Kinetic Study of Reactions of a Ketone with a **Dialkylmagnesium Compound and with Organomagnesate Species**¹

John E. Chubb and Herman G. Richey, Jr.*

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received April 22, 2002

The initial rate of formation of addition product from reactions of Np_2Mg (Np = neopentyl) and phenyl *tert*-butyl ketone (**1a**) or *o*-methylphenyl *tert*-butyl ketone (**1b**) in benzene is proportional to $[Np_2Mg]^0[1]^1$ when Np_2Mg is in excess and to $[Np_2Mg]^1[1]^0$ when ketone is excess. For either ketone, the rate is ca. 15-fold greater when ketone is in excess than when Np₂Mg is in excess; regardless of which reagent is in excess, reactions of **1a** are ca. 600-fold faster than reactions of **1b**. ¹H NMR absorptions of benzene- d_6 solutions prepared with different Np₂Mg/1b ratios indicate substantial formation of a 1:1 Np₂Mg-1b complex, and when Np_2Mg is in excess, some formation of a 2:1 complex. In THF as solvent, the initial rate of formation of addition product from Np₂Mg and **1a** is proportional to [Np₂Mg]¹[**1a**]¹, and ¹H NMR observations do not indicate Np₂Mg-1b complexation. Formation of addition product from **1b** and an organomagnesate solution prepared from KOMe and Np₂Mg in benzene is 1-2 orders of magnitude faster than from the same concentrations of Np₂Mg and **1b**. Observations are reported for rates of formation of addition product from **1b** and Np₃Mg⁻NpMg(14N4)⁺ (14N4 is 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) or Np₃Mg(THF)⁻NpMg(14N4)⁺.

Reactions of organomagnesate species can differ greatly from those of Grignard reagents (RMgX) or diorganomagnesium compounds (R₂Mg).² When R has a β -hydrogen, for example, reactions with ketones of RMgX or R₂Mg lead to reduction of as well as addition to the ketone, and reduction can be the major pathway when R is bulky and the ketone is hindered; much less reduction results, however, from reactions of ketones and organomagnesate preparations.⁵ We wanted to compare rates of organomagnesate-ketone and R₂Mgketone reactions. This paper describes (1) a convenient system for kinetic studies of organomagnesium-ketone reactions, (2) new information about reactions of R_2Mg compounds and ketones including involvement of two R_2Mg -ketone complexes, and (3) comparisons of reactivities of organomagnesates and R₂Mg.

Results and Discussion

Reaction System. The comparisons that we wanted to make require measuring rates of reactions of organomagnesates and of R₂Mg using the same R, ketone, and solvent. Because reactions of most organomagnesium compounds and ketones are very rapid, their rates have often been determined not by observing formation of product or disappearance of reactant but from a less direct parameter: heat of reaction,⁶ for example, or disappearance of a UV absorption attributed to a complex⁸ of the ketone and an organomagnesium species resulting from addition. We wanted a system with rates slow enough to permit monitoring the amount of addition product and that would not provide products of reduction or metalation of the ketone. Although many of the mechanistic studies of organomagnesium-ketone reactions have used benzophenones, we wanted a ketone other than a benzophenone since effects of the two aryl groups (on the reduction potential, for example) may lead to reaction mechanisms that are not typical for most ketones. We chose to use R₂Mg rather than RMgX to avoid the complication of multiple species due to the Schlenk equilibrium⁹ and to study *initial* rates to

^{*} To whom correspondence should be addressed. E-mail: hgr@ chem.psu.edu

⁽¹⁾ Some of this work is taken from: Chubb, J. E. Ph.D. Dissertation, The Pennsylvania State University, 1997.

⁽²⁾ For reactions of RMgX and R₂Mg see: Wakefield, B. J. Organomagnesium Methods in Organic Synthesis; Academic: London, 1995.
Refs 3 and 4. Silverman, G. S.; Rakita, P. E. Handbook of Grignard Reagents; Marcel Dekker: New York, 1996.
(3) Richey, H. G., Jr. Grignard Reagents: New Developments, Wilson; Chickertar 2000.

Wiley: Chichester, 2000.

<sup>Wiley: Chichester, 2000.
(4) Lindsell, W. E. In Comprehensive Organometallic Chemistry,
Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon: Oxford,
1982; Chapter 4. Lindsell, W. E. In Comprehensive Organometallic Chemistry II; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.;
Pergamon: Oxford, 1995; Vol. 1, Chapter 3.
(5) Bichav, H. G. Jr.; DeStenhano, J. P. J. Org. Chem. 1990, 55.</sup>

⁽⁵⁾ Richey, H. G., Jr.; DeStephano, J. P. J. Org. Chem. 1990, 55, 3281.

⁽⁶⁾ Studies by Torkil Holm.⁷(7) Holm, T.; Crossland, I. In ref 4, Chapter 1.

⁽⁸⁾ Laemmle, J.; Ashby, E. C.: Neumann, H. M. J. Am. Chem. Soc. **1971**. 93. 5120.

⁽⁹⁾ For the Schlenk equilibrium and for association and solvation of R₂Mg and RMgX, see particularly ref 4.

Figure 1. Plot of the chemical shifts of the ¹H NMR absorptions of the ortho-methyl and *tert*-butyl hydrogens of **1b** as a function of the ratio of Np₂Mg and **1b** concentrations. The concentration of **1b** is ca. 0.05 M in all solutions.

minimize complications due to further reactions of organomagnesium species formed by addition.

The system that was used is shown in eq 1. Reactions

at 25 °C of 1a or 1b with Np₂Mg (Np = neopentyl = (CH₃)₃CCH₂) and with some neopentylmagnesate species had rates possible to follow by quenching aliquots followed by GC analysis for 2. The neopentyl group has several advantages: (1) its lack of β -hydrogens precludes reduction of the ketone; (2) Np₂Mg can be purified by sublimation;^{10,11} (3) Np₂Mg is soluble in a range of solvents. Ketones 1a and 1b also have advantages: (1) the lack of α -hydrogens precludes metalation, often significant in reactions of ketones with organomagnesium compounds; (2) the carbonyl group is conjugated with only one aryl group, and even that conjugation is reduced by an increased dihedral angle between the planes of the aryl ring and the carbonyl group due to the steric effect of the tert-butyl group (and of the o-methyl group of **1b**). Reactions of Np₂Mg and di-*tert*butyl ketone also were investigated but were much slower. Two solvents were used: THF, often used for reactions of RMgX and R2Mg compounds and known to coordinate extensively to the magnesium atoms, and benzene, a nonpolar, noncoordinating solvent. Initial experiments established that 2a and 2b were the only significant products.

NMR Study of Np₂Mg and 1b. The reaction of Np₂-Mg and **1b** in benzene- d_6 is sufficiently slow to allow routine ¹H NMR observations before product formation is significant. Plots (Figure 1) of the positions of the *o*-methyl and *tert*-butyl absorptions of **1b** versus Np₂-

Figure 2. Plot of the chemical shifts of the ¹H NMR absorptions of the ortho-methyl and *tert*-butyl hydrogens of **1b** as a function of the ratio of **1b** and Np₂Mg concentrations. The concentration of **1b** is ca. 0.05 M in all solutions.

Mg/1b ratio indicate significant coordination. The small range of absorption positions limits the precision of analysis, however, and the plots are consistent with (1) formation mainly of a 1:1 complex, the equilibrium constant for its formation sufficiently small that excess Np₂Mg is required to convert most of the **1b** to the complex, or (2) formation of both 1:1 and 2:1 Np₂Mg-1b complexes. When a solution with a Np₂Mg/1b ratio of ca. 2 is diluted (up to 8-fold), however, the absorptions of neither component change significantly (>0.01 ppm). A large change would be expected if the dominant species was a 1:1 complex formed with a relatively small equilibrium constant. Therefore the presence of both 1:1 and 2:1 complexes is probable.¹² Plots versus the **1b**/ Np₂Mg ratio of the *o*-methyl and *tert*-butyl absorptions of 1b (Figure 2) and of the CH₂ and (CH₃)₃C absorptions of Np₂Mg also indicate some formation of a 2:1 complex. The observations suggest therefore that a 1:1 complex is important and that some 2:1 complex forms at Np₂-Mg/1b ratios >1, but provide no indication of a 1:2 complex. By contrast, ¹H NMR observations of THF solutions (90:10 THF-benzene- d_6 , v/v) show no significant changes in absorptions of Np₂Mg or 1b due to the other component.

Kinetic Experiments with Np₂Mg. The experimental procedure—preparing small volumes of solutions, extracting aliquots, and GC analysis—is simple but has limitations: (1) rates were reproducible only to ca. $\pm 5\%$ for a reaction series using the same solutions and to ca. $\pm 10\%$ for independent reactions; (2) the portion of a reaction to be studied cannot be shorter than a few minutes. The procedure has the advantage, however, of measuring the product, not an indirect parameter, and, unlike some earlier studies, permits using *either* the organomagnesium compound or ketone in excess.

For reactions in benzene, the rate behavior depended on which reagent was in excess. Four concentration regimes were studied: (1) Np_2Mg in excess and varied,

⁽¹⁰⁾ Andersen, R. A.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1977, 809.

⁽¹¹⁾ Akkerman, O. S.; Schat, G.; Evers, E. A. I. M.; Bickelhaupt, F. Recl. Trav. Chim. Pays-Bas **1983**, 102, 109.

⁽¹²⁾ To the extent that the equilibrium constant for formation of a 2:1 complex is small, dilution would reduce its amount, causing the NMR absorptions to move closer to those of the reactants. Within the limits of the precision of the spectra, however, the absorptions were not altered significantly.

Table 1. Rates of Formation of Addition Product from Reactions of Np₂Mg and 1a or 1b in Benzene or THF at 25.0 °C

solvent	ketone	reagent in excess	rate
THF	1a	either	$6.5 \times 10^{-5} \mathrm{L mol^{-1} s^{-1}}$
benzene	1b 1b	Np ₂ Mg ketone	$4.8 \times 10^{-5} \text{ s}^{-1}$ $6.3 \times 10^{-5} \text{ s}^{-1}$
benzene	1a	Np ₂ Mg	$2.6 imes 10^{-3} s^{-1}$
benzene	1a	ketone	$4.1 imes 10^{-2} { m s}^{-1}$

(2) Np₂Mg in excess and ketone varied, (3) ketone in excess and varied, and (4) ketone in excess and Np₂Mg varied. The initial concentration of the reagent in excess was 2.5 times that of the other reagent.¹³ Only data collected before reaction of 10% of the limiting reactant were used in determining rate constants.

One set of experiments in regime 1 exemplifies the procedure. The initial concentration of 1b was 0.050 M, and that of Np₂Mg was varied from 0.24 to 0.67 M. The concentration of **2b** in each aliquot was determined by comparing its GC peak with that of an internal standard. Data for the first 120 min were used, corresponding to $\leq 4\%$ formation of **2b**. The concentration of **2b** was plotted against time; slopes (S) of the resultant least-squares lines are reasonably linear (R² averages 0.99), indicating that over that range of reaction the rate is not affected significantly by possible complicating processes such as reaction or complexation of **1b** with an addition product. Since 1b concentration was essentially constant, a plot of log S against log[Np₂Mg]₀ provides the order in Np₂Mg. The slope of this plot is 0.00 (average variation of rates = $\pm 6\%$). Under these circumstances, therefore, the kinetic order in Np₂Mg is zero. Similar experiments with solutions having Np₂-Mg in excess but varying 1b concentrations (regime 2) found an order in 1b of 0.94. With excess Np₂Mg, therefore, rate = $k_{Me}[Np_2Mg]^{0.00}[1b]^{0.94}$. Experiments with solutions having excess **1b** found rate = $k'_{Me}[Np_2-$ Mg]^{1.02}[1b]^{0.03}. Reactions with 1a were much faster than with **1b**, and the results more prone to error, but similar rate laws were derived: rate = $k_{\rm H}[{\rm Np_2Mg}]^{0.05}[{\bf 1a}]^{1.10}$ with excess Np₂Mg and rate = $k'_{\rm H}[Np_2Mg]^{0.97}[1a]^{0.03}$ with excess 1a.

With THF as the solvent, **1a** was used since reactions of **1b** were very slow. Data were collected in the four concentration regimes, but essentially the same rate law was obtained regardless of relative concentrations: rate = $k[Np_2Mg]^{1.06}[1a]^{0.97}$ for Np_2Mg in excess (average k= 6.4×10^{-5} L mol⁻¹ s⁻¹) and rate = $k'[Np_2Mg]^{1.13}$ -[1a]^{0.96} for 1a in excess (average $k' = 6.6 \times 10^{-5}$ L mol⁻¹ s⁻¹).

For purposes of discussion, we assume kinetic orders to be precisely 0 or 1: in THF, rate = $k[Np_2Mg]^1[1]^1$; in benzene, rate = $k[Np_2Mg]^0[1]^1$ when Np_2Mg is in excess and rate = $k'[Np_2Mg]^1[ketone]^0$ when ketone is in excess. We then can assign the rate constants in Table 1 and draw several conclusions. (1) For reactions in benzene, regardless of which reagent is in excess, an ortho-methyl group in the ketone has essentially the same rate-decreasing effect: $k_H/k_{Me} = 540$ and $k'_H/k'_{Me} = 650$. (2) For reactions in benzene of either ketone, the rate is somewhat greater when ketone rather than Np_2 -Mg is in excess: $k'_H/k_H = 16$ and $k'_{Me}/k_{Me} = 13$. (3) Rates in benzene and THF are not strictly comparable since the kinetic behavior is different. At concentrations useful for preparative reactions, however, product formation is significantly faster in benzene (e.g., 200-fold faster if **1a** is 0.1 M and Np₂Mg is 0.2 M).

Kinetic Experiments with Organomagnesates. Some R₂Mg compounds and macrocycles in benzene form R₃Mg⁻RMg(macrocycle)⁺.¹⁴ 14N4 (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), a particularly effective RMg⁺ coordinator,¹⁵ converts^{16,17} a variety of R_2Mg compounds quantitatively to $R_3Mg^-RMg(14N4)^+$. Except at low concentrations, however, Np₂Mg and 14N4 in benzene formed two liquid phases, the ions mainly in the denser and smaller phase. This behavior, observed with some R₂Mg-macrocycle reactions in benzene, limits the concentration of Np₃Mg⁻ available in a homogeneous solution and precludes studying solutions having Np₃Mg⁻ in large excess. A study of solutions having 1b in excess and different (but low) concentrations of Np₃Mg⁻NpMg(14N4)⁺ found the rate to be proportional to $[Np_3Mg^-]^{0.92}$. The rate constant is 1.6×10^{-4} L mol⁻¹ s⁻¹ *if* the reaction also is first-order in **1b** or 7.4×10^{-6} s⁻¹ if it is zero-order in **1b**.

Phase separation of Np₂Mg–14N4 preparations did not occur if 1 equiv of THF was present. The enhanced solubility must result from bonding of THF to the anion to form Np₃Mg(THF)⁻.¹⁸ With the THF-containing solutions, kinetic studies were feasible with either reagent in excess. Addition was approximately first-order in each reagent regardless of which was in excess. Using solutions in which one reactant was 0.05 M and the other varied over the range 0.02-0.12 M, the rate was proportional to $[1b]^{1.04}$ [Np₃Mg(THF)⁻]^{0.88} and k = 4.2 $\times 10^{-4}$ L mol⁻¹ s⁻¹ (*k* determined by varying initial concentrations of **1b** and of Np₃Mg(THF)⁻, respectively, was 4.4×10^{-4} and 4.0×10^{-4} L mol⁻¹ s⁻¹). With comparable reactant concentrations, addition was a fewfold faster in the reactions having 1 equiv of THF.

 R_2Mg compounds in benzene are converted completely to ions of structure **3** by reaction with ≥ 1 equiv of a

potassium alkoxide.¹⁹ Decomposition of solutions prepared from KOMe and Np₂Mg unfortunately was suf-

⁽¹³⁾ Kinetic behavior was more complex at lower ratios.

⁽¹⁴⁾ Squiller, E. P.; Whittle, R. R.; Richey, H. G., Jr. J. Am. Chem. Soc. 1985, 107, 432. Richey, H. G., Jr.; Kushlan, D. M. J. Am. Chem. Soc. 1987, 109, 2510. Pajerski, A. D.; Parvez, M.; Richey, H. G., Jr. J. Am. Chem. Soc. 1988, 110, 2660. Richey, H. G., Jr. In Comprehensive Supramolecular Chemistry; Atwood, J. L., Davies, J. E. D., MacNicol, D. D. Vögtle, F., Eds.; Pergamon: Oxford, 1996; Vol. 1 (Gokel, G. W., Ed.), Chapter 21.

⁽¹⁵⁾ Tang, H.; Parvez, M.; Richey, H. G., Jr. Organometallics 2000, 19, 4810.

⁽¹⁶⁾ Pajerski, A. D. Ph.D. Dissertation, The Pennsylvania State University, 1990.

⁽¹⁷⁾ Also see: Pajerski, A. D.; Chubb, J. E.; Fabicon, R. M.; Richey, H. G., Jr. *J. Org. Chem.* **2000**, *65*, 2231. Tang, H.; Richey, H. G., Jr. *Organometallics* **2001**, *20*, 1569.

⁽¹⁸⁾ Enhanced solubility of RMg(macrocycle)⁺R₃Mg⁻ (R = alkyl or aryl) by 1 equiv of an O or N donor has been noted before.¹⁶ X-ray structures of solids having RMg(14N4)⁺ ions show magnesium to be so enveloped by 14N4 that specific interactions with donor molecules must be minimal [ref 16 and Tang, H.; Parvez, M.; Richey, H. G., Jr. Organometallics **1996**, *15*, 5281].

⁽¹⁹⁾ Hanawalt, E. M.; Richey, H. G., Jr. J. Am. Chem. Soc. 1990, 112, 4983.

ficiently rapid to preclude accurate determination of kinetic orders.²⁰ For given concentrations of **1b** and organomagnesate, however, product formation was 1-2orders of magnitude faster than with the same concentrations of 1b and Np₂Mg.

Discussion.²¹ The first-order kinetics of reactions of Np₂Mg and **1** in benzene are consistent with schemes in which these reactants form a complex, the equilibrium constant for its formation sufficiently large that it incorporates most of the deficit reactant. Such schemes accord with the complex formation indicated by NMR observations. The transition state of the rate-determining step must have the composition of the complex; possibilities for this step include a unimolecular reaction of a complex (the one observed in NMR spectra or a structurally different but isomeric complex) or a bimolecular reaction between components of the complex (e.g., uncoordinated Np₂Mg and ketone from a 1:1 complex).

The observation that rate is an order of magnitude greater when ketone rather than Np₂Mg is in excess indicates a difference in a reactant in accord with the indications from NMR data that a 1:1 Np₂Mg-ketone complex is a major species when the ketone is in excess and a 2:1 complex is a significant component when Np₂-Mg is in excess. Differing aggregation of Np₂Mg, however, also could be the cause of the greater rate when ketone is in excess. The average molecular weight of Np₂Mg in benzene (ca. 0.06-0.10 M) corresponds to aggregation to approximately (Np₂Mg)₃.¹⁰ When Np₂-Mg is in excess, therefore, the major Np₂Mg species in solution are aggregates. When the ketone is in excess (and the amount of Np₂Mg not coordinated to ketone hence is small), however, a larger fraction of the Np₂-Mg may be monomeric and hence perhaps more reactive.

Formation of ketone-RMgX complexes (assumed to be 1:1) has been inferred from UV and IR observations and kinetic analyses.^{22,24} Laemmle, Ashby, and Neumann found formation of addition product from Me₂Mg and o-methylbenzophenone in diethyl ether to be firstorder in each reactant.8 Me2Mg-ketone complexation was not significant enough to have to be considered, although for the reaction of MeMgBr with the same ketone, a 1:1 complex (K = 1.35 L mol⁻¹) had to be included in the kinetic analysis (which found a firstorder dependence on each reactant). Complexation of a ketone by R₂Mg generally is somewhat less than by a corresponding RMgX compound.²² Complexation of pmethylthioacetophenone is more significant than of o-methylbenzophenone; Smith and Billet²⁵ found from UV data that K = 6.2 L mol⁻¹ for formation of a 1:1

complex²⁶ with Me₂Mg and found the rate of formation of addition product to be proportional to the concentration of complex (i.e., first-order in each reactant). The second-order rate dependence and lack of spectral evidence for complexation that we found for THF solutions of Np₂Mg and 1 were noted previously for RMgX compounds and ketones in that solvent.²⁷

Complexes of ketones and organomagnesium compounds are absent in THF, a strongly coordinating solvent, but often present, although with small values of K, in diethyl ether, a more weakly coordinating solvent. We find complexation to be essentially complete in the noncoordinating solvent benzene. R₂Mg–THF complexation must be sufficiently strong to preclude formation of kinetically significant amounts of Np₂Mg-**1b** complexes. The slower rate in THF than in benzene also is in accord with observations that additions of organomagnesium compounds to ketones generally are slower in coordinating solvents than in hydrocarbon solvents.

The kinetic observations do not distinguish between two alternatives often considered for the rate-determining step of organomagnesium-ketone reactions: transfer of the organic group to the carbonyl carbon or transfer of an electron from the organomagnesium compound to the ketone.^{7,28} The observation that addition to 1b is considerably slower than to 1a is consistent with the close approach of the organomagnesium compound and ketone that would be necessary for group transfer. By increasing the dihedral angle between the carbonyl group and the aryl ring, however, the orthomethyl group of 1b must diminish conjugation between them and make the reduction potential of the ketone less favorable for electron transfer.

Efforts to compare rates of additions of organomagnesate preparations with those of Np₂Mg encountered problems of limited solubility and of decomposition. The rates of reaction in benzene of 1b with Np₃Mg(THF)⁻ and with Np₂Mg have a different kinetic dependence and hence are not strictly comparable. With concentrations typical of preparative reactions (e.g., $[\mathbf{1b}] = 0.1 -$ 0.5 M, $[R_2Mg]$ or $[R_3Mg(THF)^-] = 0.2 - 1.0$ M), however, product formation is 1-2 orders of magnitude faster with Np₃Mg(THF)⁻ than with Np₂Mg.²⁹ That Np₃Mg-(THF)⁻ is not less reactive than Np₃Mg⁻ suggests that dissociation of THF from Np₃Mg(THF)⁻ is not crucial

⁽²⁰⁾ Decomposition of R₂Mg-KOMe preparations with some other R groups had been considerably less rapid.19

⁽²¹⁾ An extensive amount of literature concerns kinetics of reactions (mainly in diethyl ether) of ketones with RMgX, and to a lesser extent with R₂Mg [for summaries see refs 22 and 23]. It is likely, however, that the results of many of the pioneering studies were affected by complications due to the Schlenk equilibrium, reactions of intermediates (e.g., RC(OMgR)R'R'') resulting from initial addition of R_2Mg or RMgX to the ketone (R'R'C=O), and transition metal impurities. (22) Ashby, E. C.; Laemmle, J.; Neumann, H. M. Acc. Chem. Res.

^{1974, 7, 272}

⁽²³⁾ Ashby, E. C.; Laemmle, J.; Neumann, H. M. J. Am. Chem. Soc. 1972. 94. 5421.

⁽²⁴⁾ Other evidence for RMgX-ketone complexation: Holm, T. Acta Chem. Scand. **1967**, 21, 2753. (25) Smith, S. G.; Billet, J. J. Am. Chem. Soc. **1967**, 89, 6948.

⁽²⁶⁾ A value of K = 1.3 L mol⁻¹ for formation of a complex from Me2Mg and 2,4,6-triisopropyl-4'-methoxybenzophenone was obtained from UV observations [Smith, S. G. Tetrahedron Lett. 1963, 409], and a value of $K \approx 8$ L mol⁻¹ for a complex of (cyclopentyl)₂Mg and p-methylthioacetophenone was extracted from kinetic observations Rudolph, S. E.; Charbonneau, L. F.; Smith, S. G. J. Am. Chem. Soc. **1973**, *95*, 7083].

⁽²⁷⁾ Bikales, N. M.; Becker, E. I. Can. J. Chem. 1963, 41, 1329. Holm, T. Acta Chem. Scand. 1966, 20, 1139. Also see: Holm, T. Acta Chem. Scand. 1966, 20, 2821.

⁽²⁸⁾ Recent references: Gajewski, J. J.; Bocian, W.; Harris, N. J.; Olson, L. P.; Gajewski, J. P. J. Am. Chem. Soc. 1999, 121, 326. Lund, T.; Ohlrich, D.; Borling, P. Acta Chem. Scand. 1999, 53, 932. Hoffmann, R. W.; Hölzer, B. Chem. Commun. 2001, 491.

⁽²⁹⁾ In a THF solution, Np₃Mg(THF)⁻ probably also would react much faster than Np₂Mg since Np₃Mg(THF)⁻ will not undergo additional coordination by THF, but this could not be tested since conversion of R_2Mg compounds to $RMg(14N4)^+$ and organomagnesate anions is not general in THF. Reactions of $Np_3Mg(THF)^-$ and **1b** in benzene and of Np_2Mg and **1a** in THF have the same kinetic dependence. If the ca. 600-fold greater reactivity of **1a** than of **1b** found for reactions with Np₂Mg in benzene also prevails in reactions in THF, then Np₃Mg(THF)⁻ in benzene reacts with **1a** about 4000 times faster than does Np₂Mg in THF.

for the rate-determining step and favors mechanisms in which bonding to magnesium is not significant in the rate-determining step.

Experimental Section

Procedures involving organometallic compounds were performed under nitrogen (purified by passing through columns of manganese oxide oxygen scavenger and molecular sieves (4 Å)) using Schlenk techniques, a glovebox, and a vacuum line. Solutions for NMR analysis were prepared in the glovebox and transferred into NMR tubes to which an extension of routine glass tubing had been added to facilitate sealing with a flame. An NMR tube was capped temporarily with a rubber septum, removed from the glovebox, immersed in liquid nitrogen, and sealed at the extension. ¹H NMR spectra were taken at 200 MHz and, except where noted, in benzene- d_6 ; absorptions are reported relative to internal C_6D_5H (δ 7.15) for benzene- d_6 solutions and to internal TMS (δ 0.00) for CDCl₃ solutions; the following notations are used: s, singlet; d, doublet; m, complex multiplet; c, complex overlapping absorptions; b, broad. ¹³C NMR spectra were taken at 90 MHz in benzene- d_6 , and absorptions are reported relative to internal C_6D_6 (δ 128.0). Immediately prior to use, diethyl ether and THF were distilled under nitrogen from sodium benzophenone ketyl and benzene and dioxane from CaH2. The magnesium generally used was 99.95% purity (Aldrich Chemical Co.). α -tert-Butyl- α -neopentylbenzyl alcohol (2a) has been reported previously.30

Np₂Mg. 1,2-Dibromoethane (ca. 100 mg) was added to a stirred mixture of Mg (2.41 g, 0.099 mol) in refluxing THF or diethyl ether (10 mL) followed, after reaction appeared to begin, by dropwise addition of a solution of neopentyl bromide (10 g, 0.066 mol) in the same solvent (40 mL). After addition was complete, the reaction mixture was maintained at reflux for >2 h. It then was cooled, and samples were hydrolyzed and titrated for total base (addition of sufficient standard HNO₃ solution to dissolve all solids and then back-titration with a standard NaOH solution to a phenolphthalein endpoint). Dioxane (1 equiv per equiv of base determined by titration) was added dropwise, and the slurry was stirred for \geq 6 h. The slurry was centrifuged, and the solvent was removed (to ca. 85 °C and 0.01 Torr) from the supernatant liquid, leaving a solid, which was sublimed (85-95 °C and 0.01 Torr) to furnish a white solid. ¹H NMR spectra indicated THF/Np₂-Mg and dioxane/Np₂Mg ratios typically of 1-2 and 0.05, respectively, for preparations in THF. A second sublimation generally yielded solvent-free Np2Mg from preparations in diethyl ether. ¹H NMR: δ 0.25 (s, 2H), 1.21 (s, 9H).

Np₃Mg⁻NpMg(14N4)⁺ Solutions. A 0.040 M solution was prepared from Np₂Mg (132.6 mg, 0.80 mmol), 14N4 (102.2 mg, 0.40 mmol), and benzene (10.0 mL). ¹H NMR: δ (Np₃Mg⁻) 0.27 (s, 6H), 1.66 (s, 27H); (NpMg(14N4)⁺) -0.55 (s, 2H), 1.11 (s, 9H), 1.66 (s, 12H), 2.5 (bc, 4H), 1.2-2.2 (c, ca. 16H). More concentrated preparations separated into two liquid layers on standing. A preparation (0.2 M) also containing THF (0.2 M) remained homogeneous. ¹H NMR: δ (Np₃Mg⁻) 0.22 (s, 6H), 1.62 (s, 27H); (NpMg(14N4)⁺) -0.60 (s, 2H), 1.13 (s, 9H), 1.62 (s, 12H), 2.54 (c, 4H), 1.2-2.2 (c, ca. 16H); (THF) 1.36 (m, 4H), 3.54 (m. 4H).

Np₂Mg-KOMe Solutions. Solutions were prepared by stirring a benzene solution of Np_2Mg (ca. 0.1 M) with an excess of solid KOMe for 30-45 min.¹⁹ ¹H NMR spectra showed an absorption at δ 0.89 (due to (CH₃)₄C) which increased with time

α-tert-Butyl-α-neopentyl-o-methylbenzyl Alcohol (2b). A solution of **1b** (0.50 g, 2.8 mmol), prepared following a literature procedure,³¹ was added to a benzene solution of Np₂-Mg (5.0 mL, 0.75 M, 3.8 mmol). After 14 h, the preparation was hydrolyzed with a saturated aqueous sodium chloride solution and extracted with diethyl ether. The diethyl ether solution was dried (MgSO₄), the mixture was filtered, and the solvent was evaporated from the solution. The resulting solid was melted (30-40 °C), placed under a stream of N₂ to remove residual solvent, and then sublimed (60 °C, 0.1 Torr) to yield colorless crystals (0.23 g): 33% yield; mp 46.5-47.5 °C. ¹H NMR (CDCl₃): δ 0.79 (s, 9H), 0.90 (s, 9H), 1.62 (s, 1H), 1.80 (d, J = 15 Hz, 1H), 2.25 (d, J = 15 Hz, 1H), 2.64 (s, 3H), 7.04 (bc, 3H), 7.09 (bd, J = 8.4 Hz, 1H). ¹³C NMR (CDCl₃): δ 25.3, 25.8, 31.3, 32.3, 41.6, 47.4, 85.3, 123.5, 126.0, 130.0, 133.2, 137.7, 141.0. Anal. Calcd for C17H28O: C, 82.20; H, 11.36. Found: C, 82.24; H, 11.25.

NMR Spectra of Np₂Mg-1b Solutions. Aliquots of a stock benzene-d₆ solution of Np₂Mg were placed in NMR tubes, which were sealed with septums before being removed from the glovebox. A portion of a stock solution of 1b was added to each NMR tube using a gastight syringe (injection volumes were accurate to ca. 2-3%), and NMR data were recorded within less than 10 min. Single sets of neopentyl and 1b absorptions were the only significant absorptions.

Reactions of Organomagnesium Species with 1a and 1b. A solution of organomagnesium reagent was injected into a 5-mL round-bottomed flask using a gastight syringe (the injected amount determined by weighing the syringe before and after addition) followed by additional solvent. The flask was sealed with a septum and removed from the glovebox. A needle attached to a purified nitrogen source was inserted into the septum (to maintain a positive pressure of nitrogen in the flask), and the flask was immersed in a constant-temperature bath. The bath temperature, 25.00 °C (Bureau of Standards certified thermometer), was regulated to ± 0.1 °C. After 20 min, a solution of 1 (volume much less than solution already in the flask), also containing a known concentration of tetradecane (internal standard for GC analysis), was injected in a similar fashion, and the clock was started. The total volume was ca. 2.0 mL. In assigning concentrations, it was assumed that the density of a solution was the same as that of the solvent. Aliquots (0.1 mL) were removed with a syringe and quenched by addition to a mixture of a saturated aqueous NaCl solution (1 mL) and diethyl ether (1 mL). The layers were separated, and the organic layer was dried (MgSO₄).

Analysis of Kinetic Solutions. GC analysis used a capillary column with an immobilized poly(dimethylsiloxane) coating (Alltech EC-1 "SE-30", 0.53 mm id \times 15 m), a splitter, helium as the carrier gas, and a flame ionization detector. Injections used the "hot needle" technique.³² Benzene (0.5 μ L), then the sample (0.5–1 μ L, less if concentrated), and finally benzene (0.2 μ L) were drawn into the barrel of the syringe (10 μ L), leaving the needle empty; after insertion into the injection port, the needle was allowed to heat for ca. 5 s before injection. The temperature program for reactions with 1a was 2 min at 120 °C, then an increase of 40 °C/min to 210 °C. Typical retention times and the response factors³³ used: **1a** (1.9 min, 1.146), tetradecane (3.2 min, 1.000), and 2a (3.8 min, 1.050). The temperature program for reactions with 1b was 2 min at 130 °C, then an increase of 40 °C/min to 250 °C. Typical retention times and the response factors used: 1b (2.03 min, 1.130), tetradecane (2.94 min, 1.000), 2b (3.92 min, 1.046).

Analysis of Kinetic Data. The amounts of organomagnesium compound, 1, and tetradecane in a reaction solution were known from its preparation. The concentration of 2 was calculated from the area of its GC peak relative to that of the

⁽³⁰⁾ Hon, F. H.; Matsumura, H.; Tanida, H.; Tidwell, T. T. J. Org. Chem. 1972. 37. 1778.

⁽³¹⁾ Pine, S. H.; Munemo, E. M.; Phillips, T. R.; Bartolini, G.; Cotton, W. D.; Andrews, G. C. J. Org. Chem. 1971, 36, 984.
 (32) Grob, K. In Classical Split and Splitless Injection in Capillary

GC, 2nd ed.; Dr. Alfred Huethig: Heidelberg, 1988.

⁽³³⁾ David, D. J. Gas Chromatographic Detectors, Wiley: New York, 1974; Chapter 3.

standard and the known concentration of the standard. The slope of the line through the points of a plot of concentration of **2** versus time was calculated by a linear least-squares regression analysis. R^2 for these plots ordinarily was ≥ 0.99 and always > 0.96.

Acknowledgment. We thank the National Science Foundation for supporting this research.

OM020324R