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Summary: Diastereomeric disiloxane-1,3-diols, 1, with
two asymmetric silicon centers and intramolecular
coordination arms were synthesized and separated manu-
ally. They show distinguishing structural features such
as a linear or bent Si-O-Si skeleton, a short Si-O bond
length, and strong intramolecular hydrogen bonding. A
trace of water induced the diastreomeric isomerization
of 1 under noncatalytic conditions, while the anhydrous
disiloxane-1,3-diols were stereochemically stable.

Disiloxane-1,3-diols are known to be a primary source
for the support of metal complexes within metallasilox-
anes and heterosiloxanes.1 Among the various substi-
tuted disiloxane-1,3-diols, there are only a few that have
asymmetric silicon centers2 that play a role in the
preparation of stereoregular polysiloxanes or that have
intramolecular coordinating arms.3 Disiloxane-1,3-diols
with an intramolecular donor function can give polysi-
loxanes with variable physical properties depending on
the temperature due to the fact that the degree of
coordination of the intramolecular donor atom with the
silicon atom is temperature-dependent.4 This prompted

us to investigate diastereomeric disiloxane-1,3-diols
having two asymmetric silicon centers and an intramo-
lecular neutral donor atom. Herein, we describe the
synthesis and characterization of diastereomeric 1,3-
dihydroxy-1,3-bis[(2-dimethylaminomethyl)phenyl]-1,3-
divinyldisiloxanes, 1, which show novel water-induced
diastereomeric isomerization.

The reaction of o-dimethylaminomethylphenyllithium
with vinyltrichlorosilane in diethyl ether afforded (2-
dimethylaminomethyl)phenylvinyldichlorosilane5 in 70%
yield. A controlled hydrolysis of the dichlorosilane in the
presence of Et3N, as an HCl acceptor, gave diastereo-
meric disiloxane-1,3-diols, 1, as colorless crystals in 78%
yield (eq 1). An introduction of the intramolecular donor
atom provides a convenient way to synthesize disilox-
ane-1,3-diols.6
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Fortunately, we were able to separate diastereomeric
isomers, 1, with forceps and a magnifier by virtue of
their different crystal shapes: rhombic columns (meso-
1) as the major and hexagonal plates (rac-1) as the
minor isomer (6:4). The X-ray crystallographic analyses
of meso-17 and rac-18 revealed their unique structures,
as shown in Figures 1 and 2.

Surprisingly, meso-1 has a linear Si-O-Si skeleton,
while the Si-O-Si angle of rac-1 is 161.50(18)°. Al-
though it has been reported that a few disiloxanes such
as O(SiR3)2 (R ) vinyl, phenyl, benzyl)9 and O{Si[OH]-
[C6H4CH2N(CH3)2]}2‚2HCl3 have a linear Si-O-Si skel-
eton, this is the first linear neutral disiloxane-1,3-diol
in sharp contrast to O(SiR2OH)2 (R ) Me,10 Et,11 iPr,12

phenyl,13 whose Si-O-Si angles are in the range 141-
163°). The Si(1)-O(2) bond length of 1.5998(8) Å of

meso-1 is shorter than the Si-O distances in other
disiloxanes: 1.6178(7) Å of rac-1, 1.614 Å of O[Si-
(vinyl)3]2,9 1.616 Å of O[Si(phenyl)3]2,9 1.615 Å of O{Si-
[OH][C6H4CH2N(CH3)2]}2‚2HCl,3 and the normal Si-O
bond length of disiloxane-1,3-diols (1.61-1.64 Å).10-14

Noteworthy in the structures of meso-1 and rac-1 is the
strong intramolecular hydrogen bonding between the
hydroxy group and nitrogen atom, in contrast to the
intermolecular hydrogen bonding of known disiloxane-
1,3-diols.10-14 In meso-1, the O(1)-H-N(1) angle is
170(5)°, the N(1)- -H distance is 1.86(4) Å, and the
N(1)- -O(1) distance is 2.619(3) Å, which is within the
normal distance for hydrogen bonding (2.62-2.93 Å).15

In rac-1, the O(1)-H-N(1) angle is 166(3)°, the N(1)- -
H distance is 1.94(3) Å, and the N(1)- -O(1) distance is
2.706(3) Å. The Si- -N distance of meso-1 and rac-1 is
3.451(2) and 3.416(2) Å, respectively, reflecting very
weak (if any) coordination of nitrogen to silicon com-
pared with the sum of van der Waals radii, 3.650 Å.

In the 1H NMR spectra of meso-1 and rac-1, the broad
proton resonances due to the hydroxy group proton are
observed at 9.90 and 9.98 ppm, respectively, indicating
very strong intramolecular hydrogen bonding in solu-
tion.16 In contrast, the OH resonance for silanols that
have intermolecular hydrogen bonding appears at 2.66
ppm [O(Si(ferrocenyl)2OH)2],17 5.67 ppm [Cp*Si(OH)3],18

and 4.30-5.30 ppm (aminosilanetriols).19

Interestingly, we observed that the diastereomeric
isomerization of meso-1 in CDCl3 or toluene-d8 solvents
that had not been dried started within 10 min to result
in the 60:40 equilibrium mixture of meso-1 and rac-1
within 1 day, as was the case for isomerization of rac-1
to meso-1. On the other hand, in dry CDCl3 or toluene-
d8, meso-1 or rac-1 was stereochemically rigid and did
not isomerize (Scheme 1, Figure 3).

These phenomena suggest that a trace of water
induces the diastereomeric isomerization of 1 under
neutral conditions. In fact, when a trace amount of
water was added to the dried solvents, the diastereo-
meric isomerization was observed. To prove the mech-
anism of the isomerization, an isotope experiment using
H2

18O was carried out. The isomerization of rac-1 in the
presence of H2

18O occurred to give partly 18O labeled
disiloxane-1,3-diol identified by FAB-MS. This indicates
that rac-1 isomerization is induced by nucleophilic
attack by water at silicon.

These results may explain how the stereochemical
rigidity of 1 is attributed to the fact that it is a
tetracoordinate silicon compound that has intramolecu-
lar hydrogen bonding between OH and N, while stere-
ochemical nonrigidity is one of the intriguing properties
of hypervalent silicon species.4,20 On the other hand, the
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Figure 1. Structural drawing of meso-1.

Figure 2. Structural drawing of rac-1.
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mechanism of isomerization seems not to be simple: The
rate of diastereomeric isomerization is decreased, as the
amount of water added is increased,21 and water is a
very weak nucleophile and, furthermore, the hydroxy
group is a poor leaving group in the absence of a
catalyst. Cypryk and Apeloig found in a computational
study22a that hydrogen bonding should play an impor-
tant role in the hydrolysis of siloxanols.22 In relation to
their report, the intramolecular hydrogen bonding
between OH and N might facilitate nucleophilic attack
by water in our system, but an excess of water might
interfere in the intramolecular OH-N hydrogen bond-
ing, resulting in retardation of the isomerization rate.

The strong intramolecular hydrogen bonding between
nitrogen and the hydroxy group in the solution as de-
scribed above permits 1 to be stable stereochemically,
and the addition of water induces diasteromeric isomer-
ization. The water-controlled isomerization of disilox-
ane-1,3-diol, 1, might provide another clue for investi-
gations of the mechanism of stereoisomerization for or-
ganosilicon compounds and hydrolysis of siloxanols.
Efforts are currently underway to elucidate the function
of an intramolecular donor atom in silanols at variable
temperatures.
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Figure 3. Diastereomeric isomerization of 1 (1H NMR,
CDCl3, 500 MHz, 293 K).

Scheme 1
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