Titanium-**Group 2 Metal Molecular Nitrides**

Avelino Martín, Miguel Mena,* Adrián Pérez-Redondo, and Carlos Yélamos

Departamento de Quı´*mica Inorga*´*nica, Universidad de Alcala*´*, 28871 Alcala*´ *de Henares, Madrid, Spain*

Received May 10, 2002

Summary: Treatment of [{*Ti(η5-C5Me5)(µ-NH)*}*3(µ3-N)] with magnesium amido/cyclopentadienyl/alkyl derivatives [MgR2(THF)n] (1 equiv) gives single cube-type molecular nitrides [RMg*{*(µ3-N)(µ3-NH)2Ti3(η5-C5Me5)3- (µ3-N)*}*]. Analogous reactions with 0.5 equiv of [M*{*N-* $(SiMe₃)₂$ ₂ $(THF)₂$ *(M = Mg, Ba) afford the cornershared double-cube nitrido complexes [M*{*(µ3-N)(µ3-NH)2-* $Ti_3(n^5-C_5Me_5)_{3}(u_3-N)_{2}$.

Polynuclear nitrido complexes containing different metal centers in a well-defined structure have a potential role as new motifs of ternary metal nitride materials. Among those materials, nitrides with both group 2 and transition metals have very interesting physical properties.¹ As part of a program related to the preparation of nitrido complexes, we have been studying the reactivity of the trinuclear imido-nitrido complex [{Ti- $(\eta^5\text{-}C_5\text{Me}_5)(\mu\text{-}NH)\frac{1}{3}(\mu_3\text{-}N)[(1)^{2,3}$ toward different inorganic metal compounds. Complex **1** shows an incompletecube core and is prone to incorporate metal fragments into the structure. $4-7$ With these considerations in mind, our attention has been recently focused on alkaline earth-titanium nitrido complexes. Herein we describe the synthesis, structure, and properties of single and corner-shared double cube-type magnesium/bariumtitanium molecular nitrides. Those complexes show fourand six-coordinate group 2 metals bearing the monoanionic tridentate "{(μ_3 -N)(μ_3 -NH)₂Ti₃(η^5 -C₅Me₅)₃(μ_3 -N)}^{-"} ligand. Their structures and thermal stabilities are discussed and compared with other magnesium and barium derivatives.

The synthetic chemistry is outlined in Scheme 1. Treatment of **1** with 1 equiv of the magnesium amido, cyclopentadienyl, or alkyl complexes [MgR2(THF)*n*] [R $N(SiMe₃)₂$ *n* = 2,⁸ C₅H₅ *n* = 0,⁹ CH₂CMe₃ *n* = 2¹⁰] in

- (2) Roesky, H. W.; Bai, Y.; Noltemeyer, M. *Angew. Chem., Int. Ed.*
- *Engl.* **1989**, *28*, 754–755.

(3) Abarca, A.; Gómez-Sal, P.; Martín, A.; Mena, M.; Poblet, J. M.;
- Yélamos, C. *Inorg. Chem.* **2000**, *39*, 642–651.
(4) Abarca, A.; Galakhov, M.; Gómez-Sal, P.; Martín, A.; Mena, M.; Poblet, J. M.; Santamaría, C.; Sarasa, J. P. *Angew. Chem., Int. Ed.*
2000, *39*, 534–537.
- **2000**, *39*, 534–537.

(5) Abarca, A.; Martín, A.; Mena, M.; Yélamos, C. *Angew. Chem.*,
-
- *Int. Ed.* **2000**, *39,* 3460–3463.

(6) García-Castro, M.; Martín, A.; Mena, M.; Pérez-Redondo, A.; Yélamos, C. *Chem. Eur. J.* **2001**, *7*, 647–651.

(7) Freitag, K.; Gracia, J.; Martín, A.; Mena, M.; Poblet, J. M.; Sara
- (8) Bradley, D. C.; Hursthouse, M. B.; Ibrahim, A. A.; Malik, K. M. A.; Montevalli, M.; Moseler, R.; Powell, H.; Runnacles, J. D.; Sullivan,
- A. C. *Polyhedron* **¹⁹⁹⁰**, *⁹*, 2959-2964. (9) Duff, A. W.; Hitchcock, P. B.; Lappert, M. F.; Taylor, R. G.; Segal,
- J. A. *J. Organomet. Chem.* **¹⁹⁸⁵**, *²⁹³*, 271-283. (10) Schrock, R. R. *J. Organomet. Chem.* **¹⁹⁷⁶**, *¹²²*, 209-225.

Scheme 1. Synthesis of $2-7$ from 1 ([Ti] $=$ Ti $(\eta^5$ -C₅Me₅))

toluene leads to the solvent-free tetranuclear derivatives $[RMg\{\mu_3-N\}\mu_3-NH\right)_2$ Ti₃(η^5 -C₅Me₅)₃(μ_3 -N)}][R = N(SiMe₃)₂ (2) , C_5H_5 (3) , CH_2CMe_3 (4)] via amine/cyclopentadiene/ alkane elimination. The reaction with the amido derivative $[Mg(N(SiMe₃)₂$ ₂(THF)₂ is very slow at room temperature and was carried out at 50 °C, but the alkyl and cyclopentadienyl analogues [MgR2(THF)*n*] reacted almost immediately.

Complexes **²**-**⁴** were obtained as orange solids in good yields (77-83%) and characterized by spectral and analytical methods, 11 as well as by an X-ray crystal structure determination for **2**. ¹² Complexes **2** and **3** are thermally stable in benzene- d_6 solutions at 150 °C, whereas the neopentyl derivative **4** decomposes within hours at room temperature.13 Furthermore, **1** reacted with $[Mg(CH_2Ph)_2(THF)_2]^{10}$ in benzene- d_6 almost immediately, and the expected complex [(PhCH2)Mg{(*µ*3- $N(\mu_3-NH)_2Ti_3(\eta^5-C_5Me_5)_3(\mu_3-N)$] (5) was detected by NMR spectroscopy,¹⁴ but despite many attempts we did not obtain a pure sample for a complete characterization. Solutions of **4** and **5** in toluene at room or low temperature decomposed to give red crystals, which were identified as the corner-shared double-cube azaheterometallocubane complex [Mg{(*µ*3-N)(*µ*3-NH)2Ti3(*η*5- C_5Me_5 ₃ $(\mu_3$ -N)₂] (C₇H₈)₂ (6). This compound was also

^{*} Corresponding author. Fax: (+34) 91-8854683. E-mail: miguel.mena@uah.es.

^{(1) (}a) *The Chemistry of Transition Metal Carbides and Nitrides*; Oyama, S. T., Ed.; Blackie Academic & Professional: London, 1996. (b) Gregory, D. H. *J. Chem. Soc., Dalton Trans.* **¹⁹⁹⁹**, 259-270.

⁽¹¹⁾ Selected spectroscopic data for complexes **2–4**. Complex **2**: IR (KBr, cm⁻¹) 3370 (w), 3342 (w); ¹H NMR (C₆D₆, 20 °C, δ) 10.91 (s br, 2H; NH), 2.05 (s, 30H; C₅Me₅), 1.89 (s, 15H; C₅Me₅), 0.30 (s, 1 SiMe₃); ¹³C{¹H} NMR (C₆D₆, 20 °C, δ) 119.6 (C₅Me₅), 118.3 (C₅Me₅), 12.03 (C₅*Me₅*), 11.98 (C₅*Me₅*), 6.8 (Si*Me₃*). Complex **3**: IR (KBr, cm⁻¹) 3355 (w), 3335 (w); ¹H NMR (C₆D₆, 20 ° NMR (C₆D₆, 20 °C, δ) 118.9 (C₅Me₅), 117.6 (C₅Me₅), 106.0 (C₅H₅), 11.8 (C₅*Me₅*), 11.7 (C₅*Me₅*). Complex **4**: IR (KBr, cm⁻¹) 3351 (m); ¹H NMR (C₆D₆, 20 °C, δ) 11.10 (s br, 2H; NH), 2. NMR (C₆D₆, 20 °C, *δ*) 119.1 (*C*₅Me₅), 117.9 (*C*₅Me₅), 37.3 (CH₂C*Me₃*), 31.9 (CH2*C*Me3), 25.3 (*C*H2CMe3), 11.8 (C5*Me*5), 11.7 (C5*Me*5).

^{10.1021/}om020379t CCC: \$22.00 © 2002 American Chemical Society Publication on Web 07/12/2002

Figure 1. ORTEP of complex **2**.

prepared in higher yield (51%) from the reaction of complex **2** with 1 equiv of **1** in toluene at room temperature or by reaction of $[Mg{N(SiMe₃)₂}₂(THF)₂]$ with 2 equiv of **1** at 50 °C in toluene (44%).

Analogous treatment of $[Ba{N(SiMe₃)₂}₂(THF)₂]$ ⁸ with 1 or 2 equiv of **1** in toluene at room temperature afforded orange crystals of $[Ba{(\mu_3-N)(\mu_3-NH)_2Ti_3(\eta^5-C_5Me_5)_3(\mu_3-1)}$ N)}2] (**7**) in 58 and 61% yield, respectively. Monitoring the reaction in benzene- d_6 allows the detection of the complex $[(Me₃Si)₂NBa{(μ ₃-N)(μ ₃-NH)₂Ti₃(η ⁵-C₅Me₅)₃(μ ₃-$ N)}] (**8**) by NMR spectroscopy.15 Complexes **6** and **7** were not soluble in common solvents and were characterized by IR spectroscopy, microanalysis, and X-ray crystal structure determinations.12 The IR spectra for **6** and **7** revealed *ν*_{NH} vibrations at 3354 and 3318 cm⁻¹, respectively.

The molecular structure of **2** confirms the azaheterometallocubane core [MgTi3N4] of the complex and the *κ*³-coordination of the "{(*µ*₃-N)(*µ*₃-NH)₂Ti₃(*η*⁵-C₅Me₅)₃(*µ*₃-N)}-" ligand to magnesium (Figure 1). The geometry

Figure 2. ORTEP of complex **6** without methyl groups.

Figure 3. ORTEP of complex **7** without methyl groups.

about the magnesium center is best described as distorted tetrahedral, with intraligand N-Mg-N angles spanning $81.6(2)-82.9(2)$ ° and interligand N-Mg-N(2) angles in the range $125.9(3)-138.9(3)$ °. The magnesiumnitrogen bond lengths within the cube core are in the range $2.183(6)-2.211(6)$ Å and are longer than that to the amido ligand [Mg-N(2) 1.986(6) Å]. The coordination environment around magnesium is similar to those determined for several Tp′MgX derivatives.16

Complexes **6** and **7** crystallize with two toluene molecules, and the structures confirm a corner-shared double-cube $[MTi_6N_8]$ core (Figures 2 and 3). The coordination geometry about the centrosymmetric magnesium and barium centers is best described as trigonally distorted octahedral. The two "{ $(\mu_3$ -N) $(\mu_3$ -NH)₂Ti₃(η^5 -C₅-Me5)3(*µ*3-N)}-" ligands adopt a mutually staggered conformation. Complex **6** shows two clearly different Mg-N bond lengths, 2.251(6) and 2.410(11) Å, intraligand N-Mg-N angles, 73.8(3) and 79.5(3) $^{\circ}$, and interligand N-Mg-N angles, $100.5(3)-106.2(3)$ °. The longer Ba-N bond lengths and narrower N-Ba-N angles found for complex **7** reveal a trigonal antiprism with

⁽¹²⁾ Crystal data for C₃₆H₆₅MgN₅Si₂Ti₃ (**2**): space group *P*1 with *a* = 11.738(1) Å, *b* = 11.936(2) Å, *c* = 18.018(3) Å, α = 84.82(1)°, β = 74.53(1)°, ν = 66.57(1)°, V = 22.32.1(6) Å³, Z = 2. 74.53(1)°, $\gamma = 66.57(1)$ °, $V = 2232.1(6)$ Å³, $Z = 2$, $d_{\text{cal}} = 1.179$ g·cm⁻³,
 μ (Mo Ka) = 0.620 mm⁻¹. Intensity measurements were performed by
 ω -2*6* scans in the range $2^\circ \le 2\theta \le 46^\circ$ at room temperature, reflections measured (6201 unique). A cutoff $I > 2\sigma(I)$ was used for R
factor calculations to give R1 = 0.070, wR2 = 0.177 and GOF = 0.955.
Crystal data for $C_{74}H_{110}MgN_8Ti_6$ (6): space group *Pmmn* with $a =$
14.533(were performed by $\omega-2\theta$ scans in the range $6^{\circ} < 2\theta < 54^{\circ}$ at room
temperature, 3673 reflections measured (3395 unique). A cutoff $I > 2\sigma(I)$ was used for R factor calculations to give R1 = 0.097, wR2 =
0.257 and G 0.257 and GOF = 0.981. Crystal data for $C_{74}H_{110}BaN_8Ti_6$ (7): space
group *Pnnm* with $a = 15.090(2)$ Å, $b = 15.357(2)$ Å, $c = 16.789(2)$ Å, $V = 18.90.6(6)$ Å³, $Z = 2$, d_{6did} = 1.312 g·cm⁻³, $\mu(Mo KQ) = 1.125$ mm⁻ Intensity measurements were performed by $\omega - 2\theta$ scans in the range $0^{\circ} < 2\theta < 48^{\circ}$ at room temperature, 3474 reflections measured (3198) 0° < ²*^θ* < 48° at room temperature, 3474 reflections measured (3198 unique). A cutoff *^I* > ²*σ*(*I*) was used for *^R* factor calculations to give $R1 = 0.082$, wR2 = 0.206 and GOF = 1.022. All the structures were refined by least-squares methods against F^2 .
(13) Complex **4** was isolated as a spectroscopically pure orange solid

in 83% yield if the reaction and subsequent workup were performed within 1 h.

⁽¹⁴⁾ Selected NMR data for 5: ¹H (C_6D_6 , 20 °C, δ) 10.95 (s br, 2H, NH), 2.02 (s, 30H, C₅Me₅), 1.86 (s, 15H, C₅Me₅), 1.65 (s, 2H, C*H*₂Ph); ¹³C{¹H} (C₆D₆, 20 °C, *δ*) 119.3, 117.8 (*C₅Me₅), 18.9 (<i>C*H₂Ph).

⁽¹⁵⁾ Selected NMR data for **8**: ¹H (C_6D_6 , 20 °C, δ) 12.86 (s br, 2H, NH), 2.11 (s, 30H, C₅Me₅), 2.00 (s, 15H, C₅Me₅), 0.24 (s, 18H, SiMe₃); ¹³C{¹H} (C₆D₆, 20 °C, *δ*) 117.5, 115.8 (*C₅Me₅), 5.6 (SiMe₃).*

^{(16) (}a) Han, R.; Looney, A.; Parkin, G. *J. Am. Chem. Soc.* **1989**, *¹¹¹*, 7276-7278. (b) Han, R.; Parkin, G. *J. Am. Chem. Soc.* **¹⁹⁹⁰**, *¹¹²*, 3662–3663. (c) Han, R.; Parkin, G. *J. Organomet. Chem.* **1990**, *393,* C43–C46. (d) Han, R.; Parkin, G. *Organometallics* **1991**, *10*, 1010–
1020. (e) Han, R.; Parkin, G. *J. Am. Chem. Soc.* **1992**, *114*, 747–757.

averages Ba-N 2.821(9) Å, intraligand N-Ba-N 63.3- (3) °, and interligand N-Ba-N 116.7 (3) °. The crystal structures of **6** and **7** compare well with those determined for $Tp^{Me2}M$ (M = Mg, ¹⁶ Ba¹⁷), but showing longer ^M-N bond lengths and narrower N-M-N intraligand angles.

Thermal stabilities in solution of the single-cube complexes $[RM(\mu_3-N)(\mu_3-NH)_2]$ $Tis(\eta^5-C_5Me_5)s(\mu_3-N)]$ may be rationalized by the steric crowding about the group 2 metals. If R is relatively small (CH₂Ph 5, CH₂CMe₃ **4**) or M is large (Ba **8**), compounds undergo ligand redistribution reactions to give the insoluble cornershared double-cube azaheterometallocubane complexes [M{(*µ*3-N)(*µ*3-NH)2Ti3(*η*5-C5Me5)3(*µ*3-N)}2] (**6** and **7**). Analogous ligand redistribution reactions from alkylmagnesium bearing hydrotris(pyrazolyl)borato ligands have been reported by Parkin et al. and compared with the Schlenk equilibrium (eq 1).16

$$
2RMgX \rightleftharpoons R_2Mg + MgX_2 \tag{1}
$$

In those studies, the derivatives $\{\eta^3$ -HB(3,5-Me₂pz)₃}-MgR] suffer ligand redistribution reactions at 80-¹²⁰ °C, whereas analogous magnesium alkyl derivatives with the more sterically demanding $\{\eta^3\text{-HB}(3\text{-Bu}^t\text{pz})_3\}$ ligand are stable in that temperature range. We have recently estimated the steric profile of **1** in iridium structures,⁷ being between those determined for Tp and Tp^{Me2}. Accordingly, the "{ $(\mu_3$ -N) $(\mu_3$ -NH)₂Ti₃(η^5 -C₅Me₅)₃-(*µ*3-N)}-" organometallic ligand confers steric crowding on the magnesium center smaller than Tp^{Me2} and their complexes exhibit lower thermal stability.

We are continuing to explore the synthesis of other group 2-titanium azaheterocubane complexes as precursors for a wide range of new chemistry and, in particular, in the context of their potential use as sources of ternary nitrides MTi*x*N*y*.

Acknowledgment. We are grateful to the Spanish MCYT (BQU2001-1499), DGICAM (07N/0044/1999), and the Universidad de Alcala´ (UAH2002/019) for support of this research.

Supporting Information Available: Experimental details for syntheses of **2**, **3**, **4**, **6**, and **7**, analytical and spectroscopic data for all the complexes, and X-ray structural information on **2**, **6**, and **7**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM020379T

^{(17) (}a) Dutremez, S. G.; Leslie, D. B.; Streib, W. E.; Chisholm, M. H.; Caulton, K. G. *J. Organomet. Chem.* **¹⁹⁹³**, *⁴⁶²*, C1-C2. (b) Belderraín, T. R.; Contreras, L.; Paneque, M.; Carmona, E.; Monge, A.; Ruiz, C. *J. Organomet. Chem.* **¹⁹⁹⁴**, *⁴⁷⁴*, C5-C7. (c) Belderraı´n, T. R.; Contreras, L.; Paneque, M.; Carmona, E.; Monge, A.; Ruiz, C. *Polyhedron* **¹⁹⁹⁶**, *¹⁵*, 3453-3463.