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Mercè Font-Bardı́a,† Carlos Gallego,‡ Manuel Martinez,*,‡ and Xavier Solans†

Departament de Cristal.lografia, Mineralogia i Dipòsits Minerals, Universitat de Barcelona,
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Summary: Cyclometalation of the (2-BrC6H4)CHNBzl
imine via oxidative addition on [PtII(Ph)2(SMe2)2] to
produce the corresponding [PtIVBr(Ph)2(CC5H3CHNBzl)-
(SMe2)] compound has been achieved, and the X-ray
crystal structure of its triphenylphosphine derivative has
been determined. The lability of the SMe2 ligand in this
complex enables the reductive elimination of a C6H6
molecule and the formal insertion of the other phenyl
ligand in the cyclometalated Pt-C bond, producing the
first structurally characterized seven-membered cyclo-
metalated platinum complex.

Substitution reactions on inert Werner-type coordina-
tion complexes have been studied for a long time and,
although a few important challenges still exist,1 the
results seem quite clear as far as the intimate mecha-
nism is concerned. The same sorts of studies on orga-
nometallic complexes are much more scarce, even
though their inherent interest is evident both from the
catalytic point of view and from that of activation
processes of organic substrates.2 Furthermore, the dis-
sociation reactions on these octahedral complexes have
been found to be a key step for the reductive elimination
processes.3 According to our interest in the substitution
reactions on theoretically inert t2g

6 Pt(IV) organome-
tallic complexes,4 we decided to continue the study of
such reactions (eq 1) when much bulkier groups, having
a smaller trans influence, are present in the molecule.

For this purpose the reaction of the Pt(II) compound
cis-[Pt(Ph)2(SMe2)2] with the (2-BrC6H4)CHNBzl imine

was carried out according to the already well-estab-
lished procedures.5 After 4 h of reaction, the solution
was taken to dryness. The proton NMR spectrum (250
MHz, acetone-d6, room temperature) of the residue
showed a set of signals which indicated that the activa-
tion of the C-Br bond has taken place, producing the
expected cyclometalated compound cis-[PtIVBr(Ph)2-
(CC5H4CHNBzl)(SMe2)]. The CH imine proton signal at
8.51 ppm shows a Pt(IV)-indicative coupling constant,
JPt-H, of 45.4 Hz;5 furthermore, the product reacts with
PPh3 to produce the corresponding triphenylphosphine
derivative, characterized by the corresponding proton
and phosphorus NMR signals: CH, 7.82 ppm (JPt-H )
46 Hz); CH2, 3.64 and 5.79 ppm (JH-H ) 17.6 Hz); PPh3,
-5.93 ppm (JPt-P ) 1001.8 Hz). On standing, the
acetone solution of the triphenylphosphine complex
produced good X-ray-quality crystals that were struc-
turally analyzed.6 Figure 1 shows the determined
structure for the P(IV) cyclometalated complex. The
complex has the well-established5 facial arrangement
of the three Pt-C bonds observed in complexes of the
same family, and the PPh3 ligand is located in the less
hindered available position of the octahedral coordina-
tion polyhedron. As a whole, the structure has the same
characteristics as those determined for complexes with
two methyl ligands instead of the two phenyl groups.4,5

The kinetics of the substitution reaction of SMe2 by
PPh3 were studied at variable temperature and sulfide
and phosphine concentrations, to establish possible
differences due to the size and trans influences on the
non-cyclometalated organometallic ligands.4 The reac-
tion mechanism and rate law found are indicative of the
operation of the established limiting dissociative mech-
anism, which involves the existence, under steady-state
conditions, of a pentacoordinated intermediate with no
SMe2 attached. Further reactions of this intermediate
with the entering phosphine ligand produce the final
complex.4 The kinetic and thermal activation param-
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eters found for the process, that is, the sulfide ligand
dissociation (k1

293 ) 0.12 s-1, ∆Hq ) 60 ( 3 kJ mol-1,
∆Sq ) -58 ( 11 J K-1mol-1), agree with the substitution
mechanisms proposed and are of the same order as
those found for systems with methyl ligands.4 The
negative activation entropy can be related to the exist-
ence of a highly ordered dissociative transition state,
produced by the steric relief occurring on partial deco-
ordination of the leaving sulfide ligand. Nevertheless,
the existence of any other sort of ordered interaction in
the molecule following this partial decoordination would
produce the same effect (see below).

When the substitution process was studied with
platinum complex solutions that were not freshly pre-
pared, the absorbance-time traces showed a consistent
complex behavior. Furthermore, the solutions of the
dimethyl sulfide complex showed, on standing, sets of
new signals in the 1H NMR spectrum that correspond
to a new Pt(II) cyclometalated compound, as indicated
by the much larger platinum coupling constant of the
CH proton (now at 8.79 ppm), 122.2 Hz; after long
periods all Pt(IV) complex signals disappear. These
results would be expected if a reductive elimination has
taken place on the quasi-labile Pt(IV) organometallic
complex;7 in any case the simple process would require
the elimination of a biphenyl molecule that could not
be easily detected by the proton NMR spectrum.

On standing, the solutions of the aforementioned
Pt(IV) dimethyl sulfide complexes produced, to our
knowledge, the first structurally characterized seven-
membered cyclometalated platinacycle, [PtIIBr-
(CC5H4C6H4CHNBzl)(SMe2)]. From these solutions X-
ray-quality crystals could be collected and analyzed.8
The structure (Figure 2) shows a highly hindered Pt-
(II) center, due to the extreme steric demands of the
aryl groups of the cyclometalated ligand. In this respect
all attempts to carry out an oxidative addition on the
complex with MeI failed; only the starting material was
recovered. Reaction with excess triphenylphosphine of
this compound leads to the substitution of the SMe2 on
the Pt(II) complex (31P NMR signal at 17.8 ppm, JPt-P
) 1889 Hz); no further opening of the cyclometalated
ring is observed, as opposed to other cases.9

The reductive process from the Pt(IV) compound to
produce the new seven-membered cyclometalated Pt-
(II) complex is not straightforward. It is clear from the
stoichiometry that a reductive elimination of benzene
has taken place, but a simultaneous formal phenyl
insertion into the Pt-C(cyclometalated) bond has also
had to occur. Preliminary kinetic observations indicate
that the overall reaction is quite clean, with no buildup
of intermediates, even at low temperature. The reaction
rate observed is inversely dependent both on the con-
centration of the platinum compound and on that of
added SMe2, which suggests that the well-established
easy dissociation of dimethyl sulfide on these types of
complexes, as measured, plays a crucial role in the
process.3,4,10 Both sequences of reactions indicated in-
Scheme 1 agree with the stoichiometric process ob-
served.
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Figure 1. View of the X-ray structure of the cyclometa-
lated platinum(IV) compound prepared, [PtIVBr(Ph)2(CC5H4-
CHNBzl)(PPh3)] (ellipsoids indicate 20% probability). Rel-
evant distances (Å): Pt-C(1), 2.067(8); Pt-C(15), 2.045(7);
Pt-C(21), 2.095(8); Pt-N, 2.181(6); Pt-P, 2.4888(18); Pt-
Br, 2.5547(10). Relevant angles (deg): C(1)-Pt-N, 80.5-
(3); C(1)-Pt-C(15), 93.4(3); C(1)-Pt-C(21), 86.1(3); C(1)-
Pt-P, 97.69(174); C(1)-Pt-Br, 174.21(18).

Figure 2. View of the X-ray structure of the seven-
membered cyclometalated platinum(II) compound pre-
pared, [PtIIBr(CC5H4C6H4CHNBzl)(SMe2)] (ellipsoids in-
dicate 20% probability). Relevant distances (Å): Pt-C(1),
2.021(5); Pt-N, 2.044(4); Pt-S, 2.2528(14); Pt-Br, 2.5254-
(5). Relevant angles (deg): C(1)-Pt-N, 87.40(14); C(1)-
Pt-S, 89.04(11); M-Pt-S, 176.39(10); C(1-6)-C(7-12),
577(3).
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On one hand, sequence A involves a real C6H4
insertion reaction into the Pt-C bond with a concerted
shift of a hydrogen to the reductive eliminating benzene.
Although insertion reactions in Pt-C bonds are rare and
limited,11,12 the transition state proposed involves a
hydrogen shift that could facilitate the reaction via a
concerted reductive elimination of benzene.13 This one-
step mechanism should be facilitated by a certain degree
of Pt-H interaction in the transition state, given the
important degree of positive charge density of the Pt-
(IV) center.14 On the other hand, sequence B seems, in
principle, much more feasible. After the reductive
elimination reaction of an imine-attached diphenyl
group, further oxidative addition of a C-H bond to the
Pt(II) center, followed by a fast reductive elimination
of benzene, produced the final compound.15 Neverthe-
less, such a C-H activation process does not seem very
likely, given the lack of planarity/aromaticity of the final
metallacycle formed. Only oxidative addition of C-H
bonds having the above-mentioned planarity/aromatic-
ity characteristics have been observed on these com-
plexes, even when the C-H bond has been further
activated by the presence of a fluorine in an ortho
position.5 Furthermore, the absence of any intermediate
Pt(II) species in solution that could be detected by low-

temperature NMR measurements indicates that the
C-H bond activation should be relatively fast.

From the results, and the images in Figure 1 and
Scheme 1, it is clear that, if SMe2 does not previously
dissociate, the structure is too rigid for such a sterically
demanding transition state. The fact that the corre-
sponding phosphine derivative [PtIVBr(Ph)2(CC5H3-
CHNBzl)(PPh3)] does not evolve in the same direction
is a clear indication that the feasibility of the dissocia-
tion of the sixth ligand is fundamental for the process.3
Further studies are under way in order to ascertain the
mechanism of the reaction observed; some degree of
interaction with the leaving hydrogen atom on the
complex, in a way that could be considered as having a
certain degree of hydride character, has been observed.16

The existence of this sort of interaction can also account
for the negative values found for the activation entropy
for the sulfide by the phosphine substitution reactions
studied (see above).
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