Downloaded by CARLI CONSORTIUM on June 29, 2009
Published on August 30, 2002 on http://pubs.acs.org | doi: 10.1021/om020440u

ORGANOMETALLICS

Volume 21, Number 20, September 30, 2002

© Copyright 2002
American Chemical Society

Communications

The Lanthanide Ziegler—Natta Model:
Aluminum-Mediated Chain Transfer

Michael G. Klimpel, Jorg Eppinger, Peter Sirsch, Wolfgang Scherer, and
Reiner Anwander*

Anorganisch-chemisches Institut, Technische Universitat Munchen,
Lichtenbergstrasse 4, D-85747 Munchen, Germany

Received June 3, 2002

Summary: C,-symmetric tetraalkylaluminate complexes
rac-[Me;Si(2-Me-CgH5s)2]Y (u-R)2AIR2 and terminal alkyl
complexes rac-[Me;Si(2-Me-CgHs)2]YR(THF) (R = Me,
Et, iBu) are quantitatively formed via a special silyl-
amideelimination reaction. The “reversibility” of tetraalkyl-
aluminate coordination gives access to the first mixed-
alkyl lanthanidocene complexes, which can be discussed
as models for polymer chain transfer in organoalumi-
num-dependent Ziegler—Natta catalysts.

Lanthanidocene alkyl complexes are excellent models
for clarifying the active sites of Ziegler—Natta catalysts
via emulation of the major initiation, propagation, and
termination steps.! In the course of these studies key
features such as olefin coordination,? olefin insertion
(propagation),®4 8-hydrogen elimination,®* and S-alkyl
elimination® could be spectroscopically and structurally
proven. Group 4 metallocene complexes are known to
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be efficiently activated for olefin polymerization by
alkylalumoxanes,® in particular methylalumoxane (MAO),
to form base-free cationic complexes of the general
formula [CpoM—R]* (R = alkyl, M = Ti, Zr, Hf).” The
commercially employed MAO cocatalyst contains a
considerable amount of free and coordinated tri-
methylaluminum, AlMe3 (up to 15 wt %),8 the presence
of which was ascribed to a deactivating and chain-
transferring action.”® Recently, Bochmann et al. were
able to spectroscopically identify cationic group 4 tetra-
methylaluminate complexes of the type [{Me;Si-
(CoHg)2} Zr(u-Me),AlMe,][B(CeFs)4] as dormant species
(“resting states™).10

We report the synthesis of indenyl-derived ansa-
lanthanidocene alkylaluminate complexes!! via a special
silylamide elimination reaction and the reversibility of
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a For rac-1 and rac-2 only one enantiomer is depicted.

the alkylaluminate coordination in the presence/absence
of coordinating donor molecules. The reversibility of this
process was exploited to synthesize mixed-alkyl alumi-
nate complexes as models for alkylaluminum-mediated
chain transfer processes.

The ansa-yttrocene silylamide complex [Me;Si(2-Me-
CoH5s)2]Y[N(SiHMe,),] (rac-1)!2 reacts with an excess of
trialkylaluminum reagent, AlIR3 (R = Me, Et, iBu), to
yield the corresponding tetraalkylaluminate complexes
rac-[Me;Si(2-Me-CgHs)2]Y (u-Me),AlMe; (2a), rac-[Me,-
Si(2-Me-CgHs),]Y (u-Et),AlEL, (2b), and rac-[Me,Si(2-
Me-CgH5s),]Y (u-iBu)2AliBu; (2c¢) in high yield and purity
(Scheme 1).13 This amide—alkyl transformation is driven
by the elimination of a thermodynamically favored
aluminum silylamide complex, { Me;Al[u-N(SiHMey),]} 2,14
and, according to NMR spectroscopy, does not underlie
any epimerization process.

Complexes 2 can easily be converted to terminal alkyl
derivatives rac-[Me,Si(2-Me-CgHs),]YR(THF) (3) by ad-
dition of >2 equiv of THF (Scheme 2).11¢13 |nterestingly,
this donor-induced aluminate cleavage is a reversible
process; i.e., treatment of the isolated complexes 3 with
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Table 1. 'H NMR Spectroscopic Shifts (ppm) of
Metal-Bonded Alkyl Moieties?

o(u- oft- ot

complex® CH3) Oo(u-CHy) CH3) CHy)
LY (u-Me),AlMe; (rac-2a) -1.32 —0.48
LY (u-Et),AlEt; (rac-2b) —1.02/-2.08 0.20
LY (u-iBu),AliBu; (rac-2c) —-1.39/-1.75 0.25
LYMe(THF) (rac-3a) —1.35
LYEt(THF) (rac-3b) -1.10
LYiBu(THF) (rac-3c) —1.06/—1.46
LY (u-Me)(u-Et)AlEL; (rac-4) —1.38 —0.98/—1.05/ 0.19

—2.10/-2.25

LY (u-Et)(u-Me)AlMe; (rac-5) —1.31 —1.36 —0.42
LY (u-Me)(u-iBu)AliBu, (rac-6) —1.36 —1.30/—1.88 0.18

a|n CgDg at 25 °C. P L = rac-[Me;Si(2-Me-CoHs)2].

2 equiv of AIR3 (R = Me, Et, iBu) re-forms the tetra-
alkylaluminate derivatives 2. According to this strategy
the first mixed-alkyl aluminate lanthanidocene com-
plexes rac-[Me;Si(2-Me-CgH5s)2]Y (u-Me)(u-Et)AlEL; (4),
rac-[Me;Si(2-Me-CgyHs),]Y (u-Et)(1-Me)AlMe; (5), and rac-
[Me;Si(2-Me-CgHs)2]Y (u-Me)(u-iBu)AliBu, (6) were ob-
tained.’® The methyltriethylaluminate complex 4 and
the ethyltrimethylaluminate derivative 5 could be iso-
lated in almost quantitative yield, while methyltriiso-
butylaluminate complex 6 formed in yields of only <10%
(NMR scale experiment!), reflecting the enhanced steric
bulk of the isobutyl group.

The 'H NMR spectroscopic characterization of the
various homo- and hetero-bridged alkylaluminate com-
plexes revealed some interesting features. The protons
of the bridging («) alkyl groups experience a consider-
able upfield shift of ca. 1 ppm compared to the terminal
(t) aluminum-bonded alkyl ligands (Table 1), most likely
due to the geometric proximity of the extended aromatic
ligand system. Additionally, no exchange between bridg-
ing and terminal alkyl ligands, which appear in the
correct integral ratios, is observed at ambient temper-
ature. Although the rigidity of a heterobridged bimetal-
lic arrangement has a beneficial effect for the assign-
ment of the various alkyl groups, this implies complex
signal patterns, particularly for the bridging ethyl and
isobutyl moieties.1®

X-ray structure analysis of the heterobridged complex
4% proved the absence of any bridging — terminal alkyl

(15) Complex signal patterns are caused by the overlap of 2Jy 4 and
3Ju,1 coupling and by the presence of diastereotopic bridging methylene
groups, as well as by the formation of various isomers due to hindered
rotation of the bridging higher alkyl moieties; “2LY (u-R)(u-R)AIR, =
LY[(u-R)AIR,(u-R)1.YL” equilibrial’ei can be excluded, as evidenced by
variable-temperature NMR studies in the range from +30 to —90 °C.
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Figure 1. PLATON drawing of the complex rac-[Me,Si-
(2-Me-CgHs),]Y (u-Me)(u-Et)AlEt, (4). Atoms are repre-
sented by atomic displacement ellipsoids at the 50% level.
Bond distances (A) and angles (deg) include the following:
Y—Al, 3.045(1); Y—C, 2.557(3), 2.561(3); Y—(Ind), 2.568(3)—
2.769(3) (average 2.668); Al—C,, 2.093(3), 2.094(3); Al-C;,
1.969(3), 1.995(4); Cg(1)—Y—Cg(2), 124.83(5); C(1)—Si—
C(11), 99.0(1); Y—C(23)—C(25), 177.4(3); C(24)—Y—C(23)—
Al, 7.20(9). Cg is the center of the five-membered ring.

group scrambling in the solid state (Figure 1). Moreover,
the C, symmetry of the ansa-bridged bis(indenyl) ligand

(16) Compound 4 (Ca9HaAlSiY) crystallizes from toluene in the
triclinic space group Phca with a = 16.2681(1) A, b = 13.8952(1) A, ¢
=24.5341(2) A, V = 5545.90(7) A3, and Deaica = 1.2756(1) g cm~2 for Z
= 8. Data were collected at 193 K on a Nonius Kappa-CCD system.
Least-squares refinement of the model based on 3537 reflections (I >
20(1)) converged to a final R1 = 3.39% (WR2 = 7.99%). The disorder of
the bridging ethyl and methyl groups and one terminal ethyl group is
desribed in the Supporting Information. For comparison, the Y—C,
bond distances in cyclopentadienyl-derived aluminate complexes are
2.58 A in (CsHs).Y (u-Me),AlMe,te and 2.66 A in [(CsMes),Y (u-Me),-
AlMez].llg
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remains during the various manipulations at the metal
center, as indicated by the NMR spectroscopic investi-
gations. As a consequence of the optional attack of AIEt;
on the yttrium center in 3a from two different sides,
the ethyl ligand occupies the bridging positions in a 2:1
ratio, causing disorder in the solid-state structure (not
shown in Figure 1). The structural parameters of
complex 4 lie within the expected range.1®

Donor (THF)-induced cleavage of the heterobridged
alkylaluminate complexes, performed on an NMR pre-
parative scale by adding dg-THF, revealed the intrinsic
coordination capability of the differently sized alkyl
moieties. Not surprisingly, the methyl-/ethyl-bridged
derivatives 4 and 5 each gave an approximate 1:1
mixture of the terminal methyl (3a) and ethyl complexes
(3b), respectively. However, the preferred formation of
complex 3a compared to 3c (ca. 6:1 ratio) from 6
suggests that the bulkier alkyl group, which mimics a
polymer chain, is preferentially transferred to the
aluminum alkyl. Our studies reinforce that high con-
centrations of trimethylaluminum considerably affect
both olefin precoordination and polymerization. Fur-
thermore, due to their markedly decreased coordination
capability, organoaluminum compounds carrying bulkier,
branched alkyl groups comparatively increase poly-
merization activity.
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