2-Methylimidazol-1-yl-Substituted Analogs of Hexahydro-difenidol (HHD) and Hexahydro-sila-difenidol (HHSiD) as M3 Receptor-Preferring Muscarinic Antagonists: A Study on C/Si Bioisosterism

Reinhold Tacke,*,† Vera I. Handmann,† Kai Kreutzmann,‡ Christine Keim,‡ Ernst Mutschler,[‡] and Günter Lambrecht[‡]

Institut fu¨ *r Anorganische Chemie, Universita*¨*t Wu*¨ *rzburg, Am Hubland, D-97074 Wu*¨ *rzburg, Germany, and Pharmakologisches Institut fu*¨ *r Naturwissenschaftler, Biozentrum Niederursel, Universita*¨*t Frankfurt, Marie-Curie-Strasse 9, Geb. N 260, D-60439 Frankfurt, Germany*

Received May 2, 2002

The hexahydro-sila-difenidol (HHSiD, **1b**) and *p*-fluoro-hexahydro-sila-difenidol (*p*-F-HHSiD, **2b**) derivatives cyclohexyl[3-(2-methylimidazol-1-yl)propyl]phenylsilanol (**4b**) and cyclohexyl(4-fluorophenyl)[3-(2-methylimidazol-1-yl)propyl]silanol (**5b**) were synthesized in three-step syntheses, starting from (3-chloropropyl)cyclohexyldimethoxysilane. In addition, the corresponding carbon analogs **4a** and $5a \rightarrow Si/C$ replacement) were prepared in twostep syntheses, starting from 2-(3-chloropropyl)-2-phenyl-1,3-dioxolane and 2-(3-chloropropyl)- 2-(4-fluorophenyl)-1,3-dioxolane, respectively. The C/Si pairs **4a**/**4b** and **5a**/**5b** were studied for their affinities at recombinant human muscarinic M_1 , M_2 , M_3 , M_4 , and M_5 receptors stably expressed in CHO-K1 cells by evaluating their ability to inhibit the binding of the muscarinic antagonist [3H]*N*-methylscopolamine. These studies revealed that compounds **4a**, **4b**, **5a**, and **5b** behave as simple competitive antagonists at M_1-M_5 receptors. The exchange of the piperidin-1-yl group of the parent compounds HHD (**1a**), HHSiD (**1b**), *p*-F-HHD (**2a**), and *p*-F-HHSiD (**2b**) by a 2-methylimidazol-1-yl moiety resulted in a novel, potent, and M3-preferring antimuscarinic agent, compound **4b**. The affinities of compounds **4a**, **5a**, and **5b** for muscarinic M₁ (p $K_i = 7.74-7.93$), M₂ (p $K_i = 7.03-7.14$), M₃ (p $K_i = 8.04-8.11$), M₄ ($pK_i = 7.63$ –7.94), and M_5 receptors ($pK_i = 7.29$ –7.52) were very similar at the individual receptor subtypes and in turn very similar to those of the parent compounds **1a**, **2a**, and **2b**. In contrast, replacement of the piperidin-1-yl substituent of **1b** by a 2-methylimidazol-1-yl group (\rightarrow 4b) increased the affinity for M_1-M_5 receptors up to 8.3-fold. The muscarinic receptor affinity profile of **4b** was found to be M_3 (p $K_i = 8.69$) > M_1 (p $K_i = 8.39$) $\geq M_4$ (p K_i $= 8.32$) > M_5 (p $K_i = 8.02$) > M_2 (p $K_i = 7.43$). Thus, compound **4b** displayed a M_3 versus M_2 receptor selectivity (18.2-fold). The receptor subtype affinities of the carbon compound **5a** were very similar to those of the corresponding silicon analog **5b**, whereas sila-substitution of **4a** (\rightarrow **4b**) increased the affinities for M_1-M_5 receptors, this increase being greatest at M_3 and M_5 receptors (4-fold).

Introduction

Some years ago, we reported on the syntheses of the M_3 subtype-preferring muscarinic antagonists hexahydro-sila-difenidol1 (HHSiD, **1b**) and *p*-fluorohexahydro-sila-difenidol2 (*p*-F-HHSiD, **2b**). As shown by pharmacological and binding studies, $3-6$ the silicon compounds**1b** and **2b** as well as their corresponding carbon analog, hexahydro-difenidol (HHD, **1a**) and *p*-fluoro-hexahydro-difenidol (*p*-F-HHD, **2a**), display a pronounced selectivity for native M_3 versus M_2 muscarinic receptors. As a result, the commercially available silanols **1b** and **2b** are two of the most commonly used muscarinic antagonists to pharmacologically identify and characterize the M_3 receptors in isolated cells or intact tissues. $7-12$ We have now attempted to further increase the antimuscarinic potency and selectivity of

 $*$ To whom correspondence should be addressed. Phone:
+49-931-888-5250. Fax: +49-931-888-4609. E-mail: r.tacke@ mail.uni-wuerzburg.de.

[†] Universität Würzburg.

[‡] Universität Frankfurt.

⁽¹⁾ Tacke, R.; Linoh, H.; Zilch, H.; Wess, J.; Moser, U.; Mutschler, E.; Lambrecht, G. *Liebigs Ann. Chem.* **¹⁹⁸⁵**, 2223-2228. (2) Tacke, R.; Mahner, K.; Strohmann, C.; Forth, B.; Mutschler, E.;

Friebe, T.; Lambrecht, G. *J. Organomet. Chem.* **1991**, 417, 339–353.
(3) Lambrecht, G.; Feifel, R.; Wagner-Röder, M.; Strohmann, C.; Zilch, H.; Tacke, R.; Waelbroeck, M.; Christophe, J.; Boddeke, H.; Mutschler, E. *Eur. J. Pharmacol.* **¹⁹⁸⁹**, *¹⁶⁸*, 71-80.

⁽⁴⁾ Feifel, R.; Wagner-Röder, M.; Strohmann, C.; Tacke, R.; Waelbroeck, M.; Christophe, J.; Mutschler, E.; Lambrecht, G. *Br. J.*
Pharmacol. **1990**, *99*, 455–460.
(5) Waelbroeck, M.; Camus, J.; Tastenoy, M.; Mutschler,

⁽⁶⁾ Waelbroeck, M.; Camus, J.; Tastenoy, M.; Mutschler, E.; Strohmann, C.; Tacke, R.; Schjelderup, L.; Aasen, A.; Lambrecht, G.; Christophe, J. *Eur. J. Pharmacol. Mol. Pharmacol. Sect.* **1992**, *²²⁷*, 33-42.

these two silanols by replacing their piperidin-1-yl group by a 2-methylimidazol-1-yl moiety. These studies were inspired by the observation that incorporation of the 2-methylimidazol-1-yl ring as a surrogate for an aliphatic amino group in a series of related muscarinic antagonists generated M_3 selectivity and enhanced antimuscarinic potency.13-¹⁵ The selective compound KRP-197 (3) (affinity profile: M_1 , M_3 > M_2) has been identified as a candidate drug for the treatment of urinary bladder dysfunction.15

We report here on the syntheses and pharmacological characterization of the HHSiD and *p*-F-HHSiD derivatives **4b** and **5b** and their respective carbon analogs **4a** and **5a** (all compounds synthesized as racemates). Compounds **4a**, **4b**, **5a**, and **5b** were tested for their affinities at recombinant human muscarinic M_1 , M_2 , M_3 , M_4 , and M_5 receptors. For reasons of comparison, HHSiD (**1b**) was included in the pharmacological experiments. The studies presented here were carried out as part of our systematic studies on C/Si bioisosterism (for recent publications, see refs 16-20). **Results and Discussion**

- (7) Hulme, E. C.; Birdsall, N. J. M.; Buckley, N. J. *Annu. Rev. Pharmacol. Toxicol.* **¹⁹⁹⁰**, *³⁰*, 633-673.
- (8) Caulfield, M. P. *Pharm. Ther.* **¹⁹⁹³**, *⁵⁸*, 319-379. (9) Kerr, P. M.; Hillier, K.; Wallis, R. M.; Garland, C. J. *Br. J. Pharmacol.* **¹⁹⁹⁵**, *¹¹⁵*, 1518-1524.
- (10) Hegde, S. S.; Choppin, A.; Bonhaus, D.; Briaud, S.; Loeb, M.; Moy, T. M.; Loury, D.; Eglen, R. M. *Br. J. Pharmacol.* **¹⁹⁹⁷**, *¹²⁰*, 1409- 1418.
- (11) Onali, P.; Olianas, M. C. *J. Pharmacol. Exp. Ther.* **1998**, *286*, ⁷⁵³-759.
- (12) Eglen, R. M.; Choppin, A.; Watson, N. *Trends Pharmacol. Sci*. **²⁰⁰¹**, *²²*, 409-414.
- (13) Miyachi, H.; Kiyota, H.; Segawa, M. *Bioorg. Med. Chem. Lett.* **¹⁹⁹⁸**, *⁸*, 1807-1812.
- (14) Miyachi, H.; Kiyota, H.; Segawa, M. *Bioorg. Med. Chem. Lett.* **¹⁹⁹⁸**, *⁸*, 2163-2168.
- (15) Miyachi, H.; Kiyota, H.; Uchiki, H.; Segawa, M. *Bioorg. Med.*
- Chem. 1999, 7, 1151–1161.
(16) Tacke, R.; Heinrich, T.; Kornek, T.; Merget, M.; Wagner,
S. A.; Gross, J.; Keim, C.; Lambrecht, G.; Mutschler, E.; Beckers, T.;
Bernd, M.; Reissmann, T. *Phosphorus, Sulfur, Silicon* 1999, 15 ⁶⁹-87.
- (17) Tacke, R.; Merget, M.; Bertermann, R.; Bernd, M.; Beckers, T.; Reissmann, T. *Organometallics* **²⁰⁰⁰**, *¹⁹*, 3486-3497.
- (18) Merget, M.; Günther, K.; Bernd, M.; Günther, E.; Tacke, R. *J. Organomet. Chem.* **²⁰⁰¹**, *⁶²⁸*, 183-194.
- (19) Tacke, R.; Kornek, T.; Heinrich, T.; Burschka, C.; Penka, M.; Pülm, M.; Keim, C.; Mutschler, E.; Lambrecht, G. *J. Organomet. Chem.* **²⁰⁰¹**, *⁶⁴⁰*, 140-165.
- (20) Tacke, R.; Handmann, V. I.; Bertermann, R.; Burschka, C.; Penka, M.; Seyfried, C. *Organometallics*, in press.

Syntheses. The carbon compound 1-cyclohexyl-4- (2-methylimidazol-1-yl)-1-phenylbutan-1-ol (**4a**) was prepared by a two-step synthesis, starting from 2-(3 chloropropyl)-2-phenyl-1,3-dioxolane (**6**). Treatment of **6** with (2-methylimidazol-1-yl)lithium in tetrahydrofuran/n-hexane and subsequent hydrolysis with hydrochloric acid gave 4-(2-methylimidazol-1-yl)-1-phenylbutan-1-one (**8**) (49% yield), which on reaction with cyclohexylmagnesium chloride in diethyl ether, followed by hydrolysis, afforded compound **4a** (88% yield). The corresponding *p*-fluoro derivative **5a** was prepared analogously, starting from **7** (**7** \rightarrow **9** (44% yield) \rightarrow **5a** (91% yield)) (Scheme 1).

The silicon compound cyclohexyl[3-(2-methylimidazol-1-yl)propyl]phenylsilanol (**4b**) was prepared by a threestep synthesis, starting from (3-chloropropyl)cyclohexyldimethoxysilane (**10**) (Scheme 2). Treatment of **10** with (2-methylimidazol-1-yl)lithium in dimethylformamide/ tetrahydrofuran/*n*-hexane gave cyclohexyldimethoxy- [3-(2-methylimidazol-1-yl)propyl]silane (**11**) (75% yield), which on reaction with phenyllithium in diethyl ether afforded cyclohexyl(methoxy)[3-(2-methylimidazol-1-yl) propyl]phenylsilane (**12**) (78% yield). Subsequent hy-

Table 1. Affinities (p*K***ⁱ Values) for Compounds 1b, 4a, 4b, 5a, and 5b Obtained in Radioligand Binding Studies at Human Muscarinic M1, M2, M3, M4, and M5 Receptors Stably Expressed in CHO-K1 Cells***^a*

	pK_i values						
compd	M_{1}	M,	M_{3}	M_{4}	M_{5}		
1b			$7.85 + 0.07$ 6.97 + 0.06 7.77 + 0.07 7.52 + 0.07 7.12 + 0.05				
4a			$7.93 + 0.11$ $7.14 + 0.05$ $8.11 + 0.14$ $7.94 + 0.05$ $7.44 + 0.07$				
4b			$8.39 + 0.16$ $7.43 + 0.04$ $8.69 + 0.13$ $8.32 + 0.07$ $8.02 + 0.11$				
5a			7.90 ± 0.09 7.03 ± 0.03 8.04 ± 0.02 7.71 ± 0.01 7.29 ± 0.03				
5h			$7.74 + 0.06$ $7.07 + 0.09$ $8.09 + 0.04$ $7.63 + 0.06$ $7.52 + 0.08$				

 a Data are presented as means \pm SD of at least three experiments in duplicate.

Table 2. Pharmacological Selectivity Ratios for Compounds 1b, 4a, 4b, 5a, and 5b

	selectivity ratios ^a					
compd	M_3/M_1	M_3/M_2	M_3/M_4	M_3/M_5		
1 _b	0.8	6.3	1.8	4.5		
4a	1.5	9.3	1.5	4.7		
4b	2.0	18.2	2.3	4.7		
5a	1.4	10.2	2.1	5.6		
5 _b	$2.2\,$	10.5	2.9	3.7		

a K_i ratios (p $K_i = -\log K_i$) are given as a measure of receptor selectivity; these values were calculated from the antilogs of the Selectivity; these values were calculated from the antilogs of the **Figure 1.** Affinity profiles (p K_i values) of the C/Si analogs differences between the respective p K_i values.

drolysis of the methoxysilane **12** in hydrochloric acid/ 2-propanol gave the silanol **4b** (83% yield). The corresponding *p*-fluoro derivative **5b** was prepared analogously, starting from $10(10 \rightarrow 11(75\%)$ yield) $\rightarrow 13(74\%)$ yield) \rightarrow **5b** (81% yield)) (Scheme 2).

To improve the solubility in water, compounds **4a**, **4b**, **5a**, and **5b** were transformed into their corresponding hydrochlorides (see Experimental Section). Compounds **4a**, **4a**'HCl, **4b**, **4b**'HCl, **5a**, **5a**'HCl, **5b**, **5b**'HCl, **¹²**, and **13** were isolated as crystalline solids (racemic mixtures), whereas **8**, **9**, and **11** were obtained as liquids. The identities of all compounds were established by elemental analyses (C, H, N) and NMR spectroscopic studies (${}^{1}H$, ${}^{13}C$, ${}^{29}Si$).

Pharmacological Studies. Compounds **1b**, **4a**, **4b**, **5a**, and **5b** were studied for their affinities (pK_i values) at recombinant human muscarinic M_1 , M_2 , M_3 , M_4 , and M5 receptors stably expressed in CHO-K1 cells (binding studies with [3H]*N*-methylscopolamine ([3H]NMS) as the radioligand). The results of these investigations are summarized in Tables 1 and 2 and illustrated in Figure 1.

The Hill coefficients (0.83 \pm 0.11 to 1.15 \pm 0.05) of all saturation and competition curves were not significantly different from unity, indicating the presence of a single recombinant muscarinic receptor subtype (M_1, M_2) M_2 , M_3 , M_4 , or M_5) in the five CHO-K1 cell lines and a competitive antagonism by compounds **1b**, **4a**, **4b**, **5a**, and $5b$ at M_1-M_5 receptors.

Although the muscarinic receptor affinity profiles of the C/Si pairs **4a**/**4b** and **5a**/**5b** are similar (Tables 1 and 2, Figure 1), some differences are noted that are indicative of structure-activity relationships. In particular, the antimuscarinic properties of **4b** were distinct in several ways.

The affinities and selectivity ratios of compounds **4a**, **5a**, and **5b** were found to be very similar at the individual muscarinic receptor subtypes and, in turn,

4a/4b and **5a/5b** at human muscarinic M_1 , M_2 , M_3 , M_4 , and M5 receptors.

similar to those of the parent compounds **1a**, **1b**, **2a**, and **2b**. 5,6,21,22 In contrast, replacement of the piperidin-1-yl group of HHSiD (**1b**) by a 2-methylimidazol-1-yl moiety $(\rightarrow$ **4b**) increased the affinities for M₁ (3.5-fold), M_2 (2.9-fold), M_3 (8.3-fold), M_4 (6.3-fold), and M_5 receptors (7.9-fold). As a result, compound **4b** was found to have the highest binding affinities at M_1-M_5 receptors and the greatest M_3 versus M_2 receptor selectivity (18.2fold).

Comparison of the binding affinities of the C/Si pairs **4a**/**4b** and **5a**/**5b** outlined the effect of sila-substitution (C/Si exchange) on the antimuscarinic properties. It is obvious from the data in Table 1 that the replacement of the central carbon atom of 5a by a silicon atom $(\rightarrow$ **5b**) has little influence on the affinities for M_1-M_5 receptors. This also holds true for the sila-substitution of compounds $1a \rightarrow 1b$) and $2a \rightarrow 2b$) (Table 1; refs 5, 6, 21, and 22), indicating a strongly pronounced C/Si bioisosterism. However, replacement of the central carbon atom of **4a** by a silicon atom $(\rightarrow$ **4b**) increased the affinity for M_1-M_5 receptor subtypes, this increase being greatest at M_3 and M_5 receptors (4-fold).

Comparison of the phenyl/*p*-fluorophenyl pairs **4a**/**5a** and **4b**/**5b** defines the effect of a *p*-fluoro substituent in the phenyl ring on affinity for M_1-M_5 receptors. The influence of a fluoro substituent in para position of **4a** $(\rightarrow$ 5a) on affinity was very moderate. In contrast, fluoro substitution of **4b** (\rightarrow **5b**) reduced the binding affinity for all muscarinic receptor subtypes up to 4.9-fold, this decrease in affinity being smallest at M_2 receptors (2.3fold). These results support the view that the drug position in the muscarinic receptor binding sites is adapted depending on the actual drug structure and is

⁽²¹⁾ Buckley, N. J.; Bonner, T. I.; Buckley, C. M.; Brann, M. R. *Mol.*

Pharmacol. **1989**, *35*, 469–476.

(22) Dörje, F.; Wess, J.; Lambrecht, G.; Tacke, R.; Mutschler, E.;
Brann, M. R. *J. Pharmacol. Exp. Ther.* **1991**, *256*, 727–733.

not necessarily indentical when comparing carbon/ silicon bioisosters.^{3,5}

It is noteworthy that compounds **4a**, **4b**, **5a**, and **5b** possess a center of chirality (central carbon or silicon atom) and therefore exist as (*R*)- and (*S*)-enantiomers, but we investigated the binding affinities of the racemic mixtures. The p*K*ⁱ values listed in Table 1 may therefore be lower by at most 0.3 log units than the p*K*ⁱ values of the respective high-affinity enantiomers (eutomers).5 This is due to the presence of 50% of the corresponding low-affinity enantiomers (distomers) in the binding assays. However, we have demonstrated that enantiopure silanols (R_3 SiOH) racemize in aqueous solution.²³

Taken together, we have indentified a novel, highly potent, and M3 receptor-preferring muscarinic antagonist. The silanol **4b** may provide a pharmacological tool for the investigation of muscarinic receptor subpopulations in vivo and may have potential utility in control- $\ln g M_3$ receptor-mediated contraction of visceral smooth muscle, e.g., instability of the urinary bladder detrusor muscle.¹² The results obtained in this study again demonstrate the high potential of the sila-substitution concept in the development of new drugs with improved pharmacological properties.

Experimental Section

Chemistry. General Procedures. All syntheses were carried out under dry nitrogen. The solvents used were dried and purified according to standard procedures and stored under dry nitrogen. Melting points (uncorrected) were determined with a Büchi Melting Point B-540 apparatus. The ¹H, 13C, and 29Si NMR spectra were recorded at 22 °C on a Bruker DRX-300 NMR spectrometer (1H, 300.1 MHz; 13C, 75.5 MHz; 29Si, 59.6 MHz). Chemical shifts (ppm) were determined relative to internal CHCl₃ (¹H, δ 7.24; solvent CDCl₃), CDCl₃ (13C, *δ* 77.0; solvent CDCl3), DMSO-*d*⁵ (1H, *δ* 2.49; solvent DMSO-*d*6), and DMSO-*d*⁶ (13C, *δ* 39.5; solvent DMSO-*d*6), and external TMS (²⁹Si, δ 0; solvent CDCl₃). Assignment of the ¹H NMR data for **4a**'HCl, **5a**, **5a**'HCl, **¹²**, and **¹³** was supported by ¹H,¹H COSY experiments. Assignment of the ¹³C NMR data for all compounds was supported by DEPT 135 experiments, and for **4a**'HCl, **5a**, **5a**'HCl, **¹²**, and **¹³** by additional 13C,1H HMQC and ¹³C,¹H HMBC experiments.

Preparation of 1-Cyclohexyl-4-(2-methylimidazol-1 yl)-1-phenylbutan-1-ol (4a). An emulsion of **8** (2.00 g, 8.76 mmol) in diethyl ether (6 mL) was added dropwise at room temperature (rt) over a period of 10 min to a stirred Grignard reagent prepared from cyclohexyl chloride (1.25 g, 10.5 mmol) and magnesium turnings (270 mg, 11.1 mmol) in diethyl ether (15 mL). The resulting mixture was stirred for 1 h at rt, heated under reflux for 1 h, and then stirred for 1 day at rt. The supernatant was removed by decantation and the solid residue washed with diethyl ether (30 mL). A suspension of this solid in diethyl ether (50 mL) was added at 0 °C to a saturated aqueous NH4Cl solution (25 mL). The organic phase was separated and the aqueous layer extracted with diethyl ether $(3 \times 70 \text{ mL})$, and the combined organic extracts were dried over anhydrous Na2SO4. The solvent was removed under reduced pressure and the solid crude product recrystallized from diethyl ether at -20 °C to give **4a** as a colorless crystalline solid (2.41 g, 88%), mp 152-154 °C. 1H NMR (CDCl3): *^δ* 0.77-1.41, 1.51-1.91, and 1.92-2.11 (m, 16 H, CC*H*2C, C3C*H*, CO*H*), 2.21 (s, 3 H, CC*H*3), 3.62-3.78 (m, 2 H, NC*H*₂C), 6.66 (s, 1 H, N-CH=C*H*-N=C), 6.82 (s, 1 H,

N-CH=CH-N=C), 7.15-7.34 (m, 5 H, CC₆H₅). ¹³C NMR (CDCl3): *δ* 12.9 (C*C*H3), 25.1 (NCH2*C*H2C), 26.3 (C*C*H2C), 26.51 (C*C*H2C), 26.54 (C*C*H2C), 26.6 (C*C*H2C), 27.2 (C*C*H2C), 36.1 (OC*C*H2C), 46.2 (N*C*H2C), 48.5 (C3*C*H), 78.8 (C3*C*O), 118.9 (*C*-4, imidazole), 125.5 (*C*-2/*C*-6, CC6H5), 126.4 (*C*-4, CC6H5), 126.9 (*C*-5, imidazole), 128.0 (*C*-3/*C*-5, CC6H5), 144.3 (*C*-2, imidazole), 144.8 (*C*-1, CC₆H₅). Anal. Calcd for C₂₀H₂₈N₂O: C, 76.88; H, 9.03; N, 8.97. Found: C, 76.5; H, 9.0; N, 8.9.

Preparation of the Hydrochloride 4a'**HCl.** A1M ethereal HCl solution (710 *µ*L, 710 *µ*mol HCl) was added at 0 °C over a period of 5 min to a stirred solution of **4a** (221 mg, 707 *µ*mol) in tetrahydrofuran (60 mL) (slow formation of a precipitate) and the mixture then kept undisturbed at 0 °C for 20 min and at rt for a further 15 min. The solid product was separated by centrifugation, washed with tetrahydrofuran $(3 \times 15 \text{ mL})$, and then recrystallized from acetone/dichloromethane (3:1 (v/v)) to give **4a**'HCl as a colorless crystalline solid (201 mg, 81%), mp 211-214 °C. 1H NMR (DMSO-*d*6): *^δ* 0.74-1.36 and 1.41-1.90 (m, 15 H, CCH₂C, C₃CH), 2.48 (s, 3 H, CC*H*₃), 3.99 (t, ³*J*(HH) = 7.1 Hz, 2 H, NC*H*₂C), 4.6 (s, 1 H, CO*H*), 7.12-7.21 and 7.23-7.35 (m, 5 H, CC₆H₅), 7.51 (δ _A) and 7.54 (δ_X) (³J(AX) = 2.1 Hz, 2 H, N-CH_X=CH_A-N=C), 14.6 (br s, 1 H, N*H*). 13C NMR (DMSO-*d*6): *δ* 10.1 (C*C*H3), 24.0 (NCH2*C*H2C), 26.12 (C*C*H2C), 26.15 (C*C*H2C), 26.20 (C*C*H2C), 26.3 (C*C*H2C), 27.0 (C*C*H2C), 34.7 (OC*C*H2C), 47.0 (N*C*H2C), 48.2 (C3*C*H), 77.1 (C3*C*O), 117.7 (*C*-4, imidazole), 121.8 (*C*-5, imidazole), 125.7 (*C*-4, CC₆H₅), 125.9 (*C*-2/*C*-6, CC₆H₅), 127.4 (*C*-3/*C*-5, CC6H5), 143.7 (*C*-2, imidazole), 145.7 (*C*-1, CC6H5). Anal. Calcd for $C_{20}H_{29}C1N_2O$: C, 68.85; H, 8.38; N, 8.03. Found: C, 69.0; H, 8.3; N, 7.9.

Preparation of Cyclohexyl[3-(2-methylimidazol-1-yl) propyl]phenylsilanol (4b). Hydrochloric acid (0.5 M, 80 mL) was added at rt to a stirred solution of **12** (1.00 g, 2.92 mmol) in 2-propanol (30 mL) and the mixture stirred at rt for 16 h, followed by extraction with diethyl ether (2×30 mL). The pH of the aqueous layer was adjusted to 8 by addition of 1 M aqueous NaOH solution and the resulting mixture extracted with diethyl ether $(3 \times 100 \text{ mL})$. The combined organic extracts were dried over anhydrous Na₂SO₄, the solvent was removed under reduced pressure, and the solid crude product was recrystallized from diethyl ether at -20 °C to give **4b** as a colorless crystalline solid (796 mg, 83%), mp 89 °C. 1H NMR (CDCl3): *^δ* 0.62-0.98 (m, 3 H, SiC*H*2C, SiC*H*C2), 1.02-1.32 $3J(HH) = 7.4$ Hz, 2 H, NC*H*₂C), 5.9 (br s, 1 H, SiO*H*), 6.64 (δ_A) and 6.69 (δ _X) (³*J*(AX) = 1.1 Hz, 2 H, N-C*H*_X=C*H*_A-N=C), 7.27-7.38 and 7.50-7.58 (m, 5 H, SiC₆H₅). ¹³C NMR (CDCl₃): *δ* 10.3 (Si*C*H2C), 12.3 (C*C*H3), 24.7 (SiCH2*C*H2C), 26.3 (Si*C*HC2), 26.73 (C*C*H2C), 26.75 (C*C*H2C), 26.81 (C*C*H2C), 27.79 (C*C*H2C), 27.83 (C*C*H2C), 48.9 (N*C*H2C), 119.0 (*C*-4, imidazole), 125.9 (*C*-5, imidazole), 127.6 (*C*-3/*C*-5, SiC6H5), 129.2 (*C*-4, SiC6H5), 133.8 (*C*-2/*C*-6, SiC6H5), 137.1 (*C*-1, SiC6H5), 144.0 (*C*-2, imidazole). ²⁹Si NMR (CDCl₃): δ 0.7. Anal. Calcd for C₁₉H₂₈N₂-OSi: C, 69.46; H, 8.59; N, 8.53. Found: C, 69.7; H, 8.5; N, 8.3.

Preparation of the Hydrochloride 4b'**HCl.** A1M ethereal HCl solution (650 *µ*L, 650 *µ*mol HCl) was added at 0 °C over a period of 5 min to a stirred solution of **4b** (212 mg, 645 *µ*mol) in tetrahydrofuran (30 mL). After 5 min, diethyl ether (40 mL) was added and the mixture then kept undisturbed at 0 °C for 20 min and at rt for a further 15 min. The solid product was separated by centrifugation, washed with tetrahydrofuran $(3 \times 20 \text{ mL})$, and then recrystallized from *n*-hexane/dichloromethane (2.5:1 (v/v)) to give **4b** \cdot HCl as a colorless crystalline solid (226 mg, 96%), mp 150 °C. 1H NMR (CDCl3): *^δ* 0.66-0.96 (m, 3 H, SiC*H*2C, SiC*H*C2), 0.99-1.31, 1.48-1.78, and 1.79-2.07 (m, 12 H, CC*H*2C), 2.62 (s, 3 H, CCH₃), 3.5 (br s, 1 H, SiOH), 3.97 (t, $3J(HH) = 7.2$ Hz, 2 H, NC*H*₂C), 7.05-7.13 (m, 2 H, N-C*H*=C*H*-N=C), 7.27-7.36 and 7.47-7.57 (m, 5 H, SiC₆H₅), 15.4 (s, 1 H, NH). ¹³C NMR (CDCl3): *δ* 9.7 (Si*C*H2C), 10.6 (C*C*H3), 24.1 (SiCH2*C*H2C), 26.2

⁽²³⁾ Tacke, R.; Linoh, H.; Ernst, L.; Moser, U.; Mutschler, E.; Sarge, S.; Cammenga, H. K.; Lambrecht, G. *Chem. Ber.* **¹⁹⁸⁷**, *¹²⁰*, 1229- 1237.

(Si*C*HC2), 26.65 (C*C*H2C), 26.66 (C*C*H2C), 26.74 (C*C*H2C), 27.67 (C*C*H2C), 27.71 (C*C*H2C), 49.8 (N*C*H2C), 117.9 (*C*-4, imidazole), 120.7 (C-5, imidazole), 127.8 (C-3/C-5, SiC₆H₅), 129.5 (*C*-4, SiC6H5), 133.7 (*C*-2/*C*-6, SiC6H5), 136.1 (*C*-1, SiC6H5), 143.6 (*C*-2, imidazole). 29Si NMR (CDCl3): *δ* 2.1. Anal. Calcd for $C_{19}H_{29}C1N_2OSi$: C, 62.52; H, 8.01; N, 7.68. Found: C, 62.2; H, 7.7; N, 7.6.

Preparation of 1-Cyclohexyl-1-(4-fluorophenyl)-4-(2 methylimidazol-1-yl)butan-1-ol (5a). This compound was prepared analogously to the synthesis of **4a** by addition of a Grignard reagent, prepared from cyclohexyl chloride (1.17 g, 9.86 mmol) and magnesium turnings (250 mg, 10.3 mmol) in diethyl ether (15 mL), to an emulsion of **9** (2.00 g, 8.12 mmol) in diethyl ether (6 mL). The solid crude product was recrystallized from diethyl ether at -20 °C to give **5a** as a colorless crystalline solid (2.44 g, 91%), mp $146-147$ °C. ¹H NMR (CDCl3): *^δ* 0.76-1.43 and 1.48-1.90 (m, 16 H, CC*H*2C, C3C*H*, CO*H*), 2.25 (s, 3 H, CC*H*3), 3.64-3.81 (m, 2 H, NC*H*2C), 6.69 (s, 1 H, N-CH=C*H*-N=C), 6.85 (s, 1 H, N-C*H*=CH-N=C), 6.93-7.02 and 7.16-7.25 (m, 4 H, CC₆H₄F). ¹³C NMR (CDCl3): *δ* 12.8 (C*C*H3), 25.0 (NCH2*C*H2C), 26.3 (C*C*H2C), 26.4 (C*C*H2C), 26.5 (C*C*H2C), 26.6 (C*C*H2C), 27.2 (C*C*H2C), 36.1 (OC*C*H2C), 46.2 (N*C*H2C), 48.6 (C3*C*H), 78.5 (C3*C*O), 114.7 (d, 2 *J*(CF) = 21.1 Hz, *C*-3/*C*-5, CC₆H₄F), 119.1 (*C*-4, imidazole), 126.3 (*C*-5, imidazole), 127.2 (d, ³*J*(CF)) 7.6 Hz, *^C*-2/*C*-6, CC_6H_4F), 132.8 (d, ⁴ J(CF) = 3.2 Hz, *C*-1, CC_6H_4F), 144.5 (*C*-2, imidazole), 161.4 (d, ¹J(CF) = 244.9 Hz, *C*-4, CC₆H₄F). Anal. Calcd for $C_{20}H_{27}FN_{2}O$: C, 72.70; H, 8.24; N, 8.48. Found: C, 72.2; H, 8.2; N, 8.3.

Preparation of the Hydrochloride 5a'**HCl.** This compound was prepared analogously to the synthesis of **4a**'HCl by addition of a 1 M ethereal HCl solution (670 µL, 670 µmol HCl) to a solution of **5a** (220 mg, 666 *µ*mol) in tetrahydrofuran (60 mL) and was isolated as a colorless crystalline solid (213 mg, 87%), mp 217 °C. ¹H NMR (DMSO-*d*₆): δ 0.71-1.38 and 1.40-1.94 (m, 15 H, CC*H*2C, C3C*H*), 2.50 (s, 3 H, CC*H*3), 4.00 $(t, {}^{3}J(HH) = 6.9$ Hz, 2 H, NC*H*₂C), 4.7 (s, 1 H, CO*H*), 7.02-7.18 and 7.26-7.41 (m, 4 H, CC_6H_4F), 7.52 (δ_A) and 7.54 (δ_X) $(^{3}J(AX) = 2.1$ Hz, 2 H, N-C*H*_X=C*H*_A-N=C), 14.5 (br s, 1 H, N*H*). 13C NMR (DMSO-*d*6): *δ* 10.2 (C*C*H3), 24.0 (NCH2*C*H2C), 26.1 (2 C) (C*C*H2C), 26.2 (C*C*H2C), 26.3 (C*C*H2C), 26.9 (C*C*H2C), 34.8 (OC*C*H2C), 47.0 (N*C*H2C), 48.2 (C3*C*H), 76.9 (C3*C*O), 114.1 $(d, {}^{2}J(CF) = 20.8 \text{ Hz}, C \cdot 3/C \cdot 5, CC_{6}H_{4}F), 117.8 (C \cdot 4, \text{ imidazole}),$ 121.8 (*C*-5, imidazole), 127.9 (d, ³ J(CF) = 7.8 Hz, *C*-2/*C*-6, CC_6H_4F), 141.8 (d, ⁴ J(CF) = 2.9 Hz, *C*-1, CC_6H_4F), 143.7 (*C*-2, imidazole), 160.6 (d, ¹ J(CF) = 241.5 Hz, *C*-4, CC_6H_4F). Anal. Calcd for C₂₀H₂₈ClFN₂O: C, 65.47; H, 7.69; N, 7.64. Found: C, 65.0; H, 7.7; N, 7.6.

Preparation of Cyclohexyl(4-fluorophenyl)[3-(2-methylimidazol-1-yl)propyl]silanol (5b). This compound was prepared analogously to the synthesis of **4b** by hydrolysis of **13** (1.07 g, 2.97 mmol) in a mixture of 0.5 M hydrochloric acid (80 mL) and 2-propanol (30 mL). The solid crude product was recrystallized from diethyl ether at -20 °C to give **5b** as a colorless crystalline solid (833 mg, 81%), mp 87-88 °C. 1H NMR (CDCl3): *^δ* 0.61-0.93 (m, 3 H, SiC*H*2C, SiC*H*C2), 1.00- 1.29 and 1.51-1.80 (m, 12 H, CC*H*2C), 2.04 (s, 3 H, CC*H*3), 3.70 (t, 3 *J*(HH) = 7.4 Hz, 2 H, NC*H*₂C), 3.9 (br s, 1 H, SiO*H*), 6.56-6.81 (m, 2 H, N-CH=CH-N=C), 6.97-7.10 and 7.46-7.58 (m, 4 H, SiC6*H*4F). 13C NMR (CDCl3): *δ* 10.4 (Si*C*H2C), 12.4 (C*C*H3), 24.7 (SiCH2*C*H2C), 26.3 (Si*C*HC2), 26.70 (C*C*H2C), 26.73 (C*C*H2C), 26.80 (C*C*H2C), 27.76 (C*C*H2C), 27.80 (C*C*H2C), 48.9 (NCH₂C), 114.9 (d, ²J(CF) = 16.6 Hz, C-3/C-5, SiC₆H₄F), 119.1 (*C*-4, imidazole), 126.0 (*C*-5, imidazole), 132.4 (d, ⁴*J*(CF) $=$ 3.6 Hz, *C*-1, SiC₆H₄F), 135.8 (d, ³*J*(CF) = 7.3 Hz, *C*-2/*C*-6, SiC₆H₄F), 144.2 (*C*-2, imidazole), 163.9 (d, ¹ J(CF) = 248.2 Hz, C -4, SiC₆H₄F). ²⁹Si NMR (CDCl₃): δ 1.1. Anal. Calcd for C₁₉H₂₇-FN2OSi: C, 65.86; H, 7.85; N, 8.08. Found: C, 65.4; H, 7.9; N, 8.0.

Preparation of the Hydrochloride 5b'**HCl.** A1M ethereal HCl solution (500 *µ*L, 500 *µ*mol HCl) was added at 0 °C over a period of 5 min to a stirred solution of **5b** (174 mg, 502 *µ*mol) in diethyl ether (25 mL) (slow formation of a precipitate) and the mixture then kept undisturbed at 0 °C for 20 min and at rt for a further 15 min. The solid product was separated by centrifugation, washed with tetrahydrofuran (3 × 20 mL), and then recrystallized from *n*-hexane/trichloromethane (1:2.5 (v/v)) to give **5b**'HCl as a colorless crystalline solid (183 mg, 95%), mp 92-94 °C. ¹H NMR (CDCl₃): 0.59-0.97 (m, 3 H, SiCH₂C, SiCHC₂), 0.99-1.32, 1.47-1.77, and 1.78-2.11 (m, 12 H, CC*H*2C), 2.67 (s, 3 H, CC*H*3), 3.7 (br s, 1 H, SiO*H*), 3.89-4.21 (m, 2 H, NC*H*2C), 6.89-7.28 and 7.42-7.59 (m, 6 H, N-CH=CH-N=C, SiC₆H₄F), 15.2 (s, 1 H, N*H*). 13C NMR (CDCl3): 9.8 (Si*C*H2C), 10.9 (C*C*H3), 24.1 (SiCH2*C*H2C), 26.3 (Si*C*HC2), 26.62 (C*C*H2C), 26.65 (C*C*H2C), 26.73 (C*C*H2C), 27.65 (C*C*H2C), 27.69 (C*C*H2C), 49.9 (N*C*H2C), 115.0 (d, ²*J*(CF) = 19.6 Hz, *C*-3/*C*-5, SiC₆H₄F), 118.0 (*C*-4, imidazole), 121.0 (*C*-5, imidazole), 131.8 (d, ⁴J(CF) = 3.6 Hz, $C-1$, SiC₆H₄F), 135.8 (d, ³J(CF) = 7.3 Hz, $C-2/C-6$, SiC₆H₄F), 143.6 (*C*-2, imidazole), 163.9 (d, ¹J(CF) = 248.6 Hz, *C*-4, SiC₆H₄F). ²⁹Si NMR (CDCl₃): δ 1.8. Anal. Calcd for C₁₉H₂₈-ClFN2OSi: C, 59.59; H, 7.37; N, 7.31. Found: C, 59.5; H, 7.5; N, 7.1.

Preparation of 2-(3-Chloropropyl)-2-phenyl-1,3-dioxolane (6). Synthesis is as described in ref 24.

Preparation of 2-(3-Chloropropyl)-2-(4-fluorophenyl)- 1,3-dioxolane (7). Synthesis is as described in ref 25.

Preparation of 4-(2-Methylimidazol-1-yl)-1-phenylbutan-1-one (8). A 1.6 M solution of *n*-butyllithium in *n*-hexane (55.1 mL, 88.2 mmol of n -BuLi) was added dropwise at -40 °C over a period of 1 h to a stirred solution of 2-methylimidazole (7.24 g, 88.2 mmol) in tetrahydrofuran (90 mL). The resulting suspension was stirred at -40 °C for 15 min, and a solution of **6** (20.0 g, 88.2 mmol) in tetrahydrofuran (50 mL) was added dropwise at -40 °C over a period of 1 h. After the mixture was allowed to warm to rt, potassium iodide (6.00 g, 36.1 mmol) was added and the resulting mixture heated under reflux for 5 days and then cooled to rt, followed by addition of saturated aqueous NaHCO_{3} solution (50 mL). The mixture was stirred at rt for 15 min, and the solvents were removed under reduced pressure. The resulting residue was partitioned between dichloromethane (400 mL) and 1 M aqueous NaHCO₃ solution (200 mL). The organic layer was separated and extracted with 1 M aqueous NaHCO₃ solution (2×100 mL) and then with 1 M aqueous NaCl solution (100 mL). The organic phase was dried over anhydrous Na2SO4 and the solvent removed under reduced pressure. Methanol (160 mL) and 2 M hydrochloric acid (160 mL) were added to the residue, and the mixture was heated under reflux for 9 h. The methanol was removed under reduced pressure and the residue extracted with diethyl ether (50 mL). The pH of the aqueous solution was then adjusted to 9.5 by addition of Na_2CO_3 , and the resulting solution was concentrated under reduced pressure (\rightarrow ca. 80 mL), purified by filtration, and then extracted with dichloromethane $(3 \times 200 \text{ mL})$. The combined organic extracts were washed with saturated aqueous NaCl solution $(2 \times 50 \text{ mL})$, the organic phase was dried over anhydrous Na₂-SO4, and the solvent was removed under reduced pressure. The oily residue was distilled in a Kugelrohr apparatus (oven temperature 190 °C, 0.01 mbar) to give **8** as a yellowish liquid (9.87 g, 49%). 1H NMR (CDCl3): *^δ* 2.14 (tt, ³*J*(HH)) 6.8 Hz, ³*J*(HH)) 7.2 Hz, 2 H, CC*H*2C), 2.94 (t, ³*J*(HH)) 6.8 Hz, 2 H, C(O)CH₂C), 2.34 (s, 3 H, CCH₃), 3.93 (t, ³J(HH) = 7.2 Hz, 2 H, NC*H*₂C), 6.79 (δ _A) and 6.88 (δ _X) (δ *J*(AX) = 0.9 Hz, 2 H, N-CH_X=CH_A-N=C), 7.38-7.48 and 7.49-7.59 (m, 5 H, CC6*H*5). 13C NMR (CDCl3): *δ* 13.3 (C*C*H3), 25.1 (C*C*H2C), 34.8 (C(O)*C*H2C), 45.4 (N*C*H2C), 119.0 (*C*-4, imidazole), 127.2

⁽²⁴⁾ Purchase II, C. F.; Goel, O. P. *J. Org. Chem.* **¹⁹⁹¹**, *⁵⁶*, 457- 459.

⁽²⁵⁾ Moerlein, S. M.; Stöcklin, G. L. *J. Med. Chem.* **1985**, 28, 1319-1324.

(*C*-5, imidazole), 127.9 (*C*-2/*C*-6 or *C*-3/*C*-5, CC₆H₅), 128.7 (*C*-2/*C*-6 or *C*-3/*C*-5, CC6H5), 133.4 (*C*-4, CC6H5), 136.4 (C-1, CC₆H₅), 142.5 (C-2, imidazole), 198.6 (C=O). Anal. Calcd for C₁₄H₁₆N₂O: C, 73.66; H, 7.06; N, 12.27. Found: C, 73.5; H, 7.2; N, 12.1.

Preparation of 1-(4-Fluorophenyl)-4-(2-methylimidazol-1-yl)butan-1-one (9). This compound was prepared analogously to the synthesis of **8**, starting from **7** (30.0 g, 123 mmol), and was purified by distillation in a Kugelrohr apparatus (oven temperature 175 °C, 0.01 mbar) to give a yellowish liquid (13.3 g, 44%). ¹H NMR (CDCl₃): δ 2.13 ("quint", ³ J(HH) = 6.8 Hz, ³ J(HH) = 6.8 Hz, 2 H, CC*H*₂C), 2.35 (s, 3 H, CC*H*₃), 2.90 (t, ³ J(HH) = 6.8 Hz, 2 H, C(O)C*H*₂C), 3.93 (t, ³ J(HH) = 6.8 Hz, 2 H, NC*H*₂C), 6.79 (δ_A) and 6.88 (δ_X) (3J (AX) = 1.1 Hz, 2 H, N-CH_X=CH_A-N=C), 7.04-7.14 and 7.86-8.00 (m, 4 H, CC6*H*4F). 13C NMR (CDCl3): *δ* 12.7 (C*C*H3), 24.6 (C*C*H2C), 34.2 $(C(O)CH₂C)$, 44.9 (NCH₂C), 115.8 (d, ²J(CF) = 21.8 Hz, C-3/ *C*-5, CC6H4F), 119.0 (*C*-4, imidazole), 126.7 (*C*-5, imidazole), 130.5 (d, ³ $J(CF) = 9.4$ Hz, *C*-2/*C*-6, CC₆H₄F), 132.8 (d, ⁴ $J(CF)$) 2.9 Hz, *^C*-1, CC6H4F), 144.5 (*C*-2, imidazole), 165.8 (d, ¹*J*(CF) $= 255.4$ Hz, *C*-4, CC₆H₄F), 196.9 (*C*=O). Anal. Calcd for C₁₄H₁₅-FN2O: C, 68.28; H, 6.14; N, 11.37. Found: C, 68.1; H, 6.3; N, 11.3.

Preparation of (3-Chloropropyl)cyclohexyldimethoxysilane (10). Synthesis is as described in ref 1.

Preparation of Cyclohexyldimethoxy[3-(2-methylimidazol-1-yl)propyl]silane (11). A 1.6 M solution of *n*-butyllithium in *n*-hexane (54.8 mL, 87.7 mmol of *n*-BuLi) was added dropwise at -30 °C over a period of 1 h to a stirred solution of 2-methylimidazole (7.20 g, 87.7 mmol) in tetrahydrofuran (60 mL). The mixture was allowed to warm to rt within 6 h and then stirred for 11 h. The resulting suspension was added in portions at rt over a period of 45 min to a stirred solution of **10** (20.0 g, 79.7 mmol) in dimethylformamide (100 mL) and the mixture heated under reflux for 17 h. After the solvent was removed under reduced pressure, diethyl ether (200 mL) was added and the mixture kept at rt for 16 h. The precipitate was removed by filtration, the filtrate concentrated under reduced pressure, and the residue distilled in vacuo (Vigreux column) to give **11** as a colorless liquid (17.8 g, 75%), bp 145 °C/0.001 mbar. 1H NMR (CDCl3): *^δ* 0.47-0.54 (m, 2 H, SiCH₂C), 0.70-0.87 (m, 1 H, SiCHC₂), 1.03-1.28 and 1.58-1.88 (m, 12 H, CC*H*2C), 2.35 (s, 3 H, CC*H*3), 3.50 (s, 6 H, OC*H*3), 3.78 (t, 3 *J*(HH) = 7.3 Hz, 2 H, NC*H*₂C), 6.79 (δ _A) and 6.87 (δ _X) $(^{3}J(AX) = 1.3$ Hz, 2 H, N-CH_X=CH_A-N=C). ¹³C NMR (CDCl3): *δ* 7.4 (Si*C*H2C), 12.9 (C*C*H3), 24.2 (Si*C*HC2), 24.4 (SiCH2*C*H2C), 26.7 (3 C) (C*C*H2C), 27.6 (C*C*H2C), 48.5 (N*C*H2C), 50.6 (O*C*H3), 119.0 (*C*-4, imidazole), 126.8 (*C*-5, imidazole), 144.3 (*C*-2, imidazole). ²⁹Si NMR (CDCl₃): δ -7.7. Anal. Calcd for C15H28N2O2Si: C, 60.77; H, 9.52; N, 9.45. Found: C, 60.7; H, 9.6; N, 9.4.

Preparation of Cyclohexyl(methoxy)[3-(2-methylimidazol-1-yl)propyl]phenylsilane (12). A 1.6 M solution of *n*-butyllithium in *n*-hexane (24.5 mL, 39.2 mmol of *n*-BuLi) was added dropwise at -35 °C over a period of 30 min to a stirred solution of bromobenzene (6.16 g, 39.2 mmol) in diethyl ether (80 mL). The mixture was stirred at -35 °C for 2 h and then added dropwise at -10 °C over a period of 45 min to a stirred solution of **11** (10.6 g, 35.8 mmol) in diethyl ether (100 mL). The resulting mixture was stirred at -10 °C for 1 h and at rt for a further 15 h, followed by addition of saturated aqueous NH4Cl solution (30 mL). The organic phase was separated and the aqueous layer extracted with diethyl ether $(3 \times 60 \text{ mL})$, and the combined organic extracts were dried over anhydrous $Na₂SO₄$. The solvent was removed under reduced pressure and the residue distilled in a Kugelrohr apparatus (oven temperature 210 °C, 0.01 mbar). The distillate was dissolved in *n*-pentane (20 mL) and the solution kept undisturbed at -20 °C for 3 days. The resulting solid was isolated by filtration and dried in vacuo (0.001 mbar) for 6 h to give **12** as a colorless crystalline product (9.55 g, 78%), mp ⁹⁴-95 °C. 1H NMR (CDCl3): *^δ* 0.66-0.89 (m, 2 H, SiC*H*2C), 0.90-1.02 (m, 1 H, SiCHC₂), 1.03-1.28 and 1.54-1.85 (m, 12 H, CC*H*2C), 2.28 (s, 3 H, CC*H*3), 3.47 (s, 3 H, OC*H*3), 3.75 (t, $3J(HH) = 7.2$ Hz, 2 H, NC*H*₂C), 6.73 (δ_A) and 6.84 (δ_X) ($3J(AX)$) $= 1.3$ Hz, 2 H, N-C*H*_X=C*H*_A-N=C), 7.27-7.38 and 7.39-7.47 (m, 5 H, SiC6*H*5). 13C NMR (CDCl3): *δ* 8.3 (Si*C*H2C), 12.9 (C*C*H3), 24.5 (SiCH2*C*H2C), 25.0 (Si*C*HC2), 26.6 (C*C*H2C), 26.75 (C*C*H2C), 26.78 (C*C*H2C), 27.6 (C*C*H2C), 27.7 (C*C*H2C), 48.5 (N*C*H2C), 51.3 (O*C*H3), 118.8 (*C*-4, imidazole), 126.9 (*C*-5, imidazole), 127.8 (C -3/ C -5, SiC₆H₅), 129.5 (C -4, SiC₆H₅), 133.9 (*C*-2/*C*-6, SiC6H5), 134.1 (*C*-1, SiC6H5), 144.2 (*C*-2, imidazole). ²⁹Si NMR (CDCl₃): δ 5.2. Anal. Calcd for C₂₀H₃₀N₂OSi: C, 70.13; H, 8.83; N, 8.18. Found: C, 69.8; H, 8.6; N, 8.3.

Preparation of Cyclohexyl(4-fluorophenyl)methoxy- [3-(2-methylimidazol-1-yl)propyl]silane (13). This compound was prepared analogously to the synthesis of **12**, starting from **11** (10.6 g, 35.8 mmol) and using 1-bromo-4 fluorobenzene (6.86, 39.2 mmol) instead of bromobenzene and was isolated as a colorless crystalline product (9.52 g, 74%), mp 56-57 °C. 1H NMR (CDCl3): *^δ* 0.64-0.88 (m, 3 H, SiC*H*2C, SiC*H*C₂), 0.89-1.22 and 1.52-1.82 (m, 12 H, CC*H*₂C), 2.26 (s, 3 H, CC*H*₃), 3.43 (s, 3 H, OC*H*₃), 3.73 (t, ³*J*(HH) = 7.1 Hz, 2 H, NC*H*₂C), 6.70 (δ _A) and 6.82 (δ _X) (δ *J*(AX) = 1.3 Hz, 2 H, N-CH_X=CH_A-N=C), 6.93-7.05 and 7.32-7.35 (m, 4 H, SiC6*H*4F). 13C NMR (CDCl3): *δ* 8.3 (Si*C*H2C), 12.9 (C*C*H3), 24.4 (SiCH2*C*H2C), 24.9 (Si*C*HC2), 26.5 (C*C*H2C), 26.67 (C*C*H2C), 26.68 (C*C*H2C), 27.55 (C*C*H2C), 27.61 (C*C*H2C), 48.4 (N*C*H2C), 51.2 (OCH₃), 115.0 (d, ² J(CF) = 20.0 Hz, *C*-3/*C*-5, SiC₆H₄F), 118.8 (*C*-4, imidazole), 126.9 (*C*-5, imidazole), 129.7 (d, ⁴*J*(CF) $=$ 3.6 Hz, *C*-1, SiC₆H₄F), 135.9 (d, ³J(CF) = 7.6 Hz, *C*-2/*C*-6, SiC₆H₄F), 144.2 (*C*-2, imidazole), 163.8 (d, ¹J(CF) = 249.3 Hz, *C*-4, SiC6H4F). 29Si NMR (CDCl3): *δ* 5.1. Anal. Calcd for C20H29- FN2OSi: C, 66.63; H, 8.11; N, 7.77. Found: C, 66.4; H, 8.1; N, 7.9.

Pharmacological Studies. Radioligand binding studies were performed according to the methods outlined in the literature.^{21,22,26} Briefly, [³H]NMS (78-85 Ci mmol⁻¹; Amersham International, Bucks, England) binding to membranes of CHO-K1 cells stably transfected with human M_1-M_5 receptors was measured in a buffer containing 20 mM HEPES (pH 7.4) enriched with 100 mM NaCl and 10 mM $MgCl₂$. Final membrane protein concentrations were (μ g ml⁻¹) M₁, 2; M₂, 6; M_3 , 2; M_4 , 2; and M_5 , 5. The incubation of tracer (0.2 nM) and different concentrations of competitors (**1b**, **4a**, **4b**, **5a**, and **5b**; dissolved as hydrochlorides) was 2 h at 25 °C and terminated by filtration over Whatman GF/B filters presoaked in 0.5% polyethylenimine $(1-2 h)$ using a Brandel cell harvester. Nonspecific binding was measured in the presence of 1 μ M atropine. Previously estimated [³H]NMS K_D values, obtained in saturation experiments, were $0.19 \ (M_1)$, $0.33 \ (M_2)$, 0.17 (M₃), 0.10 (M₄), and 0.48 nM (M₅).

Data of the binding experiments were analyzed by a nonlinear, iterative curve-fitting procedure (GraphPAD Software, San Diego, CA). *K*ⁱ values of compounds **1b**, **4a**, **4b**, **5a**, and $5b$ were calculated from IC_{50} values obtained from competition curves using the Cheng-Prusoff equation.²⁷ All data are presented as arithmetic means \pm SD of at least three experiments performed in duplicate. Differences between mean values were tested for statistical significance by Student's *t* test; *^P* < 0.05 was accepted as being significant.

Acknowledgment. We thank the Fonds der Chemischen Industrie (Germany) for financial support.

OM020346D

⁽²⁶⁾ Waelbroeck, M.; Lazareno, S.; Pfaff, O.; Friebe, T.; Tastenoy, M.; Mutschler, E.; Lambrecht, G. *Br. J. Pharmacol.* **¹⁹⁹⁶**, *¹¹⁹*, 1319- 1330.

⁽²⁷⁾ Cheng, Y.; Prusoff, W. H. *Biochem. Pharmacol.* **¹⁹⁷³**, *²²*, 3099- 3108.