem. Soc. 1962, 84,

^{4432 - 4438.}

⁽²²⁾ Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles and Structure of Reactivity, 4th ed.; Harper Collins College: New York, 1993; p 431.

⁽²³⁾ Fischer, E. O.; Louis, E.; Bathelt, W.; Müller, J. Chem. Ber. **1969**, *102*, 2547–2556.

⁽²⁴⁾ Huttner, G.; Schelle, S. J. Organomet. Chem. 1973, 47, 383-390.

⁽²⁵⁾ Reed, A. E.; Weinhold, F.; Curtiss, F. Chem. Rev. 1985, 88, 899.

^{(26) (}a) Ziegler, T.; Rauk, A. *Theor. Chim. Acta* **1977**, *46*, 1. (b) Ziegler, T.; Rauk, A. *Inorg. Chem.* **1979**, *18*, 1558. (c) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1755.

⁽²⁷⁾ Diefenbach, A.; Bickelhaupt, F. M.; Frenking, G. J. Am. Chem. Soc. 2000, 122, 6449-6458.

^{(28) (}a) Uddin, J.; Frenking, G. J. Am. Chem. Soc. 2001, 123, 1683-1693. (b) Chen, Y.; Frenking, G. J. Chem. Soc., Dalton Trans. 2001, 434-440.

⁽²⁹⁾ Lein, M.; Frunzke, J.; Timoshkin, A. Chem. Eur. J. 2001, 7, 4155 - 4163.

tions. Consequently, statements about the alleged strength or weakness of a ligand as a π -acceptor should be made with caution.

Experimental Section

Syntheses. The phosphane complexes $M(CO)_5PH_3$ and $M(CO)_5PF_3$ (M = Cr, Mo, W) have been prepared earlier either by photochemical^{23,30} or by thermal³¹ substitution from the metal hexacarbonyls and the ligands as precursors. As a rule, labile compounds such as $M(CO)_5(THF)$ and $M(CO)_5(CH_2Cl_2)$ were used as intermediates. However, the yields obtained were very low: e.g., only 2% for the complexes $M(CO)_5PH_3$.²³ This is partly due to the fact that the highly toxic, gaseous, and spontaneously inflammable ligand PH₃ is difficult to handle in preparative amounts. A more suitable synthesis of the tungsten complex was developed by Mathey et al.² by the reaction of $W(CO)_5(THF)$ or $W(CO)_5(CH_3CN)$ with phosphonium iodide, PH₄I.

In our preparation the chlorophosphane complexes $M(CO)_5PCl_3$ (M = Mo (2d), W (3d)) were employed as precursors for the corresponding PH₃ or PF₃ derivatives. Compounds 2d and 3d were produced by the "indirect" photochemical method³² via the labile intermediate $M(CO)_5$ (THF). As shown in Scheme 1, the chlorine substituents of the coordinated PCl₃ can be replaced by hydrogen or fluorine using organotin hydrides R₃SnH or fluorides R₃SnF as reagents.

With the exception of compound 2a the complexes 2 and 3 are obtained in high purity and almost quantitative yields. Because the reaction of 2d with Bu₃SnH is much slower than that of 3d (4 days vs 2 h) under comparable conditions, a gradual decomposition of 2a is observed in the reaction mixture, leading to a lower isolated yield.

The composition and constitution of the complexes **2** and **3** were investigated by MS, IR, and NMR (^{1}H , ^{13}C , ^{31}P , ^{19}F (**3c**)) spectroscopy and compared with the literature data. X-ray diffraction analyses were carried out on single crystals of **2d** and **3a**.

General Techniques. All experiments were performed using standard vacuum line techniques or Schlenk methods under an argon atmosphere. Reaction vessels were either Schlenk flasks or ampules with several break-seals and a sideattached NMR tube. Solvents and deuterated compounds for NMR measurements were carefully dried and degassed. NMR: Bruker AC 200 (200.13 MHz, ¹H, standard TMS; 50.32 MHz, ¹³C, standard TMS; 81.02 MHz, ³¹P, standard 85% H₃-PO₄; 188.31 MHz, ¹⁹F, standard CCl₃F). MS: Model MAT 212, Varian MAT. IR: Nicolet Impact 400, Bruker IFS 48.

(Phosphane)pentacarbonylmolybdenum (2a). A 224 mg (0.60 mmol) portion of Mo(CO)₅PCl₃ **(2d)** was dissolved in a Schlenk vessel in 1 mL of pentane. After dropwise addition of a solution of 523 mg (1.80 mmol) of Bu₃SnH in 1 mL of pentane at room temperature, the mixture was stirred in the dark. The course of the reaction was followed by ³¹P NMR measurements. The replacement of Cl by H was found to be

complete after 4 days. **2a** was obtained as colorless crystals and purified by washing the filter residue with cold pentane (0 °C). The complex was characterized by comparing the spectroscopic parameters with literature data.²³ Yield: 79 mg (0.29 mmol), 49%.

(Phosphane)pentacarbonyltungsten (3a). The synthesis was analogous to that of 2a: 407 mg (0.88 mmol) of W(CO)₅PCl₃ (3d), 808 mg (2.78 mmol) of Bu₃SnH; reaction time 2 h. Yield: 287 mg (0.80 mmol), 91%. Characterization was achieved by comparison of the various spectra with literature data.²³ Additional information: ¹³C NMR (C₆D₆, 25 °C) δ 195.1 (d, ²*J*(P,C) = 7.2 Hz, cis CO), 197.9 (d, ²*J*(P,C) = 11.7 Hz, trans CO).

(*d*₃-**Phosphane**)**pentacarbonyltungsten (3e).** The synthesis was analogous to that of **2a**: 123 mg (0.27 mmol) of W(CO)₅PCl₃ (**3d**), 150 mg (0.91 mmol) of Me₃SnD; solvent, 0.5 mL of pentane; reaction vessel, NMR tube; reaction time, 3 h. Yield: 96 mg (0.27 mmol), 99%. ³¹P NMR (C₆D₆, 25 °C): δ –185.9 (tt with ¹⁸³W satellites, ¹*J*(P,D) = 52.3 Hz, ¹*J*(W,P) = 215.2 Hz).

(Trifluorophosphane)pentacarbonyltungsten (3c). To a suspension of 316 mg (1.02 mmol) of Bu₃SnF in 1 mL of pentane placed in a Schlenk vessel was added a solution of 155 mg (0.34 mmol) of W(CO)₅PCl₃ (**3d**) in 1 mL of pentane. The mixture was stirred in the dark for 2 days. Only a trace of Bu₃SnF remained unreacted after this time. The solvent was pumped off in vacuo at -78 °C, and the volatile complex $W(CO)_5 PF_3$ was then condensed from the reaction vessel (kept at -18 °C) into a -196 °C trap. Yield: 131 mg (0,32 mmol), 95%. The product was characterized by comparing the various spectra with literature data (IR,³⁰ NMR^{33,34} incomplete). ³¹P NMR (C₆D₆, 25 °C): δ 120.6 (q with ¹⁸³W satellites, ¹J(P,F) = 1288.5 Hz, ${}^{1}J(W,P) = 496.3$ Hz). ${}^{19}F$ NMR (C₆D₆, 25 °C): δ -7.6 (q with ¹⁸³W satellites, ¹J(P,F) = 1288.8 Hz, ²J(W,F) = 30.5 Hz). MS (EI, 70 eV, selected, relative to 184 W): m/z (%) 412 (61) $[M^+]$, 384 (5) $[M^+ - CO]$, 356 (17) $[M^+ - 2 CO]$, 328 (24) $[M^+ - 3 CO]$, 324 (7) $[M^+ - PF_3]$, 300 (10) $[M^+ - 4 CO]$, 268 (100) $[M^+ - 2 CO - PF_3]$.

X-ray Structural Analyses of 2d and 3a. Single crystals of good quality were obtained by crystallization from pentane solution. Crystal data and details of the data collection and structure solution for **2d** and **3a** are summarized in Table 1.

Quantum-Chemical Calculations. The calculations were performed at the nonlocal DFT level of theory using the exchange functional of Becke³⁵ and the correlation functional of Perdew³⁶ (BP86). Scalar relativistic effects have been considered using the zero-order regular approximation (ZO-RA).³⁷ Uncontracted Slater-type orbitals (STOs) were used as basis functions for the SCF calculations.³⁸ The basis sets for the metal atoms have triple- ζ quality augmented with one (*n*)p function. Triple- ζ basis sets augmented by two sets of polariza-

(36) Perdew, J. P. Phys. Rev. B **1986**, *33*, 8822

 ⁽³⁰⁾ Strauss, S. H.; Abrey, K. D. Inorg. Chem. 1984, 23, 516-518.
 (31) Ogilvie, F.; Clark, R. J.; Verkade, J. G. Inorg. Chem. 1969, 8, 1904-1907.

⁽³²⁾ Strohmeier, W.; Müller, F. J. Chem. Ber. 1969, 102, 3608-3615.

⁽³³⁾ Keiter, R. L.; Verkade, J. G. *Inorg. Chem.* **1969**, *8*, 2115–2120.
(34) Mercier, F.; Mathey, F.; Afiong-Akpan, C.; Nixon, J. F. J.

Organomet. Chem. **1988**, *348*, 361–367. (35) Becke, A. D. *Phys. Rev. A* **1988**, *38*, 3098.

 ^{(37) (}a) Snijders, J. G. Mol. Phys. 1978, 36, 1789. (b) Snijders, J. G.; Ross, P. Mol. Phys. 1979, 38, 1909.

⁽³⁸⁾ Snijders, J. G.; Baerends, E. J.; Vernooijs, P. At. Nucl. Data Tables **1982**, 26, 483.

 Table 1. Crystallographic Data and Parameters of the Crystal Structure Determinations

J		
	2d	3a
empirical formula	C ₅ MoO ₅ PCl ₃	C ₅ H ₃ O ₅ PW
fw	373.31	357.90
cryst size (mm)	$0.15 \times 0.12 \times 0.09$	$0.20\times0.12\times0.02$
cryst syst	monoclinic	monoclinic
space group	$P2_1/c$	$P2_1/c$
a (Å)	6.805(2)	10.864(3)
<i>b</i> (Å)	13.091(3)	6.689(2)
<i>c</i> (Å)	13.044(3)	12.537(4)
β (deg)	91.52	97.17
$V(Å^3)$	1161.6(5)	903.9(5)
Ζ	4	4
$ ho_{ m calcd}$ (g cm ⁻³)	2.135	2.630
$\mu ({\rm mm}^{-1})$	1.950	12.935
F(000)	712	648
temperature (K)	150	173
$2\theta_{\rm max}$ (deg)	54.11	54.11
index ranges	$-6 \le h \le 8$	$0 \le h \le 13$
	$-4 \le k \le 16$	$0 \le k \le 8$
	$-16 \leq l \leq 16$	$-16 \leq l \leq 16$
no. of rflns measd	2538	2047
no. of indep rflns with	2262	1956
$I > 2\sigma(I)$		
no. of params	137	109
R1	0.0189	0.0443
wR2	0.0450	0.1250
GOF on F^2	1.030	1.043
resid electron	+0.657/-0.291	+3.322/-3.453
density (e Å ⁻³)		

tion functions were used for the other atoms: i.e., 2p and 3d on hydrogen and 3d and 4f on the remaining main-group elements. This basis set combination is denoted as basis I. The $(n - 1)s^2$ and $(n - 1)p^6$ core electrons of the main-group elements and the $(n-1)s^2$, $(n-1)p^6$, $(n-1)s^2$, and $(n-1)d^{10}$ core electrons of the transition metals were treated by the frozen-core approximation.³⁹ An auxiliary set of s, p, d, f, and g STOs was used to fit the molecular densities and to represent the Coulomb and exchange potentials accurately in each SCF cycle.⁴⁰ The calculations were carried out with the program packages ADF99 and ADF2.3.41 To find out if the optimized structures are mimima on the potential energy surface, we calculated the vibrational frequencies of the stationary points. The frequency calculations were carried out at BP86 with our standard basis set II⁴² using BP86/II optimized geometries, which were found to be very similar to the BP86/I data.⁴³ This was done with the program package Gaussian 98,44 which has

(41) (a) Bickelhaupt, F. M.; Baerends, E. J. *Rev. Comput. Chem.* **2000**, *15*, 1–86. (b) te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Snijders, J. G.; Ziegler, T. *J. Comput. Chem.* **2001**, *22*, 931–967.

(42) Frenking, G.; Antes, I.; Böhme, M.; Dapprich, S.; Ehlers, A. W.; Jonas, V.; Neuhaus, A.; Otto, M.; Stegmann, R.; Veldkamp, A.; Vyboishchikov, S. F. In *Reviews in Computational Chemistry*, Lipkowitz, K. B., Boyd, D. B., Eds.; VCH: New York, 1996; VOI. 8, pp 63– 144.

(43) Wichmann, K. Diplom Thesis, Philipps-Universität Marburg 1999.

analytical second derivatives. For some molecules we carried out frequency calculations at BP86/I using numerical second derivatives. The molecular geometries were optimized with C_s symmetry constraint. This was done in order to obtain molecular orbitals with a' and a'' symmetry for the subsequent energy analysis. We optimized the (CO)₅M-PX₃ structures with conformations where the PX₃ group is either staggered or eclipsed with respect to the cis-CO ligands. In all cases the energies of the two conformations were very similar, with differences <1 kcal mol⁻¹. The frequency analyses showed that some complexes had staggered energy minima, some had eclipsed minima, and some structures did not have minima with C_s symmetry. Because the bond lengths and bond angles of the two conformations were nearly identical, in all cases the structures with staggered conformations were used for the bonding analysis.

The bonding interactions between the complex fragment $M(CO)_5$ and the ligands PX_3 have been analyzed with the energy decomposition scheme ETS developed by Ziegler and Rauk.²⁶ The bond dissociation energy ΔE between two fragments A and B (in the present case $M(CO)_5$ and PX_3) is partitioned into several contributions which can be identified as physically meaningful entities. First, ΔE is separated into two major components ΔE_{prep} and ΔE_{int} :

$$\Delta E = \Delta E_{\rm prep} + \Delta E_{\rm int} \tag{1}$$

 $\Delta E_{\rm prep}$ is the energy necessary to promote the fragments A and B from their equilibrium geometry and electronic ground state to the geometry and electronic state in the compound AB. $\Delta E_{\rm int}$ is the instantaneous interaction energy between the two fragments in the molecule. The latter quantity will be the focus of the present work. The interaction energy $\Delta E_{\rm int}$ can be divided into three main components:

$$\Delta E_{\rm int} = \Delta E_{\rm elstat} + \Delta E_{\rm Pauli} + \Delta E_{\rm orb} \tag{2}$$

 ΔE_{elstat} gives the electrostatic interaction energies between the fragments, which are calculated with the frozen electron density distribution of A and B in the geometry of the complex AB. The second term in eq 2, ΔE_{Pauli} , gives the repulsive interactions between the fragments, which are caused by the fact that two electrons with the same spin cannot occupy the same region in space. The term comprises the four-electron destabilizing interactions between occupied orbitals. ΔE_{Pauli} is calculated by enforcing the Kohn-Sham determinant of AB, which results from superimposing fragments A and B, to obey the Pauli principle by antisymmetrization and renormalization. The stabilizing orbital interaction term ΔE_{orb} is calculated in the final step of the ETS analysis, when the Kohn-Sham orbitals relax to their optimal form. The latter term can be further partitioned into contributions by the orbitals which belong to different irreducible representations of the interacting system.

Unfortunately, the first two terms ΔE_{elstat} and ΔE_{Pauli} are often added up as the single term ΔE° , which is sometimes called the "steric energy term".⁴⁵ ΔE° has nothing to do with the loosely defined steric interaction which is often used to explain the repulsive interactions of bulky substituents. Since ΔE_{elstat} is usually attractive and ΔE_{Pauli} repulsive, the two terms may largely cancel each other, and the focus of the discussion of the bonding interactions then rests on the orbital interaction term ΔE_{orb} . This leads to the deceptive description of the bonding only in terms of orbital interactions. The important information about the electrostatic/covalent character of the bond given by the ratio $\Delta E_{\text{elstat}}/\Delta E_{\text{orb}}$ is then lost.

⁽³⁹⁾ Baerends, E. J.; Ellis, D. E.; Ros, P. *Chem. Phys.* **1973**, *2*, 41. (40) Krijn, J.; Baerends, E. J. Fit Functions in the HFS-Method, Internal Report (in Dutch); Vrije Universiteit Amsterdam, Amsterdam, The Netherlands, 1984.

⁽⁴⁴⁾ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*, revision A.3; Gaussian, Inc.: Pittsburgh, PA, 1998.

⁽⁴⁵⁾ Examples: (a) Ziegler, T.; Tschinke, V.; Becke, A. J. Am. Chem. Soc. **1987**, 109, 1351. (b) Ziegler, T.; Tschinke, V.; Ursenbach, C. J. Am. Chem. Soc. **1987**, 109, 4825. (c) Li, J.; Schreckenbach, G.; Ziegler, T. J. Am. Chem. Soc. **1995**, 117, 486.

Geometries and Bond Dissociation Energies

Figure 1 shows the optimized structures of the phosphane complexes together with the theoretically predicted and experimentally observed bond lengths and angles. We will first discuss the geometries of Mo- $(CO)_5PCl_3$ (2d) and W(CO)_5PH₃ (3a). The full set of calculated and experimental bond lengths and bond angles and the atomic coordinates and equivalent isotropic displacement parameters obtained from the X-ray structure analyses are given as Supporting Information.

Experiment and theory agree that the $M(CO)_5$ moieties of 2d and 3a have a nearly perfect squarepyramidal geometry. The bond angles between the CO groups are always close to 90°. There is no tilting of the cis CO groups toward trans CO or toward the PX₃ ligand. The experimental and theoretical values show that the PCl₃ group of **2d** has nearly $C_{3\nu}$ symmetry. The same is true for the theoretical structure of the PH₃ ligand in **3a**. The agreement between the calculated and experimental bond lengths and angles of 2d and 3a is quite good. The largest difference is found between the theoretical and experimental Mo-P distance of 2d. The calculated value (2.467 Å) is clearly larger than the experimental number (2.379 Å). The difference is at least partly due to crystal packing effects. We have shown in systematic studies of donor/acceptor complexes of transition metals^{46a} and main-group elements^{46b} that the interatomic distances between the donor and the acceptor atom are *always* shorter in the solid state than in the gas phase. There is a correlation between the intrinsic bond dissociation energy (BDE) and the bond shortening of the donor/acceptor bond: i.e., the bond shortening tends to become larger if the bond is weaker. The largest difference of a donor/acceptor bond length between the solid state and the gas phase was ~ 1 Å.^{46b} Figure 1 shows that the calculated value of the W-P bond of **3a** (2.524 Å) is also longer than the experimental value (2.493 Å), but the difference is less than in the case of **2d**. The BDE of the Mo–P bond of **2d** ($D_e = 23.7$ kcal mol⁻¹) is less than the BDE of the W-P bond of **3a** ($D_e = 34.0$ kcal mol⁻¹), which is in agreement with the aforementioned correlation. We do not conclude that there is a quantitative correlation between bond energy and bond shortening between the gas-phase and solidstate structure of a donor/acceptor complex. We do want to point out, however, that the calculated M-PX₃ bond lengths shown in Figure 1 are always larger than the experimental values. Part of the difference is due to crystal-packing effects, and part may be due to the error of the theoretical method, giving atomic distances that are slightly too long.

The calculated and experimental metal—CO distances show that the CO ligands cis to the PX₃ group always have longer bonds than the trans-CO group. Note that the PF₃ and PCl₃ complexes which always have the shortest (but *not* the strongest; see below) M—P bonds of the PX₃ complexes (Figure 1) also contain the longest M—CO(trans) bonds. This result supports the model of competitive M—L back-bonding for ligands which are trans to each other.

Figure 1 also gives the calculated and experimental geometries of the free ligands PX₃ and the theoretical geometries of the complex fragments $M(CO)_5$. The theoretical and experimental bond lengths and angles of PX₃ are in good to reasonable agreement. The calculated bond lengths are always larger than the experimental values, particularly for the phosphorushalogen bonds. The comparison of the fragment geometries with the bond lengths and angles of the complexes gives interesting information about the changes which are induced by M-PX₃ bond formation. The axial M–CO bonds of $M(CO)_5$ trans to the hole are significantly shorter than the equatorial bonds. They become clearly longer in (CO)₅MPX₃ but remain shorter than the cis M-CO bonds. Note that the P-X bonds of the PX₃ ligands in the complexes are always \sim 0.01–0.02 Å shorter than in free PX₃. This could be taken as an argument that the $M \rightarrow PX_3 \pi$ -back-donation takes place into the empty $d(\pi)$ orbital of phosphorus rather than into the P–X σ^* -antibonding orbitals as generally assumed,6a,47 because donation into the latter orbitals should yield longer P-X bonds. We do not think that this is a valid argument, because two other effects may be responsible for the P-X bond shortening. One is the change in hybridization of the P-X bonds. It will be shown below that the phosphorus lone-pair orbital in the free ligand has a large percentage of s character. Upon formation of the M-P bond the lone-pair phosphorus donor orbital achieves mainly p character, while the hybridization of the P-X bonds at phosphorus changes toward larger percent s character. According to Bent's rule,48 this leads to shorter P-X bonds. The second effect comes from the change of the atomic partial charge of the phosphorus atoms in the complexes, which become more positively charged because of $P \rightarrow M$ charge donation. The higher positive charge at the P atom induces $X \rightarrow P$ charge donation, which may also lead to shorter P-X bonds in the complexes.

Figure 1 also presents the theoretically predicted $M-PX_3$ bond energies. The only experimental values which are available for comparison have been reported by Nolan and Hoff.^{17b} These workers measured the heats of reaction of phosphines and phosphites with the (toluene)Mo(CO)₃ complex. They estimated the average molybdenum-phosphane bond strength in (CO)₃Mo-(PR₃)₃ complexes as Mo-PMe₃ = 38.4 kcal mol⁻¹ and Mo-PCl₃ = 30.2 kcal mol⁻¹. Our calculated values for (CO)₅Mo-PMe₃ (D_0 = 36.5 kcal mol⁻¹) and (CO)₅Mo-PCl₃ (D_0 = 22.7 kcal mol⁻¹) are in good to fair agreement with the experimental data.

Previous calculations of the complexes with PH_3 and PMe_3 ligands by van Wüllen⁹ gave results very similar to those in our work. The data for $(CO)_5M-PF_3$ and $(CO)_5M-PCl_3$ are, to the best of our knowledge, the first reliable bond energies published so far. The calculations show clearly that there is no correlation between bond lengths and bond energies. The most strongly bonded ligand, PMe_3 , has always the longest $M-PX_3$ bonds. The long $M-PMe_3$ bonds are not caused by steric repulsion

^{(46) (}a) Diedenhofen, M.; Wagener, T.; Frenking, G. In *Computational Organometallic Chemistry*; Cundari, T. R., Ed.; Marcel Dekker: New York, 2001; pp 69–121. (b) Jonas, V.; Frenking, G.; Reetz, M. T. *J. Am. Chem. Soc.* **1994**, *116*, 8741.

^{(47) (}a) Xiao, S.-X.; Trogler, W. C.; Ellis, D. E.; Berkovich-Yellin, Z. J. Am. Chem. Soc. **1983**, 105, 7033. (b) Marynick, D. S. J. Am. Chem. Soc. **1984**, 106, 4064. (c) Orpen, A. G.; Connelly, N. G. J. Chem. Soc., Chem. Commun. **1985**, 1310.

^{(48) (}a) Bent, H. A. *Chem. Rev.* **1961**, *61*, 275. (b) Jonas, V.; Boehme, C.; Frenking, G. *Inorg. Chem.* **1996**, 2097.

Figure 1. Geometries of the phosphane complexes $M(CO)_5PX_3$ (1a-d, 2a-d, 3a-d, and 4a-d). The most important calculated bond lengths (Å) and angles (deg) are shown. Experimental values are given in parentheses. The M–P bond length of **1a** is the average value of the two positions of the phosphorus atom in the disordered structures (2.351 and 2.347 Å) which have been reported in ref 24. The experimental values of **3a** and **2d** are from this work. The full set of data is given in Tables S1 and S2 of the Supporting Information. The other experimental values have been taken from refs 52 (**1b**), 18c (**2b**, **1d**, **3d**), 53 (**3b**), 54 (**2c**), 55 (PH₃), 56 (PMe₃), 57 (PF₃), and 58 (PCl₃).

between the methyl substituents and the cis-CO ligands. This becomes evident by comparing the bond angles M-P-X for X = Me, H, which are *smaller* for Me than for H (Figure 1). The BDEs of the phosphane ligands show for all metals the trend $PMe_3 > PF_3 \approx PH_3 > PCl_3$, while the calculated M-PX₃ interatomic distances decrease in the series $PMe_3 > PH_3 > PCl_3 > PF_3$. It has been noted before that metal-ligand bond lengths of donor/acceptor complexes are not reliable indicators of the bond strength.^{11,49,50} The finding that longer bonds may be stronger than shorter ones has been explained by the hybridization of the σ -donor orbital.⁵⁰ A higher percent s character leads to more compact orbitals and thus results in shorter interatomic distances. A higher percent s character of the donor orbitals at the same time yields weaker donor/acceptor interactions by producing an energetically lower lying orbital. Thus, shorter bonds may actually be weaker than longer bonds. However, the metal-ligand interactions have also contributions from $M \rightarrow P$ back-bonding and from electrostatic attraction. It is therefore difficult to predict if a longer donor/acceptor bond is weaker or stronger than a shorter bond.

Bonding Analysis

Table 2 gives the results of the NBO analysis of the PX₃ ligands in the complexes and as free molecules. It becomes obvious that the phosphorus lone-pair orbitals have mainly s character in free PX₃. The lone-pair orbitals acquire much more p character in the complexes where the percent s(P) contribution is clearly lower than the percent p(P) contribution.⁵¹

The atomic partial charges suggest that the PX₃ ligands are overall electron donors, because the phosphane ligands always carry a large positive charge. We want to point out that the partial charges of the PX₃ ligands show for all metals the somewhat unexpected trend $PMe_3 > PF_3 > PH_3 \gg PCl_3$. Thus, PF_3 is actually a stronger charge donor than PH₃, while PCl₃ is clearly the weakest donor ligand. The separation of the M←PX₃ charge donation into contributions by P and by X shows that the intraligand charge exchange plays a significant

⁽⁴⁹⁾ Ernst, R. D.; Freeman, J. W.; Stahl, L.; Wilson, D. R.; Arif, A. M.; Nuber, B.; Ziegler, M. L. J. Am. Chem. Soc. 1995, 117, 5075–5081.
(50) Fischer, R. A.; Schulte, M. M.; Weiss, J.; Zsolnai, L.; Jacobi, A.; Huttner, G.; Frenking, G.; Boehme, C.; Vyboishchikov, S. F. J. Am.

Chem. Soc. 1998, 120, 1237.

⁽⁵¹⁾ The hybridization at P comes from an NBO Lewis structure of the complexes, which has no M-CO and no M-PX3 bond. The metal atom has three lone-pair valence orbitals, and the ligands have the same Lewis structures as the free species.

Table 2. Results of the NBO Analysis at BP86/II: Hybridization of the Phosphorus Lone-Pair Orbital in the Free Ligand PX₃ and in the Complexes (CO)₅M-PX₃, Partial Charges q of the Phosphorus Atom and the Ligand PX₃, Differences of the Partial Charges between the Free Ligand and the Bonded Ligand Δq , Δq_{σ} , and Δq_{π} , and Estimated M—PX₃ σ Charge Donation $\Delta q_{\sigma}(PX_3)^{a,b}$

М		PH_3	PMe ₃	PF_3	PCl_3
free ligand	% s(P) lp % p(P) lp q(P)	52.6 47.3 -0.041	51.2 48.8 0.825	76.1 23.9 1.630	79.6 20.4 0.747
Cr	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 26.9 \\ 73.1 \\ 0.380 \\ 0.108 \\ 0.272 \\ -0.143 \\ 0.415 \\ 0.523 \end{array}$	$\begin{array}{c} 13.7\\ 86.3\\ 0.468\\ 0.145\\ 0.323\\ -0.134\\ 0.456\\ 0.602\end{array}$	$18.9 \\81.1 \\0.436 \\0.057 \\0.379 \\-0.141 \\0.520 \\0.571$	$\begin{array}{c} 30.2 \\ 69.8 \\ 0.260 \\ 0.147 \\ 0.113 \\ -0.188 \\ 0.301 \\ 0.448 \end{array}$
Мо	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 33.0\\ 67.0\\ 0.324\\ 0.110\\ 0.214\\ -0.129\\ 0.343\\ 0.453\end{array}$	$\begin{array}{c} 24.4 \\ 75.5 \\ 0.403 \\ 0.145 \\ 0.258 \\ -0.120 \\ 0.378 \\ 0.523 \end{array}$	$\begin{array}{c} 37.4 \\ 62.5 \\ 0.378 \\ 0.051 \\ 0.327 \\ -0.119 \\ 0.447 \\ 0.497 \end{array}$	$\begin{array}{c} 22.6\\ 77.4\\ 0.214\\ 0.124\\ 0.090\\ -0.175\\ 0.265\\ 0.389\end{array}$
W		$\begin{array}{c} 34.8\\ 65.2\\ 0.323\\ 0.108\\ 0.215\\ -0.137\\ 0.352\\ 0.460\end{array}$	$\begin{array}{c} 26.1 \\ 73.9 \\ 0.398 \\ 0.253 \\ 0.247 \\ -0.132 \\ 0.379 \\ 0.530 \end{array}$	$\begin{array}{c} 38.8\\ 61.0\\ 0.367\\ 0.053\\ 0.314\\ -0.140\\ 0.454\\ 0.507\end{array}$	$\begin{array}{c} 39.5 \\ 60.5 \\ 0.198 \\ 0.127 \\ 0.071 \\ -0.197 \\ 0.268 \\ 0.395 \end{array}$

^{*a*} Negative numbers indicate increases in electronic charges, positive numbers indicate decreases in electronic charges. ^{*b*} Calculated as the difference between $q(PX_3)$ and $\Delta q_{\pi}(P)$, assuming that the M—PX₃ π -charge donation is negligible.

role. The phosphorus atoms of the ligands become more positively charged in the complexes, but the trend of $\Delta q(P)$ is now $P(F_3) > P(Me_3) > P(H_3) \gg P(Cl_3)$. Thus, a significant part of the charge donation of PMe₃ and particularly of PCl₃ comes from the substituents X. Note that the charge donation $\Delta q(Cl_3)$ resulting from the chlorine atoms of PCl₃ is even *higher* than the donation of the P atom (Table 2).

The partition of the charge donation $\Delta q(\mathbf{P})$ in σ and π contributions shows (Table 2) that $\Delta q_{\sigma}(\mathbf{P})$ is always larger than $\Delta q_{\pi}(\mathbf{P})$: i.e., the phosphorus atom is a stronger σ donor than π acceptor. Note that the P atom of PCl₃ is clearly the weakest σ donor and the strongest π acceptor of the PX₃ ligands. However, it was shown above that the total charge donation of the PX₃ ligand is significantly larger than the charge donation of the P atom. We made an estimate of the total $M \leftarrow PX_3$ σ -charge donation using the differences between Δq_{π} -(P) and $\Delta q(PX_3)$, which is based on the reasonable assumption that M—PX₃ π -donation is negligible. The results also given in Table 2 show that PCl₃ clearly is the weakest σ donor and the phosphorus atom of PCl₃ is the strongest π acceptor. The differences between the other PX_3 species are not very large. The ratio of σ charge donation of PX₃ and π charge acceptance of P, given by $\Delta q_{\sigma}(PX_3)/\Delta q_{\pi}(P)$, suggests the following order of ascending π -acceptor strength: PMe₃ < PF₃ < PH₃ \ll PCl₃. However, this trend must be regarded with some caution, because the NBO data do not say whether

Table 3. Results of the ETS Analysis at BP86/TZP^a

		-	
	Cr(CO) ₅ PH ₃	Mo(CO) ₅ PH ₃	W(CO) ₅ PH ₃
	(1a)	(2a)	(3a)
A E	-33.65	-31.80	-36.38
$\Delta E_{\rm int}$	81 53	70 71	83.66
ΔE_{pauli}	$-64.86(56.3)^{b}$	$-59.44(58.0)^{b}$	$-7150(596)^{b}$
ΔE_{elstat}	$-50.32 (43.7)^{b}$	$-43.07(42.0)^{b}$	$-4854(404)^{b}$
ΔE_{orb}	$-30.32(43.7)^{-1}$	-43.07 (42.0)	-40.54 (40.4)
$\Delta E(A')$	-42.49	-33.09	-40.09
$\Delta E(A)$	- 1.04 21 G1 (G0 0)(-7.39	- 1.00 22 02 (67 6)c
ΔE_{σ}	$-34.04(00.0)^{\circ}$	$-26.30(03.7)^{2}$	$-32.03(07.0)^{-15}$
ΔE_{π}	-13.09 (31.2)	-14.76 (34.3)	$-13.72(32.4)^{\circ}$
ΔE_{prep}	1.61	0.00	2.41
$\Delta E (=-D_{\rm e})$	-32.44	-31.00	-33.97
	Cr(CO) ₅ PMe ₃	Mo(CO) ₅ PMe ₃	W(CO) ₅ PMe ₃
	(1b)	(2b)	(3b)
ΔE.	-43.66	-40.86	-46.37
$\Delta E_{\rm int}$	45.00	40.00 85.69	40.37
ΔE Pauli	-95.09 (60 7)b	-80 60 (62 8)b	-04 85 (65 1)b
ΔE_{elstat}	$-55.08(00.7)^{\circ}$	$-80.09(03.8)^{\circ}$ -45.70(26.2) ^b	$-54.85(03.1)^{b}$
ΔE_{orb}	-33.11 (39.3)-	-43.79 (30.2)	-30.80 (34.9)*
$\Delta E(A)$	-48.03	-39.40	-44.04
$\Delta E(A^{-})$	-7.08	-0.33	-0.70
ΔE_{σ}	$-40.90(74.3)^{\circ}$	$-33.13(72.3)^{\circ}$	$-37.27(73.4)^{\circ}$
ΔE_{π}	$-14.13(23.7)^{\circ}$	$-12.00(27.7)^{\circ}$	-13.55 (20.0)
$\Delta E_{\rm prep}$	2.48	3.01	2.55
$\Delta E (=-D_{\rm e})$	-41.18	-37.85	-43.82
	Cr(CO) ₅ PF ₃	Mo(CO) ₅ PF ₃	W(CO) ₅ PF ₃
	Cr(CO) ₅ PF ₃ (1c)	Mo(CO) ₅ PF ₃ (2c)	W(CO) ₅ PF ₃ (3c)
$\Lambda E_{\rm int}$	Cr(CO) ₅ PF ₃ (1c) -35.12	Mo(CO) ₅ PF ₃ (2c)	W(CO) ₅ PF ₃ (3c)
$\Delta E_{\rm int}$ $\Delta E_{\rm Pauli}$	Cr(CO) ₅ PF ₃ (1c) -35.12 91.96	Mo(CO) ₅ PF ₃ (2c) -33.51 82.28	W(CO) ₅ PF ₃ (3c) -38.56 97.00
$\frac{\Delta E_{\text{int}}}{\Delta E_{\text{Pauli}}}$	$\begin{array}{c} Cr(CO)_5 PF_3 \\ (1c) \\ \hline -35.12 \\ 91.96 \\ -62.85 (49.5)^b \end{array}$	Mo(CO) ₅ PF ₃ (2c) -33.51 82.28 -57.43 (49.6) ^b	W(CO) ₅ PF ₃ (3c) -38.56 97.00 -70.16(51.8) ^b
ΔE_{int} ΔE_{Pauli} ΔE_{elstat} ΔF_{erb}	$\begin{array}{c} Cr(CO)_5 PF_3 \\ (1c) \\ \hline -35.12 \\ 91.96 \\ -62.85 \ (49.5)^b \\ -64.24 \ (50.5)^b \end{array}$	Mo(CO) ₅ PF ₃ (2c) -33.51 82.28 -57.43 (49.6) ^b -58.35 (50.4) ^b	W(CO) ₅ PF ₃ (3c) -38.56 97.00 -70.16(51.8) ^b -65.40 (48.2) ^b
$\begin{array}{c} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta F(\Delta') \end{array}$	$\begin{array}{c} Cr(CO)_5 PF_3 \\ (1c) \\ \hline -35.12 \\ 91.96 \\ -62.85 \ (49.5)^b \\ -64.24 \ (50.5)^b \\ -48 \ 45 \end{array}$	$\begin{array}{c} Mo(CO)_5 PF_3 \\ \textbf{(2c)} \\ \hline -33.51 \\ 82.28 \\ -57.43 \ (49.6)^b \\ -58.35 \ (50.4)^b \\ -43.07 \end{array}$	W(CO) ₅ PF ₃ (3c) -38.56 97.00 -70.16(51.8) ^b -65.40 (48.2) ^b -48.87
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E({\rm A}') \\ \Delta F({\rm A}'') \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\rm (1c)}\\ \hline -35.12\\ {\rm 91.96}\\ {\rm -62.85}\ (49.5)^b\\ {\rm -64.24}\ (50.5)^b\\ {\rm -48.45}\\ {\rm -15}\ 79\end{array}$	$\begin{array}{c} Mo(CO)_5 PF_3 \\ \textbf{(2c)} \\ \hline -33.51 \\ 82.28 \\ -57.43 \ (49.6)^b \\ -58.35 \ (50.4)^b \\ -43.07 \\ -15 \ 29 \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 \ (48.2)^b \\ -48.87 \\ -16 \ 53 \end{array}$
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E({\rm A}') \\ \Delta E({\rm A}'') \\ \Delta F \end{array}$	$\begin{array}{c} Cr(CO)_5 PF_3 \\ (1c) \\ \hline -35.12 \\ 91.96 \\ -62.85 (49.5)^b \\ -64.24 (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 (50.8)^c \end{array}$	$\begin{array}{c} Mo(CO)_5 PF_3 \\ (2c) \\ \hline -33.51 \\ 82.28 \\ -57.43 \ (49.6)^b \\ -58.35 \ (50.4)^b \\ -43.07 \\ -15.29 \\ -27 \ 77 \ (47 \ 6)^c \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 \ (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 \ (49.5)^c \end{array}$
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E({\rm A}') \\ \Delta E({\rm A}'') \\ \Delta E_{\sigma} \\ \Delta F \end{array}$	$\begin{array}{c} Cr(CO)_5 PF_3 \\ (1c) \\ \hline -35.12 \\ 91.96 \\ -62.85 (49.5)^b \\ -64.24 (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 (50.8)^c \\ -31 58 (49.2)^c \end{array}$	$\begin{array}{c} Mo(CO)_5 PF_3 \\ (2c) \\ \hline -33.51 \\ 82.28 \\ -57.43 \ (49.6)^b \\ -58.35 \ (50.4)^b \\ -43.07 \\ -15.29 \\ -27.77 \ (47.6)^c \\ -30 \ 59 \ (52 \ 4)^c \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 \ (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 \ (49.5)^c \\ -33.05 \ (50.5)^c \end{array}$
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E({\rm A}') \\ \Delta E({\rm A}'') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta F \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\bf (1c)}\\ \hline -35.12\\ {\bf 91.96}\\ -62.85\ (49.5)^b\\ -64.24\ (50.5)^b\\ -48.45\\ -15.79\\ -32.66\ (50.8)^c\\ -31.58\ (49.2)^c\\ {\bf 1}\ 34 \end{array}$	$\begin{array}{c} \text{Mo(CO)}_5\text{PF}_3\\ \textbf{(2c)}\\ \hline -33.51\\ 82.28\\ -57.43\ (49.6)^b\\ -58.35\ (50.4)^b\\ -43.07\\ -15.29\\ -27.77\ (47.6)^c\\ -30.59\ (52.4)^c\\ 2\ 66\end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 & (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 & (49.5)^c \\ -33.05 & (50.5)^c \\ 3.14 \end{array}$
$\Delta E_{int} \\ \Delta E_{Pauli} \\ \Delta E_{elstat} \\ \Delta E_{orb} \\ \Delta E(A') \\ \Delta E(A'') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\pi} \\ \Delta E_{\pi} \\ \Delta F(=-D) $	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\bf (1c)}\\ \hline -35.12\\ {\bf 91.96}\\ -62.85\ (49.5)^b\\ -64.24\ (50.5)^b\\ -48.45\\ -15.79\\ -32.66\ (50.8)^c\\ -31.58\ (49.2)^c\\ 1.34\\ -33\ 78 \end{array}$	$\begin{array}{c} Mo(CO)_5 PF_3 \\ (2c) \\ \hline -33.51 \\ 82.28 \\ -57.43 \ (49.6)^b \\ -58.35 \ (50.4)^b \\ -43.07 \\ -15.29 \\ -27.77 \ (47.6)^c \\ -30.59 \ (52.4)^c \\ 2.66 \\ -30 \ 85 \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 & (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 & (49.5)^c \\ -33.05 & (50.5)^c \\ 3.14 \\ -35 & 42 \\ \end{array}$
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E(A') \\ \Delta E(A'') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\rm prep} \\ \Delta E(=-D_{\rm e}) \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\bf (1c)}\\ \hline -35.12\\ {\bf 91.96}\\ -62.85\ (49.5)^b\\ -64.24\ (50.5)^b\\ -48.45\\ -15.79\\ -32.66\ (50.8)^c\\ -31.58\ (49.2)^c\\ 1.34\\ -33.78 \end{array}$	$\begin{array}{c} Mo(CO)_5 PF_3 \\ (2c) \\ \hline -33.51 \\ 82.28 \\ -57.43 \ (49.6)^b \\ -58.35 \ (50.4)^b \\ -43.07 \\ -15.29 \\ -27.77 \ (47.6)^c \\ -30.59 \ (52.4)^c \\ 2.66 \\ -30.85 \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 & (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 & (49.5)^c \\ -33.05 & (50.5)^c \\ 3.14 \\ -35.42 \end{array}$
$\begin{array}{l} \Delta E_{\mathrm{int}} \\ \Delta E_{\mathrm{Pauli}} \\ \Delta E_{\mathrm{elstat}} \\ \Delta E_{\mathrm{orb}} \\ \Delta E(\Lambda') \\ \Delta E(\Lambda') \\ \Delta E(\Lambda'') \\ \Delta E_{\sigma} \\ \Delta E_{\tau} \\ \Delta E_{\mathrm{prep}} \\ \Delta E \left(=-D_{\mathrm{e}}\right) \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\bf (1c)}\\ \hline -35.12\\ {\bf 91.96}\\ -62.85\ (49.5)^b\\ -64.24\ (50.5)^b\\ -48.45\\ -15.79\\ -32.66\ (50.8)^c\\ -31.58\ (49.2)^c\\ 1.34\\ -33.78\\ \hline {\rm Cr(CO)_5PCl_3}\\ \end{array}$	$\begin{array}{c} Mo(CO)_5PF_3\\ (2c)\\ \hline -33.51\\ 82.28\\ -57.43\ (49.6)^b\\ -58.35\ (50.4)^b\\ -43.07\\ -15.29\\ -27.77\ (47.6)^c\\ -30.59\ (52.4)^c\\ 2.66\\ -30.85\\ \hline Mo(CO)_5PCl_3\\ \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 (49.5)^c \\ -33.05 (50.5)^c \\ 3.14 \\ -35.42 \\ \hline W(CO)_5 PCl_3 \end{array}$
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E(\Lambda') \\ \Delta E(\Lambda'') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\rm prep} \\ \Delta E (=-D_{\rm e}) \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\bf (1c)}\\ \hline -35.12\\ {\bf 91.96}\\ -62.85\ (49.5)^b\\ -64.24\ (50.5)^b\\ -64.24\ (50.5)^b\\ -48.45\\ -15.79\\ -32.66\ (50.8)^c\\ -31.58\ (49.2)^c\\ 1.34\\ -33.78\\ \hline {\rm Cr(CO)_5PCl_3}\\ {\bf (1d)}\\ \end{array}$	$\begin{array}{c} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\ \hline Mo(CO)_5PCl_3\\(\textbf{2d})\end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline & (3c) \\ \hline & -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 & (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 & (49.5)^c \\ -33.05 & (50.5)^c \\ 3.14 \\ -35.42 \\ \hline & W(CO)_5 PCl_3 \\ & (3d) \\ \end{array}$
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E(A') \\ \Delta E(A'') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\rm prep} \\ \Delta E(=-D_{\rm e}) \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\bf (1c)}\\ \hline -35.12\\ {\bf 91.96}\\ -62.85\ (49.5)^b\\ -64.24\ (50.5)^b\\ -64.24\ (50.5)^b\\ -48.45\\ -15.79\\ -32.66\ (50.8)^c\\ -31.58\ (49.2)^c\\ 1.34\\ -33.78\\ \hline {\rm Cr(CO)_5PCl_3}\\ {\bf (1d)}\\ -27.75\\ \end{array}$	$\begin{array}{c} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\ \hline Mo(CO)_5PCl_3\\(\textbf{2d})\\-26.14\\ \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ \textbf{(3c)} \\ \hline -38.56 \\ 97.00 \\ -70.16(51.8)^b \\ -65.40 \\ (48.2)^b \\ -48.87 \\ -16.53 \\ -32.35 \\ (49.5)^c \\ -33.05 \\ (50.5)^c \\ 3.14 \\ -35.42 \\ \hline W(CO)_5 PCl_3 \\ \textbf{(3d)} \\ -31.05 \\ \end{array}$
$ \begin{array}{c} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E(A') \\ \Delta E(A') \\ \Delta E(A') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\sigma} \\ \Delta E_{r\pi} \\ \Delta E_{\rm prep} \\ \Delta E (=-D_{\rm e}) \end{array} $	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ ({\bf 1c}) \\ \hline \\ -35.12 \\ 91.96 \\ -62.85 \ (49.5)^b \\ -64.24 \ (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 \ (50.8)^c \\ -31.58 \ (49.2)^c \\ 1.34 \\ -33.78 \\ \hline \\ {\rm Cr(CO)_5PCl_3}\\ ({\bf 1d}) \\ \hline \\ -27.75 \\ 78.40 \end{array}$	$\begin{array}{c} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\ \hline Mo(CO)_5PCl_3\\(\textbf{2d})\\ \hline -26.14\\70.14\\ \end{array}$	$\begin{array}{c} W(CO)_5 PF_3 \\ (3c) \\ \hline & (3c) \hline \hline \hline & (3c) \hline \hline & (3c) \hline \hline & (3c) \hline \hline \hline$
$\begin{array}{c} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E(A') \\ \Delta E(A') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\mu} $	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ ({\bf 1c}) \\ \hline \\ -35.12 \\ 91.96 \\ -62.85 \ (49.5)^b \\ -64.24 \ (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 \ (50.8)^c \\ -31.58 \ (49.2)^c \\ 1.34 \\ -33.78 \\ \hline \\ {\rm Cr(CO)_5PCl_3}\\ ({\bf 1d}) \\ \hline \\ -27.75 \\ 78.40 \\ -49.56 \ (46.7)^b \end{array}$	$\begin{array}{r} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\\hline Mo(CO)_5PCl_3\\(\textbf{2d})\\\hline -26.14\\70.14\\-45.31\ (47.3)^b\\ \end{array}$	$\begin{array}{r} W(CO)_5 PF_3 \\ (3c) \\ \hline & (3c) \hline \hline & (3c) \hline \hline \\ \hline & (3c) \hline \hline & (3c) \hline \hline \\ \hline \hline & (3c) \hline \hline \\ \hline \hline \hline \hline \\ \hline $
$\begin{array}{c} \Delta E_{\mathrm{int}} \\ \Delta E_{\mathrm{Pauli}} \\ \Delta E_{\mathrm{elstat}} \\ \Delta E_{\mathrm{orb}} \\ \Delta E(A') \\ \Delta E(A') \\ \Delta E(A') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\mathrm{prep}} \\ \Delta E(=-D_{\mathrm{e}}) \\ \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ {\bf (1c)}\\ \hline -35.12\\ {\bf 91.96}\\ {\bf -62.85} \ (49.5)^b\\ {\bf -64.24} \ (50.5)^b\\ {\bf -48.45}\\ {\bf -15.79}\\ {\bf -32.66} \ (50.8)^c\\ {\bf -31.58} \ (49.2)^c\\ {\bf 1.34}\\ {\bf -33.78}\\ \hline {\rm Cr(CO)_5PCl_3}\\ {\bf (1d)}\\ \hline {\bf -27.75}\\ {\bf 78.40}\\ {\bf -49.56} \ (46.7)^b\\ {\bf -56.59} \ (53.3)^b\\ \end{array}$	$\begin{array}{r} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\\hline Mo(CO)_5PCl_3\\(\textbf{2d})\\\hline -26.14\\70.14\\-45.31\ (47.3)^b\\-50.98\ (52.9)^b\\\hline\end{array}$	$\begin{array}{r} W(CO)_5PF_3\\ (3c)\\ \hline -38.56\\ 97.00\\ -70.16(51.8)^b\\ -65.40\ (48.2)^b\\ -48.87\\ -16.53\\ -32.35\ (49.5)^c\\ -33.05\ (50.5)^c\\ 3.14\\ -35.42\\ \hline W(CO)_5PCl_3\\ (3d)\\ \hline -31.05\\ 83.29\\ -55.82\ (48.8)^b\\ -58.51\ (51.2)^b\\ \end{array}$
$\begin{array}{l} \Delta E_{\mathrm{int}} \\ \Delta E_{\mathrm{Pauli}} \\ \Delta E_{\mathrm{elstat}} \\ \Delta E_{\mathrm{orb}} \\ \Delta E_{\mathrm{(A')}} \\ \Delta E_{\mathrm{(abc)}} \\ \Delta E_{\mathrm{(A')}} \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ (1c) \\ \hline -35.12 \\ 91.96 \\ -62.85 (49.5)^b \\ -64.24 (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 (50.8)^c \\ -31.58 (49.2)^c \\ 1.34 \\ -33.78 \\ \hline {\rm Cr(CO)_5PCl_3}\\ (1d) \\ \hline -27.75 \\ 78.40 \\ -49.56 (46.7)^b \\ -56.59 (53.3)^b \\ -43.51 \end{array}$	$\begin{array}{c} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\ \hline Mo(CO)_5PCl_3\\(\textbf{2d})\\\hline \hline -26.14\\70.14\\-45.31\ (47.3)^b\\-50.98\ (52.9)^b\\-38.61\\ \end{array}$	$\begin{array}{c} W(CO)_5PF_3\\(3c)\\ \hline & (3c)\\ \hline$
$\begin{array}{l} \Delta E_{\mathrm{int}} \\ \Delta E_{\mathrm{Pauli}} \\ \Delta E_{\mathrm{elstat}} \\ \Delta E_{\mathrm{orb}} \\ \Delta E_{\mathrm{(A')}} \\ \Delta E_{\mathrm{(A')}} \\ \Delta E_{\mathrm{A'')}} \\ \Delta E_{\pi} \\ \Delta E_{\pi} \\ \Delta E_{\mathrm{prep}} \\ \Delta E_{\mathrm{(=-}D_{\mathrm{e})}} \\ \end{array}$	$\frac{\operatorname{Cr}(\operatorname{CO})_5\operatorname{PF}_3}{(\mathbf{1c})}$ -35.12 91.96 $-62.85 (49.5)^b$ $-64.24 (50.5)^b$ -48.45 -15.79 $-32.66 (50.8)^c$ $-31.58 (49.2)^c$ 1.34 -33.78 $\frac{\operatorname{Cr}(\operatorname{CO})_5\operatorname{PCl}_3}{(\mathbf{1d})}$ -27.75 78.40 $-49.56 (46.7)^b$ $-56.59 (53.3)^b$ -43.51 -13.08	$\begin{array}{r} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\ \hline Mo(CO)_5PCl_3\\(\textbf{2d})\\\hline \hline -26.14\\70.14\\-45.31\ (47.3)^b\\-50.98\ (52.9)^b\\-38.61\\-12.37\\ \end{array}$	$\begin{array}{c} W(CO)_5PF_3\\(3c)\\ \hline & (3c)\\ \hline$
$\begin{array}{l} \Delta E_{\mathrm{int}} \\ \Delta E_{\mathrm{Pauli}} \\ \Delta E_{\mathrm{elstat}} \\ \Delta E_{\mathrm{orb}} \\ \Delta E_{\mathrm{orb}} \\ \Delta E_{\mathrm{d}} \\ \Delta E_{\mathrm{d}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ (1c) \\ \hline -35.12 \\ 91.96 \\ -62.85 (49.5)^b \\ -64.24 (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 (50.8)^c \\ -31.58 (49.2)^c \\ 1.34 \\ -33.78 \\ \hline {\rm Cr(CO)_5PCl_3}\\ (1d) \\ \hline -27.75 \\ 78.40 \\ -49.56 (46.7)^b \\ -56.59 (53.3)^b \\ -43.51 \\ -13.08 \\ -30.43 (53.7)^c \\ \end{array}$	$\begin{array}{r} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\ \hline Mo(CO)_5PCl_3\\(\textbf{2d})\\\hline -26.14\\70.14\\-45.31\ (47.3)^b\\-50.98\ (52.9)^b\\-38.61\\-12.37\\-26.25\ (51.5)^c\\ \end{array}$	$\begin{array}{c} W(CO)_5PF_3\\(3c)\\ \hline & (3c)\\ \hline$
$\begin{array}{l} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E(A'') \\ \Delta E(A'') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\sigma} \\ \Delta E_{\sigma} \\ \Delta E_{rep} \\ \Delta E(A'') \\ \Delta E_{elstat} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E(A'') \\ \Delta E(A'') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \end{array}$	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ ({\bf 1c}) \\ \hline \\ -35.12 \\ 91.96 \\ -62.85 \ (49.5)^b \\ -64.24 \ (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 \ (50.8)^c \\ -31.58 \ (49.2)^c \\ 1.34 \\ -33.78 \\ \hline \\ {\rm Cr(CO)_5PCl_3}\\ ({\bf 1d}) \\ \hline \\ -27.75 \\ 78.40 \\ -49.56 \ (46.7)^b \\ -56.59 \ (53.3)^b \\ -43.51 \\ -13.08 \\ -30.43 \ (53.7)^c \\ -26.16 \ (46.3)^c \\ \end{array}$	$\begin{array}{r} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\ \hline Mo(CO)_5PCl_3\\(\textbf{2d})\\\hline -26.14\\70.14\\-45.31\ (47.3)^b\\-50.98\ (52.9)^b\\-38.61\\-12.37\\-26.25\ (51.5)^c\\-24.73\ (48.5)^c\\ \end{array}$	$\begin{array}{c} W(CO)_5PF_3\\(3c)\\ \hline & (3c)\\ \hline$
$\begin{array}{c} \Delta E_{\rm int} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E({\rm A}') \\ \Delta E({\rm A}') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\sigma} \\ \Delta E_{r\pi} \\ \Delta E_{\rm prep} \\ \Delta E({\rm A}') \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm Pauli} \\ \Delta E_{\rm elstat} \\ \Delta E_{\rm orb} \\ \Delta E({\rm A}') \\ \Delta E({\rm A}') \\ \Delta E_{\sigma} \\ \Delta E_{\pi} \\ \Delta E_{\sigma} $	$\begin{array}{c} {\rm Cr(CO)_5PF_3}\\ ({\bf 1c}) \\ \hline \\ -35.12 \\ 91.96 \\ -62.85 \ (49.5)^b \\ -64.24 \ (50.5)^b \\ -48.45 \\ -15.79 \\ -32.66 \ (50.8)^c \\ -31.58 \ (49.2)^c \\ 1.34 \\ -33.78 \\ \hline \\ {\rm Cr(CO)_5PCl_3}\\ ({\bf 1d}) \\ \hline \\ -27.75 \\ 78.40 \\ -49.56 \ (46.7)^b \\ -56.59 \ (53.3)^b \\ -43.51 \\ -13.08 \\ -30.43 \ (53.7)^c \\ -26.16 \ (46.3)^c \\ 1.00 \\ \hline \end{array}$	$\begin{array}{r} Mo(CO)_5PF_3\\(\textbf{2c})\\ \hline -33.51\\82.28\\-57.43\ (49.6)^b\\-58.35\ (50.4)^b\\-43.07\\-15.29\\-27.77\ (47.6)^c\\-30.59\ (52.4)^c\\2.66\\-30.85\\\hline Mo(CO)_5PCl_3\\(\textbf{2d})\\\hline -26.14\\70.14\\-45.31\ (47.3)^b\\-50.98\ (52.9)^b\\-38.61\\-12.37\\-26.25\ (51.5)^c\\-24.73\ (48.5)^c\\2.48\\\hline \end{array}$	$\begin{array}{r} W(CO)_5PF_3\\(3c)\\ \hline\\ -38.56\\97.00\\-70.16(51.8)^b\\-65.40(48.2)^b\\-48.87\\-16.53\\-32.35(49.5)^c\\-33.05(50.5)^c\\3.14\\-35.42\\ \hline\\ W(CO)_5PCl_3\\(3d)\\\hline\\ -31.05\\83.29\\-55.82(48.8)^b\\-58.51(51.2)^b\\-44.86\\-13.65\\-31.20(53.3)^c\\-27.31(46.7)^c\\2.45\\ \end{array}$

^{*a*} Energies are given in kcal mol⁻¹. ^{*b*} Percentage of the total attractive interactions $\Delta E_{\text{elstat}} + \Delta E_{\text{orb.}}$ ^{*c*} Percentage of the total orbital interactions $\Delta E_{\text{orb.}}$

the increase of the π charge at the P atom, $\Delta q_{\pi}(P)$, comes from $M \rightarrow PX_3 \pi$ -back-donation or from intraligand charge donation $P \leftarrow X_3$ into the phosphorus $p(\pi)$ AOs. The changes in the charge distribution clearly show, however, that the PX₃ ligands are stronger σ charge donors than π charge acceptors. The ligand PCl₃ sticks out as the poorest σ donor and the strongest $\pi(P)$ acceptor. In the next section we will discuss the associated energy contributions to the M–P bonds.

Table 3 presents the results of the ETS analysis of the phosphane complexes. The energy term ΔE_{prep} (eq 1) is very small, because the deformation of the fragment geometries from the equilibrium structures to the geometries in the complexes is not very large. Thus, the $M-PX_3$ interaction energies ΔE_{int} have similar values and nearly show the same trend as the D_{e} values. The only difference is found for the PH₃ and PF₃ complexes. For the ΔE_{int} values of all M, the order $\text{PF}_3 > \text{PH}_3$ is observed, whereas the D_{e} values of the molybdenum complexes show the opposite order.

The largest contribution to the ΔE_{int} values for all complexes comes from the repulsive term ΔE_{Pauli} . The ratio of the electrostatic attraction ΔE_{elstat} to covalent attraction ΔE_{orb} shows significant differences for the different phosphanes. The larger ΔE_{elstat} than ΔE_{orb} values of the PH_3 complexes **1a**-**3a** suggest that the M-PH₃ bonds have more electrostatic than covalent character. The contribution of ΔE_{elstat} varies between 56.3% for the chromium complex and 59.6% for the tungsten complex. The breakdown of the orbital interaction energy into contributions from orbitals having a' and a" symmetry gives much larger values for the former orbitals. Note that the total π -bonding energy is twice the a" value because the M–PX₃ π -bonds are nearly degenerate.⁵⁹ The total σ and π orbital contributions to the covalent bonding are also given in Table 3. The π -bonding energy in the PH₃ complexes **1a**-**3a** is about one-third of ΔE_{orb} . A previous analysis of the electronic structure of 1a-3a showed also significant contributions by covalent interactions and strong π -bonding in the metal-phosphane bonds.^{14b} We want to point out, however, that the ratio of σ and π orbital energies gives a higher π contribution than the electronic charges using the σ components $\Delta q_{\sigma}(\mathbf{P})$ and particularly Δq_{σ} -(PX₃) together with the π components Δq_{π} (P) shown in Table 2.

Table 3 shows that the interaction energies ΔE_{int} of the PMe₃ complexes 1b-3b are ~ 10 kcal mol⁻¹ higher than the values of the respective PH_3 complexes 1a-**3a**. All three contributions ΔE_{elstat} , ΔE_{Pauli} , and ΔE_{orb} are larger in the former species than in the latter, although the M-P bonds of 1b-3b are longer than those of 1a-3a. Table 2 shows that the phosphorus lonepair donor orbital in the PMe₃ complexes has a higher percent p character than in the PH₃ complexes. This is in agreement with the energy decomposition of the orbital interaction term, demonstrating (Table 3) that the former species have a higher ΔE_{σ} contribution than the latter molecules. However, the stronger bonds of the PMe₃ complexes as compared with the PH₃ analogues are caused by the increase of the electrostatic attraction rather than by the orbital term. The ΔE_{elstat} values of **1b**-**3b** are 20-24 kcal mol⁻¹ higher than those of 1a-**3a**, while the ΔE_{orb} values increase only by 2–5 kcal mol⁻¹. Table 3 shows that the contribution of ΔE_{elstat} of 1b-3b varies between 60.7% for the chromium and 65.1% for the tungsten complex.

The energy decomposition analysis of the halophosphane complexes **1c**-**3c** and **1d**-**3d** reveals significant

(52) Lee, K. J.; Brown, T. L. Inorg. Chem. 1992, 31, 289-294.

Figure 2. Correlation of the energy terms of the ETS analysis, ΔE_{elstat} , ΔE_{Pauli} , ΔE_{orb} , and ΔE_{π} , with the total interaction energy ΔE_{int} . Energy values are in kcal mol⁻¹.

differences in the PH₃ and PMe₃ complexes. Table 3 shows that the M–P bonds in the complexes with PF₃ and PCl₃ ligands have about equal electrostatic and covalent character and that the σ and π contributions to ΔE_{orb} are nearly the same. The weaker M–PCl₃ bonds have slightly less electrostatic character and smaller π contributions to ΔE_{orb} than the M–PF₃ bonds. The

⁽⁵³⁾ Cotton, F. A.; Darensbourg, D. J.; Kolthammer, B. W. S. *Inorg. Chem.* **1981**, *20*, 4440–4442.

⁽⁵⁴⁾ Bridges, D. M.; Holywell, G. C.; Rankin, D. W. H.; Freeman, J. M. J. Organomet. Chem. 1971, 32, 87–95.

⁽⁵⁵⁾ McRae, G. A.; Gerry, M. C. L.; Cohen, E. A. J. Mol. Spectrosc. 1986, 116, 58–70.

⁽⁵⁶⁾ Bryan, P. S.; Kuczkowski, R. L. J. Chem. Phys. 1971, 55, 3049– 3051.

⁽⁵⁷⁾ Morino, Y.; Kuchitsu, K.; Moritani, T. Inorg. Chem. 1969, 8, 867–871.

⁽⁵⁸⁾ Kisliuk, P.; Townes, C. H. J. Chem. Phys. **1950**, 18, 1109–1111. (59) The π bond of the $C_{3\nu}$ symmetric M–PX₃ fragment is doubly degenerate. The two components of the π bond are slightly different in energy when the $C_{3\nu}$ symmetric PX₃ ligand is bonded to the $C_{4\nu}$ symmetric M(CO)₅ fragment.

correlation between weaker bonding and less π contribution to the orbital interactions is not generally valid, however. Thus, the PMe₃ complexes **1b**–**3b** contain the strongest M–P bonds but also have the lowest π contributions to ΔE_{orb} (Table 3). This result shows that the trend in the strength of metal-ligand bonds is not determined by a single contribution alone. Figure 2 shows a correlation of the calculated energy terms with the PR_3 ligands. None of the energy contributions correlate with the trend of the total interaction energies ΔE_{int} of the phosphane ligands: $PMe_3 > PF_3 > PH_3 >$ PCl₃. We want to particularly point out that neither the total orbital interaction term ΔE_{orb} nor the π contribution ΔE_{π} is in accord with the trend of the interaction energy. The best correlation is found between ΔE_{int} and ΔE_{elstat} . This result suggests that electrostatic interactions are the most important factor for the trend of the bond strength. Note, however, that the relative values of ΔE_{int} and ΔE_{elstat} of the PH₃ and PF₃ complexes do not agree.

The results shown in Table 3 suggest the order PF₃ $> PCl_3 > PMe_3 > PH_3$ for the π -bonding contributions to the $M-PX_3$ bonds, which is given by the absolute values of ΔE_{π} and by the relative strength given as percent ΔE_{π} . It is gratifying that the same trend was found in an energy decomposition analysis of Fe-(CO)₄PR₃ by González-Blanco and Branchadell.¹³ Their study, however, did not include the PCl₃ complex and was carried out differently with respect to the breakdown of the orbital interactions into σ and π contributions. The authors only used the frontier orbital interactions as σ and π contributions, while the remaining orbital interactions were considered as residual stabilization $E_{\rm res}$. The values of $E_{\rm res}$ were much larger than the E_{π} values and in some cases even larger than E_{σ} .¹³ We prefer to take the sum of the σ and π contributions as a measure of E_{σ} and E_{π} , respectively.

We want to comment on the π -acceptor strength of the PCl₃ ligand, which has been suggested to be a weak π acceptor in Mo(CO)_{6-n}(PCl₃)_n (n = 1-3).²⁰ The suggestion rests on the assumption that the ⁹⁵Mo and ³¹P NMR shielding behavior of the PCl₃ ligand correlates with its π acceptor strength. A later inspection of the calculated chemical shift tensors of M(CO)₅PX₃ (X = H, Me, Ph, F, Cl; M = Cr, Mo) showed, however, that PCl₃ is actually a better π acceptor than the other phosphane ligands.¹⁵ In the latter work it was suggested that the $\Delta \delta_{zz}$ components rather than the coordination shifts should be used as an indicator of back-donation. The results of the NBO analysis and particularly the energy decomposition analysis give further evidence that PCl₃ should be classified as a strong π acceptor. The ETS analysis proves that the metal–ligand bonds of PF₃ and PCl₃ have about equal contributions from electrostatic and covalent interactions and that the σ and π contributions to the latter are of about the same strength. The M–PX₃ bonds of the ligands PH₃ and PMe₃ have less covalent character and a significantly lower degree of π bonding than PF₃ and PCl₃.

Summary and Conclusion

The synthesis of the phosphane complexes M(CO)₅PH₃ (M = Mo, W), $W(CO)_5PD_3$, and $W(CO)_5PF_3$ has been achieved. The X-ray diffraction analyses of W(CO)₅PH₃ and $Mo(CO)_5PCl_3$ give experimental information of important parent complexes. DFT calculations of the geometries and bond dissociation energies of M(CO)₅PX₃ (M = Cr, Mo, W; X = H, Me, F, Cl) prove that there is no correlation between the bond lengths and bond energies of the M-P bonds. The BDEs of the phosphane ligands follow for all metals M the trend $PMe_3 > PF_3 \approx$ $PH_3 > PCl_3$, while the calculated $M-PX_3$ interatomic distances decrease in the series $PMe_3 > PH_3 > PCl_3 >$ PF₃. The energy decomposition analysis indicates that the PH₃ and PMe₃ ligands are more electrostatically than covalently bonded to the metals M. The electrostatic contribution amounts to 56-66% of the total attractive interactions $\Delta E_{\text{elstst}} + \Delta E_{\text{orb}}$. The orbital interactions in the M-PH₃ and M-PMe₃ bonds have more σ character (65–75%) than π character (25–35%). The M-P bonds of the halophosphane complexes $M(CO)_5PF_3$ and $M(CO)_5PCl_3$ are nearly half covalent and half electrostatic. The π bonding contributes ${\sim}50\%$ to the total orbital interaction.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Excellent service by the Hochschulrechenzentrum of the Philipps-Universität Marburg is gratefully acknowledged. Additional computer time was provided by the HLRS Stuttgart.

Supporting Information Available: Tables S1 and S2, giving experimental and calculated bond lengths and angle for **2d** and **3a**, Figures S1 and S2, giving experimental structures of **2d** and **3a**, and a printout of the CIF data for these two compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

OM020311D