Effect (or Lack Thereof) of Ancillary Groups on the **Preparation and Spectroscopic Properties of Ruthenium** Silvl Complexes Containing the Cp(PR₃)₂Ru Moiety

Samuel T. N. Freeman, Lori L. Lofton, and Frederick R. Lemke*

Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701-2979

Received May 28, 2002

The preparation and characterization of $Cp(PR_3)_2RuSiX_3$ [PR₃ = PPhMe₂, SiX₃ = SiCl₃ (1), SiHCl₂ (2), SiH₂Cl (3), SiHMeCl (4), SiH₃ (7), SiMeH₂ (8), SiMe₃ (9); $PR_3 = PPh_2Me_3$, $SiX_3 = SiCl_3$ (10), $SiHCl_2$ (5), SiH_2Cl (6), $SiMeCl_2$ (11)] are described. Ruthenium silyl complexes 1-6 are prepared by the reaction of the ruthenium hydrides, $Cp(PR_3)_2RuH$, with the corresponding chlorosilane, ClSiX₃; the ruthenium dihydrides [Cp(PR₃)₂RuH₂]Cl were obtained as coproducts. Increasing the steric demand of the phosphine decreased the reactivity of the corresponding ruthenium hydride toward chlorosilanes. Silyl complexes 1-4undergo chloride/hydride exchange with LiAlH₄ to give the corresponding ruthenium hydrosilyl complexes $Cp(PPhMe_2)_2RuSiHX_2$ [SiHX₂ = SiH₃ (7), SiMeH₂ (8)]. Methylation of 1 with AlMe₃ produces Cp(PPhMe₂)₂RuSiMe₃ (9). Complexes 10 and 11 were prepared by the reaction of $Cp(PPh_2Me)_2RuMe$ with neat hydrosilanes $HSiX_3$ ($SiX_3 = SiCl_3$, $SiMeCl_2$) at 100 °C. The effects of the silicon substituents on the spectroscopic properties of 1–11 and the related Cp(PMe₃)₂RuSiX₃ complexes were examined as a function of Tolman's electronic parameter (χ_i) for the substituents on silicon. The NMR resonance PR₃ δ (³¹P) and the NMR coupling constants, ${}^{1}J_{\text{SiH}}$ and ${}^{2}J_{\text{SiP}}$, exhibit a linear relationship with $\sum \chi_{I}(\text{SiX}_{3})$. On the other hand, the silyl groups differentiated into three classes, dichlorosilyl, monochlorosilyl, and "non-chlorosilyl", when the NMR resonances SiX₃ δ (²⁹Si), SiH δ (¹H), and SiMe δ (¹³C) were examined as a function of Σ_{χ} (SiX₃). This "chloro effect" was attributed to Ru–Si silylene character from d(Ru) $-\sigma^*$ (Si–Cl) π -back-bonding interactions. Surprisingly, changing the phosphine attached to ruthenium had no effect on the spectroscopic properties of the silyl group.

Introduction

The bonding of silicon to a transition metal center is an area of considerable interest and attention.¹⁻⁴ Metal silicon complexes play key roles in important catalytic processes such as hydrosilylation⁵⁻⁸ and dehydrogenative silylation.9-11 Ancillary groups on silicon exhibit a substantial influence on the product distribution in these processes. $RuCl_2(PPh_3)_3$ efficiently catalyzed the

- (b) Marchnec, B., Ed. Comprehensive rianaboux on ryanoshiftansa, Pergamon Press: New York, 1992.
 (6) Ojima, I.; Li, Z.; Zhu, J. In The Chemistry of Organic Silicon Compounds; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons: New York, 1998; Vol. 2, pp 1687–1792.
 (7) Harrod, J. F. In Encyclopedia of Inorganic Chemistry; King, R.
 P. Ed.; Wiley: Chickoster, 1994; Vol. 3, pp 1486-1496.
- (1) Harroa, J. F. III Encyclopedia of Integrate Control of the second state o

no hydrosilylation products were observed when the hydrosilane was changed to HSiEt₃.¹²

hydrosilylation of phenylacetylene with HSiMeCl₂, but

We have been studying the effects of silicon and ruthenium ancillary groups on the formation and properties of ruthenium silicon complexes. Ruthenium alkyl complexes $Cp(PR_3)_2RuR'$ (R = Ph, Me; R' = Me, CH₂SiMe₃) react with various hydrosilanes (HSiX₃) to form ruthenium silyl (Cp(PR₃)₂RuSiX₃) and ruthenium hydridobis(silyl) (Cp(PR₃)RuH(SiX₃)₂) complexes.^{13,14} The formation of ruthenium silvl complexes was favored by electron-deficient hydrosilanes; PMe₃ coordinated to ruthenium center also favored the formation of ruthenium silyl complexes. Silicon ancillary groups effected the relative reactivity of hydrosilanes toward Cp(PMe₃)₂- $RuCH_2SiMe_3$, following the order $HSiCl_3 > HSiMeCl_2$ > HSiMe₂Cl >> HSiEt₃. Ruthenium silyl complexes Cp-(PMe₃)₂RuSiX₃ were also prepared from the reaction of the ruthenium hydride complex Cp(PMe₃)₂RuH with a variety of chlorosilanes.^{15,16} Electron-deficient chlorosi-

^{*} To whom correspondence should be addressed. E-mail: flemke1@ ohiou.edu.

⁽¹⁾ Corey, J. Y.; Braddock-Wilking, J. Chem. Rev. 1999, 99, 175-292.

⁽²⁾ Sharma, H. K.; Pannell, K. H. Chem. Rev. 1995, 95, 1351-1374. (3) Tilley, T. D. In The Silicon-Heteroatom Bond; Patai, S., Rap-

⁽⁴⁾ Tilley, T. D. In *The Silicon-Heteroatom Bond*, Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: New York, 1991; pp 309-364.

⁽⁵⁾ Marciniec, B., Ed. Comprehensive Handbook on Hydrosilylation;

⁽⁹⁾ Ezbiansky, K.; Djurovich, P. I.; LaForest, M.; Sinning, D. J.; Zayes, R.; Berry, D. H. *Organometallics* **1998**, *17*, 1455–1457.

⁽¹⁰⁾ Christ, M. L.; Sabo-Etienne, S.; Chaudret, B. Organometallics 1995, 14, 1082–1084.

⁽¹¹⁾ Delpech, F.; Mansas, J.; Leuser, H.; Sabo-Etienne, S.; Chaudret, B. Organometallics 2000, 19, 5750-5757.

⁽¹²⁾ Yardy, N. M.; Lemke, F. R. Main Group Chem. 2000, 3, 143-147.

⁽¹³⁾ Lemke, F. R.; Simons, R. S.; Youngs, W. J. Organometallics **1996**. 15. 216-221.

⁽¹⁴⁾ Lemke, F. R.; Chaitheerapapkul, C. Polyhedron 1996, 15, 2559-2565

⁽¹⁵⁾ Lemke, F. R. J. Am. Chem. Soc. 1994, 116, 11183-11184.

lanes (SiCl₄, HSiCl₃) were 6 orders of magnitude more reactive toward the ruthenium hydride than more electron-rich chlorosilanes (Me₂SiCl₂). Furthermore, significant silicon ancillary group effects were observed in the spectroscopic properties of these ruthenium silyl complexes.

Herein, we report our continued studies on ancillary group effects in ruthenium silyl complexes Cp(PMe₃)₂-RuSiX₃. The effect of different phosphines (PMe₂Ph, PMePh₂, PPh₃) on the reaction of ruthenium hydrides with chlorosilanes and the properties of ruthenium silyl complexes is described. Surprisingly, the various phosphines exhibit no effect on the spectroscopic properties of the corresponding silyl complexes Cp(PR₃)₂RuSiX₃.

Results

Synthesis of Ruthenium Silyl Complexes. The ruthenium silyl complexes used in this study were prepared by several different methods. One method employed the direct reaction of $Cp(PR_3)_2RuH$ ($PR_3 = PPh_2Me$, PPhMe₂, PPh₃) with the corresponding chlorosilane X₃SiCl to produce a nearly equimolar mixture of $Cp(PR_3)_2RuSiX_3$ and $[Cp(PR_3)_2RuH_2]Cl$ (eq 1). The

 $PR_3 = PPhMe_2; \ SiX_3 = SiCl_3$ (1), SiHCl_2 (2), SiH_2Cl (3), SiMeHCl (4) $PR_3 = PPh_2Me; \ SiX_3 = SiHCl_2$ (5), SiH_2Cl (6)

preparation of a series of ruthenium silyl complexes containing the Cp(PMe₃)₂Ru moiety had been reported using a similar method.^{15,16} Cp(PPhMe₂)₂RuSiX₃ [SiX₃ = SiCl₃ (1), SiHCl₂ (2), SiH₂Cl (3), SiHMeCl (4)] were obtained from the addition of SiCl₄, SiHCl₃, SiH₂Cl₂, and SiHMeCl₂ to a yellow solution of Cp(PPhMe₂)₂-RuH in CH₂Cl₂; [Cp(PPhMe₂)₂RuH₂]Cl was obtained as a byproduct. No reaction was observed between Cp(PPhMe₂)₂RuH and SiMeCl₃, SiMe₂Cl₂, or SiPhCl₃. Under similar conditions, Cp(PPh₂Me)₂RuH was observed to react only with SiHCl₃ and SiH₂Cl₂ to produce Cp(PPh₂Me)₂RuSiX₃ [SiX₃ = SiHCl₂ (5), SiH₂Cl (6)] and [Cp(PPh₃Me)₂RuH₂]Cl. No reaction was observed between Cp(PPh₃)₂RuH and any of the other chlorosilanes listed above.

In the reaction of $Cp(PR_3)_2RuH$ ($PR_3 = PPhMe_2$, PPh_2Me) with chlorosilanes, the ruthenium dihydrides $[Cp(PR_3)_2RuH_2]Cl$ were sometimes obtained in yields of >100% based on the stoichiometry described in eq 1. These unusual yields of $[Cp(PR_3)_2RuH_2]Cl$ were due to HCl, from the hydrolysis of the chlorosilanes with trace amounts of water, which readily protonated the ruthenium hydrides $Cp(PR_3)_2RuH$. Excessive ruthenium dihydride formation was also reported in the reaction of $Cp(PMe_3)_2RuH$ with chlorosilanes; this problem was overcome by the addition of NEt₃ to the reaction mixture.¹⁶ The addition of NEt₃ to the reaction mixture of $Cp(PR_3)_2RuH$ (PR₃ = PPhMe₂, PPh₂Me) with chlorosilanes led to a mixture of ruthenium silyl and other unidentified ruthenium-containing species. When other bases were surveyed (pyridine, LiN(SiMe₃)₂, NHPh₂, piperidine, pyrazine, 1,8-bis(dimethylamino)naphthalene, 1-methylimidazole, 2-methylimidazole, 4-methylimidazole, imidazole, pyrazole, 3,5-dimethylpyrazole, 4-(dimethylamino)pyridine), either a mixture of ruthenium complexes was obtained or the base had no effect on the overall reaction. An exception was DBU (1.8-diazabicyclo[5,4,0]undec-7-ene). The reaction of Cp(PPhMe₂)₂RuH with chlorosilanes in the presence of DBU led to the formation of ruthenium silyl complexes 1, 2, and 4 in high yields (>80%) with the added advantage that all of the ruthenium moiety ends up in the silvl complex (eq 2). Of the bases listed above, none were found to be effective and noninterfering in the reaction of Cp(PPh2Me)2RuH with chlorosilanes.

 $SiX_3 = SiCl_3(1), SiHCl_2(2), SiMeHCl(4)$

Other Cp(PPhMe₂)₂RuSiX₃ complexes were prepared by derivatization of complexes **1**–**4**. The ruthenium hydrosilyl complexes Cp(PPhMe₂)₂RuSiX₂H [SiX₂H = SiH₃ (**7**), SiMeH₂ (**8**)] were prepared by the chloride/ hydride exchange between chlorosilyl complexes **1**–**4** and LiAlH₄ in Et₂O (eq 3). The trimethylsilyl derivative Cp(PPhMe₂)₂RuSiMe₃ (**9**) was obtained from the reaction of **1** with AlMe₃ in toluene at room temperature (eq 4). The reaction of complex **4** with AlMe₃ led to a complicated mixture of methylsilyl ruthenium complexes. By these methods, complexes **7**–**9** were obtained in good yields (75–85%) as yellow, air-sensitive solids.

Due to difficulties in the isolation of $Cp(PPh_2Me)_2$ -RuSiX₃ complexes prepared according to eq 1 (vide infra), additional $Cp(PPh_2Me)_2RuSiX_3$ complexes were obtained by the reaction of a hydrosilane with a ruthenium alkyl complex.¹⁴ $Cp(PPh_2Me)_2RuSiX_3$ [SiX₃ = SiCl₃ (**10**), SiMeCl₂ (**11**)] were obtained from the reaction of $Cp(PPh_2Me)_2RuMe$, prepared by reacting $Cp(PPh_2Me)_2RuCl$ with MeMgCl in THF, with the corresponding neat hydrosilane HSiX₃ at 100 °C (eq 5). The reaction of $Cp(PPh_2Me)_2RuMe$ with HSiMe₂Cl produced a complex mixture of products, with Cp- $(PPh_2Me)_2RuH$, $[Cp(PPh_2Me)_2RuH_2]^+$, and $Cp(PPh_2Me)_2$ -RuCl being the most prevalent.

⁽¹⁶⁾ Lemke, F. R.; Galat, K. J.; Youngs, W. J. Organometallics 1999, 18, 1419–1429.

Ruthenium Dihydride to Ruthenium Chloride Conversion. The isolation and purification of the Cp(PPh₂Me)₂RuSiX₃ complexes prepared according to eq 1 proved to be difficult due to the facile conversion of [Cp(PPh₂Me)₂RuH₂]Cl to Cp(PPh₂Me)₂RuCl. Silyl complexes 5 and 6 were always obtained contaminated with the ruthenium chloride Cp(PPh₂Me)₂RuCl. In a NMR tube, the reaction of Cp(PPh₂Me)₂RuH with HSiCl₃ in CD₂Cl₂ formed a nearly equimolar mixture of silyl complex 5 and the ruthenium dihydride [Cp(PPh₂Me)₂RuH₂]Cl. However, as this reaction mixture was monitored by ¹H NMR, the Cp (5.12 ppm) and RuH (-8.43 ppm) resonances of [Cp(PPh₂Me)₂RuH₂]Cl disappeared with the concomitant appearance of the Cp (4.31 ppm) resonance of Cp(PPh₂Me)₂RuCl. Also, during this experiment, the solution changed from ruthenium silyl yellow (the ruthenium dihydride is colorless in solution) to ruthenium chloride orange. Similar results were observed for the reaction of Cp(PPh₂Me)₂RuH with H₂SiCl₂.

As described in the previous section, removal of [Cp(PPh₂Me)₂RuH₂]Cl by the addition of a base to the Cp(PPh₂Me)₂RuH/chlorosilane reaction mixture was not successful. Stabilization of the [Cp(PPh₂Me)₂RuH₂]⁺ cation was attempted by metathesis of the chloride with a noncoordinating anion. A variety of sodium salts (NaBF₄, NaBPh₄, NaBAr $^{f}_{4}$ {Ar f = 3,5-bis(trifluoromethyl)phenyl}) were added to the Cp(PPh₂Me)₂RuH/chlorosilane reaction mixture in an attempt to remove the chloride as NaCl. However, this approach was not successful. Finally, a low-yield (<10%) fractional crystallization method was developed (see Experimental Section) for ruthenium silyl 5. Since the ruthenium silyl and ruthenium chloride complexes have very similar solubility properties, attempts to increase the yield of 5 resulted in significant contamination with ruthenium chloride. Unfortunately, this fractional crystallization method was not applicable for the isolation of 6

conversion of [Cp(PPhMe₂)₂RuH₂]Cl to Cp(PPhMe₂)₂RuCl was also observed, but at a slower rate relative to [Cp(PPh₂Me)₂RuH₂]Cl. Over the course of an hour, a colorless solution of [Cp(PPhMe₂)₂RuH₂]-Cl (Cp 5.21 ppm, RuH –9.13 ppm) in CD₂Cl₂ converted to the dark orange of Cp(PPhMe₂)₂RuCl (Cp 4.74 ppm), as determined by ¹H NMR spectroscopy. To verify that this conversion was not due to the chlorinated solvent, a similar experiment was run in THF-d₈. Over the course of \sim 24 h, a white slurry of [Cp(PPhMe₂)₂RuH₂]-Cl became a homogeneous, dark orange solution of Cp(PPhMe₂)₂RuCl, as determined by ¹H NMR spectroscopy. The isolation of ruthenium silyl complexes 1-4from the reaction of Cp(PPhMe₂)₂RuH with chlorosilanes (eq 1) was complicated by the formation of Cp(PPhMe₂)₂RuCl. Working quickly, [Cp(PPhMe₂)₂-RuH₂|Cl could be separated from the ruthenium silyl complexes 1–4; however, Cp(PPhMe₂)₂RuCl contamination was common. The addition of DBU (vide supra) to the reaction of Cp(PPhMe₂)₂RuH with chlorosilanes (eq

2) avoided this ruthenium dihydride to ruthenium chloride conversion problem.

The related $[Cp(PMe_3)_2RuH_2]Cl$ system exhibited little tendency to convert to the ruthenium chloride $Cp(PMe_3)_2RuCl$. In CD_2Cl_2 , only a small amount (<5%) of $[Cp(PMe_3)_2RuH_2]Cl$ converted to $Cp(PMe_3)_2RuCl$ after a week at room temperature, as determined by ¹H NMR spectroscopy. However, at 100 °C overnight, a white slurry of $[Cp(PMe_3)_2RuH_2]Cl$ in C_6D_6 was converted to a homogeneous orange solution of $Cp(PMe_3)_2RuCl$ as determined by ¹H NMR spectroscopy.

A mechanism for the ruthenium dihydride to ruthenium chloride conversion is proposed in Scheme 1. The ruthenium dihydrogen complex, in tautomeric equilibrium with the ruthenium dihydride complex, undergoes chloride-assisted loss of dihydrogen to form the ruthenium chloride complex. Wilczewski reported a similar conversion of [Cp(PPh₃)₂RuH₂][sulfonate] to Cp(PPh₃)₂-RuX (X = Br, Cl) when reacted with HX.¹⁷ For the ruthenium dihydrides $[Cp(PR_3)_2RuH_2]Cl (PR_3 = PPh_2-$ Me, PPhMe₂), this tautomeric equilibrium lies toward the left since no evidence for the ruthenium dihydrogen complexes is observed by ¹H NMR spectroscopy. However, enough of the ruthenium dihydrogen complex is present for the facile conversion of the ruthenium dihydrides to the ruthenium chlorides. In [CpL₂RuH₂] systems, the dihydrogen tautomer was favored by π -acid ligands and less basic phosphines.¹⁸⁻²⁰ Our experimental results were consistent with this ligand dependence. Replacing methyl phosphines with phenyl phosphines favored the formation of the dihydrogen tautomer and was consistent with the relative reactivity described in Scheme 1.

Discussion

A. Effect of Ancillary Groups on the Preparation of Ruthenium Silyl Complexes. This study completes an investigation into the effect of ruthenium and silicon ancillary groups on the reaction of ruthenium hydrides with chlorosilanes (eq 6). A previous study observed that the relative reactivity of various chlorosilanes with Cp(PMe₃)₂RuH covered *6 orders of magnitude*, with HSiCl₃ being the most reactive and Me₂SiCl₂ the least reactive.¹⁵ This large substituent effect was attributed

⁽¹⁷⁾ Wilczewski, T. J. Organomet. Chem. 1989, 361, 219–229.
(18) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112,

⁽¹⁸⁾ Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. **1990**, 112, 5166–5175.

⁽¹⁹⁾ Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875–883.
(20) Jia, G.; Lough, A. J.; Morris, R. H. Organometallics 1992, 11, 161–171.

to the electronic nature of the chlorosilane, with the electron-deficient chlorosilanes (SiCl₄, HSiCl₃) exhibiting the greatest reactivity toward Cp(PMe₃)₂RuH. Thus, the reaction of various chlorosilanes with a particular ruthenium hydride complex was dictated by the electronic nature of the substituents on silicon.

Changing the phosphines on ruthenium also had a pronounced effect on the reactivity of ruthenium hydrides with chlorosilanes (eq 6). A decrease in ruthenium hydride reactivity was observed as PMe₃ was replaced with phenyl-containing phosphines. The number of chlorosilanes that reacted with a ruthenium hydride decreased with increasing phenyl substitution on phosphorus, to the point that no reaction was observed between Cp(PPh₃)₂RuH and any chlorosilane. This "phosphine effect" could be attributed to either electronics, PMe₃ being replaced with less basic phenyl phosphines, or sterics, small PMe₃ being replaced with bulkier phenyl phosphines. On the basis of the spectroscopic trends described in the next section, the "phosphine effect" can be attributed to the change in sterics around ruthenium and not a change in the electronics of the ruthenium hydride.

B. Spectroscopic Trends. The previously reported series of ruthenium silyl complexes $Cp(PMe_3)_2RuSiX_3$ (SiX₃ = SiCl₃, SiHCl₂, SiH₂Cl, SiH₃, SiMeCl₂, SiMeHCl, SiMe₂Cl, SiMeH₂, SiMe₂H, SiMe₃) were evaluated to determine the effect silicon substituents had on the spectroscopic properties of these complexes.¹⁶ Complexes 1–11, prepared in this study, offer an opportunity to evaluate how changing the phosphine ancillary groups on ruthenium influences the spectroscopic properties of Cp(PR₃)₂RuSiX₃ complexes.

The spectroscopic properties of the various ruthenium silyl complexes were evaluated relative to the electronic nature (electron-withdrawing ability) of the silicon substituents. Tolman's electronic parameter, χ_h^{21} was used as a gauge of the electron-withdrawing ability of the substituents on silicon. The summation of Tolman's electronic parameters for the three substituents on silicon, $\Sigma \chi_I(SiX_3)$, represented the combined electron-withdrawing ability of the substituents on silicon. Larger $\Sigma \chi_I(SiX_3)$ values corresponded with more electron-withdrawing substituents on silicon.²² $\Sigma \chi_I(SiX_3)$ values for the various silyl groups in complexes **1**–**11** are listed in Table 1.

B.1. NMR Chemical Shifts. The substituent effects on the chemical shifts of the NMR active nuclei in the various ruthenium silvl complexes, Cp(PR₃)₂RuSiX₃ $(PR_3 = PMe_3, PMe_2Ph, PMePh_2; X = Cl, H, Me)$, were grouped into three classes: silicon, nuclei attached to silicon, and nuclei two or more bonds from silicon. Plots of SiX₃ δ ⁽²⁹Si), SiH δ ⁽¹H), and SiMe δ ⁽¹³C) as a function of $\sum \chi_i$ (SiX₃) for the various Cp(PR₃)₂RuSiX₃ complexes are shown in Figures 1-3. One feature of these plots was that the ruthenium silvl complexes are grouped into three silvl classes: a dichlorosilvl, $SiXCl_2$ (X = Cl, H, Me), class; a monochlorosilyl, SiX_2Cl (X = H and/or Me), class; and a "non-chlorosilyl", SiX_3 (X = H and/or Me), class.²⁴ Several trends were observed from the plots in Figures 1–3. In Figure 1, the three silvl group classes exhibited an inverse linear relationship with respect to $\Sigma \chi_i$ (SiX₃) and were nearly parallel to each other. Within each silvl class, an upfield shift in δ ⁽²⁹Si) was observed when a Me group was replaced with H (increasing $\sum \chi_i(SiX_3)$). In Figures 2 and 3, the SiH and SiMe chemical shifts were arranged in a triangular pattern; these chemical shifts also shifted upfield upon replacement of a Me group with H.

The most striking feature of the plots in Figures 1–3 was that SiX₃ δ ⁽²⁹Si), SiH δ ⁽¹H), and SiMe δ ⁽¹³C) for the various silyl groups were independent of the substituents on the phosphine. Replacing a Me group for a Ph group on phosphorus had no effect on the chemical shifts of silicon or the nuclei attached to silicon. This implied that the decrease in reactivity of the ruthenium hydrides Cp(PR₃)₂RuH with chlorosilanes (eq 6) with increased Ph phosphine substitution was due to an increase in sterics around ruthenium and was not due to a change in the electronic environment at ruthenium.

The resonances of the PR₃ groups in the ³¹P NMR spectra for the various Cp(PR₃)₂RuSiX₃ complexes did not exhibit a dependence on the number of chlorines present on silicon. A plot of PR₃ δ ⁽³¹P) as a function of $\Sigma_{\chi f}(SiX_3)$ for the ruthenium silyl complexes can be found in Figure 4. The ³¹P NMR resonances for the various phosphines exhibited nearly linear but inverse relationships with $\Sigma_{\chi f}(SiX_3)$.

B.2. NMR Coupling Constants. Two sets of coupling constants were readily available from the NMR spectroscopic data: ${}^{2}J_{\text{SiP}}$ and ${}^{1}J_{\text{SiH}}$. The magnitude of ${}^{2}J_{\text{SiP}}$ and ${}^{1}J_{\text{SiH}}$ as a function of $\sum \chi_{i}(\text{SiX}_{3})$ are plotted in Figures 5 and 6, respectively. Both coupling constants exhibited a nearly linear relationship with $\sum \chi_{i}(\text{SiX}_{3})$. The magnitudes of the coupling constants increased as the electron-withdrawing ability of the substituents on silicon increased, consistent with Bent's rule.²⁵ The

⁽²²⁾ Hammett σ_p or modified Taft $\sigma^*(Si)^{23}$ parameters can also be used as a gauge of electron-withdrawing ability of the substituents on silicon. Plots of the various spectroscopic properties as a function of $\Sigma\sigma_p$ or $\Sigma\sigma^*(Si)$ for the substituents on silicon are very similar to the plots of these spectroscopic properties as a function of $\Sigma\chi_r$. The observed trends and relationships based on Hammett σ_p or modified Taft $\sigma^*(Si)$ parameters are the same as those observed using Tolman χ_I parameters.

⁽²³⁾ Attridge, C. J. J. Organomet. Chem. 1968, 13, 259-262.

⁽²⁴⁾ The ruthenium silyl complexes plotted in Figures 2 and 3 could also be classified using other sets of criteria. One set could be based on the number of hydrogens on silicon to give a trihydrosilyl class, a dihydrosilyl class, and a monohydrosilyl class. Another set could be based on the number of methyl groups on silicon to give a trimethylsilyl class, a dimethylsilyl class, and a monomethylsilyl class. However, a classification criterion based on the number of chlorines on silicon was used throughout this paper for internal consistency.

Table 1.	Multinuclear	NMR Data	and Electronic	Factors for	Ruthenium Sil	vl Com	plexes
I abic I.	munucical	Tunte Data	and Liccuonic	I actors for	Ruthemum Sh	yi com	picaco

1 au	le I. Multinuclear	NMR Data and Electronic	Factors for Kuthemun	Silyi Complexes	
SiX ₃	¹ H NMR (ppm) ^a	$^{13}C{^{1}H} NMR (ppm)^{b}$	²⁹ Si DEPT NMR (ppm) ^c	³¹ P{ ¹ H} NMR (ppm) ^{d}	$\sum \chi_i^e$
SiCl ₃ (1)	7.33 (m, 10H, PPh) 4.60 (s, 5H, Cp)	$Cp(PPhMe_2)_2RuSiX_3$ 85.01 (s, Cp) 24.28 (vt, N = 33.5 Hz, PMe)	Complexes 44.11 (t, $J_{SiP} = 41.2$ Hz)	17.99 (s)	44.4
	1.81 (fd, N = 9.2 Hz, 6H, PMe ₂) 1.72 (fd, N = 8.8 Hz, 6H, PMe ₂)	19.58 (vt, <i>N</i> = 33.4 Hz, PMe)			
SiHCl ₂ (2)	7.46 (m, 10H, PPh) 6.39 (t, $J_{PH} = 2.2$ Hz, 1H, SiH)	84.63 (s, Cp) 24.43 (vt, <i>N</i> = 33.0 Hz, PMe)	68.49 (dt, $J_{SIH} = 204.1$ Hz, $J_{SIP} = 35.6$ Hz)	21.79 (s)	37.9
	4.74 (s, 5H, Cp) 1.59 (fd, N = 8.9 Hz, 6H, PMe ₂) 1.51 (fd, N = 8.5 Hz, 6H PMe ₂)	19.73 (vt, <i>N</i> = 33.0 Hz, PMe)			
SiH ₂ Cl (3)	7.30 (m, 10H, PPh) 5.43 (t, $J_{PH} = 3.1$ Hz, 2H, SiH)	83.74 (s, Cp) 24.51 (vt, N = 32.5 Hz, PMe)	36.79 (tt, $J_{\rm SiH}$ = 174.7, $J_{\rm SiP}$ = 32.6 Hz)	21.91 (s)	31.4
	4.64 (s, 5H, Cp) 1.55 (fd, $N = 9.1$ Hz, 6H, PMe ₂) 1.51 (fd, $N = 8.8$ Hz,	19.88 (vt, <i>N</i> = 32.5 Hz, PMe)			
SiHMeCl (4)	6H, PMe ₂) 7.29 (m, 10H, PPh) 5.52 (m, 1H, SiH) 4.67 (s, 5H, Cp) 1.65 (d, $J_{PH} = 4.2$ Hz,	83.11 (s, Cp) 24.22 (vt, <i>N</i> = 32.1 Hz, PMe) 19.52 (vt, <i>N</i> = 32.1 Hz, PMe) 12.86 (s, SiMe)	68.4 (dt, $J_{SiH} = 165.1$, $J_{SiP} = 30.1$ Hz)	21.90 (AB quartet) ^f	25.7
	$\begin{array}{c} 6\text{H, PMe}_2)\\ 1.62 \ (d, \ J_{\text{PH}} = 5.1 \ \text{Hz}, \\ 6\text{H, PMe}_2)\\ 0.69 \ (d, \ J_{\text{PH}} = 3.9 \ \text{Hz}, \\ 3\text{H, SiMe} \end{array}$				
SiH ₃ (7)	7.3 (m, 10H, PPh) 4.49 (s, 5H, Cp) 3.28 (t, $J_{PH} = 4.9$ Hz, 3H, SiH ₃) 1.44 (fd, $N = 8.3$ Hz, 6H PMe ₂)	82.48 (s, Cp) 24.59 (vt, <i>N</i> = 31.5 Hz, PMe) 19.95 (vt, <i>N</i> = 31.6 Hz, PMe)	-53.87 (qt, $J_{\rm SiH} = 154.6$ Hz, $J_{\rm SiP} = 30.8$ Hz)	22.3 (s)	24.9
SiMeH ₂ (8)	(1.39) (fd, $N = 7.8$ Hz, 6H, PMe ₂) 7.31 (m, 10H, PPh) 4.53 (s, 5H, Cp)	82.51 (s, Cp) 24.68 (vt, <i>N</i> = 31.0 Hz, PMe)	-14.29 (tt, $J_{SIH} = 142.5$ Hz, $J_{SIP} = 28.9$ Hz)	22.5 (s)	19.2
	5.66 (III, 211, 5II1 ₂) 1.54 (fd, $N = 8.4$ Hz, 6H, PMe ₂) 1.47 (fd, $N = 8.2$ Hz, 6H, PMe ₂) 0.29 (t, $J_{HH} = 4.4$ Hz, 3H, SiMe)	0.19 (s, SiMe)			
SiMe ₃ (9)	7.28 (m, 10H, PPh) 4.49 (s, 5H, Cp) 1.59 (fd, N = 8.0 Hz, 6H, PMe ₂) 1.51 (fd, N = 8.0 Hz,	83.02 (s, Cp) 26.15 (vt, <i>N</i> = 29.1 Hz, PMe) 21.56 (vt, <i>N</i> = 29.0 Hz, PMe) 10.98 (s, SiMe)	18.37 (t, $J_{\rm SiP}$ = 25.2 Hz)	24.30 (s)	7.8
	6H, PMe ₂) 0.18 (s, 9H, SiMe ₃)	Cp(PPh ₂ Me) ₂ RuSiX ₃	Complexes		
SiHCl ₂ (5)	7.25 (m, 20H, PPh ₂) 6.59 (t, $J_{PH} = 1.8$ Hz, 1H, SiH) 4.71 (s, 5H, Cp) 1.70 (fd, $N = 8.2$ Hz,	86.33 (s, Cp) 17.64 (vt, <i>N</i> = 31.8 Hz, PMe)	65.80 (dt, $J_{SH} = 206.3$ Hz, $J_{SH} = 37.2$ Hz)	35.99 (s)	37.9
SiH ₂ Cl (6)	6H, PMe) 7.30 (m, 20H, PPh ₂) 4.64 (s, 5H, Cp) 5.54 (t, J _{PH} = 3.5 Hz, 2H, SiH) 1.54 (cd, N = 8.2 Hz	87.11 (s, Cp) 16.98 (vt, <i>N</i> = 31.9 Hz, PMe)	35.54 (tt, $J_{SiH} = 171.1$ Hz, $J_{SiP} = 32.2$ Hz)	38.46 (s)	31.4
SiCl ₃ (10)	1.34 (Id, $N = 8.2$ HZ, 6H, PMe) 7.35 (m, 20H, PPh ₂) 4.69 (s, 5H, Cp) 2.06 (fd, $N = 8.1$ Hz, 6H, PMe)	85.81 (s, Cp) 19.08 (vt, <i>N</i> = 31.5 Hz, PMe)	41.16 (t, $J_{\rm SiP}$ = 41.9 Hz)	33.36 (s)	44.4
SiMeCl ₂ (11)	7.34 (m, 20H, PPh ₂) 4.66 (s, 5H, Cp) 2.02 (fd, <i>N</i> = 7.9 Hz, 6H, PMe) 0.61 (s, 3H, SiMe)	84.97 (s, Cp) 21.24 (s, SiMe) 19.61 (vt, <i>N</i> = 31.1 Hz, PMe)	89.08 (t, $J_{SiP} = 34.5$ Hz)	35.97 (s)	32.2

^{*a*} At 250 MHz and ambient probe temperature in CD₂Cl₂ and referenced to residual proton peak (5.32 ppm). The PMe and PMe₂ resonances in these complexes appear as a A₃XX'A'₃ and A₆XX'A'₆ pattern, respectively, in the form of a "filled-in doublet" (fd) with the separation of the outer lines $N = {}^{2}J_{PH} + {}^{4}J_{PH}$. ^{*b*} At 62.9 MHz and ambient probe temperature in CD₂Cl₂ and referenced to solvent (53.8 ppm). The PMe and PMe₂ resonances appear as a "virtual triplet" (vt) with the separation of the outer lines $N = {}^{1}J_{PC} + {}^{3}J_{PC}$. ^{*c*} At 79.5 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external SiMe₄ (0.00 ppm). ^{*d*} At 101 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external SiMe₄ (0.00 ppm). ^{*d*} At 101 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external SiMe₄ (0.00 ppm). ^{*d*} At 101 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external SiMe₄ (0.00 ppm). ^{*d*} At 101 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external SiMe₄ (0.00 ppm). ^{*d*} At 101 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external SiMe₄ (0.00 ppm). ^{*d*} At 101 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external SiMe₄ (0.00 ppm). ^{*d*} At 101 MHz and ambient probe temperature in CD₂Cl₂ and referenced to external H₃PO₄ (85%, 0.00 ppm). ^{*e*} Summation of the Tolman's electronic parameters for the three substituents on silicon: χ_i (Cl) = 14.8, χ_i (H) = 8.3, χ_i (Me) = 2.6. ^{*f*} J_{PP} = 36.6 Hz.

Figure 1. ²⁹Si NMR chemical shift of the silyl groups vs $\Sigma_{\chi i}$ (SiX₃) for the various ruthenium silyl complexes Cp(PR₃)₂RuSiX₃ {PR₃ = PMe₃ (\bigcirc),¹⁶ PMe₂Ph (\square), PMePh₂ (\diamond)} showing the three silyl classes: dichlorosilyl (solid line, slope = -3.93 ppm per χ_i unit, *R* = 0.997), monochlorosilyl (long dashed line, slope = -4.51 ppm per χ_i unit, *R* = 0.986), and non-chlorosilyl (short dashed line, slope = -4.29 ppm per χ_i unit, *R* = 0.957).

Figure 2. ¹H NMR chemical shift of the SiH group vs Σ_{χ} (SiX₃) for the ruthenium hydrosilyl complexes Cp(PR₃)₂-RuSiHX₂ {PR₃ = PMe₃ (\bigcirc),¹⁶ PMe₂Ph (\square), PMePh₂ (\diamondsuit)}.

Figure 3. ¹³C NMR chemical shifts of the SiMe group vs Σ_{χ} (SiX₃) for the ruthenium methylsilyl complexes Cp(PR₃)₂RuSiMeX₂ {PR₃ = PMe₃ (\bigcirc),¹⁶ PMe₂Ph (\square), PMePh₂ (\diamondsuit)}.

electronegative chlorides required more p-character in their bonding with silicon, leaving more s-character in the bonding of silicon with the electropositive ruthenium and hydrogen. An increase in s-character in the Ru–Si

Figure 4. ³¹P NMR chemical shift of the PR₃ group vs $\Sigma_{\chi,\ell}(SiX_3)$ for the ruthenium silyl complexes Cp(PR₃)₂RuSiX₃ {PR₃ = PMe₃ (\bigcirc),¹⁶ PMe₂Ph (\square), PMePh₂ (\diamondsuit)}.

Figure 5. ${}^{2}J_{\text{SiP}}$ (Hz) vs $\sum \chi_{i}(\text{SiX}_{3})$ for the ruthenium silyl complexes Cp(PR₃)₂RuSiX₃ {PR₃ = PMe₃ (\bigcirc),¹⁶ PMe₂Ph (\square), PMePh₂ (\diamondsuit)}: slope = 0.43 Hz per χ_{i} unit, R = 0.955.

Figure 6. ${}^{1}J_{\text{SiH}}$ (Hz) vs $\sum \chi_{i}(\text{SiX}_{3})$ for the ruthenium hydrosilyl complexes Cp(PR₃)₂RuSiHX₂ {PR₃ = PMe₃ (\bigcirc), ¹⁶ PMe₂Ph (\square), PMePh₂ (\diamond)}: slope = 2.73 Hz per χ_{i} unit, *R* = 0.942.

and Si-H bonds (with increasing $\sum \chi_i$ (SiX₃)) resulted in these bonds becoming stronger, which in turn increased the communication (coupling) between silicon and phosphorus or hydrogen.

Another interesting feature of the plots in Figures 5 and 6 was that the nature of the phosphine did not effect the magnitude of ${}^{2}J_{SiP}$ or ${}^{1}J_{SiH}$. For example, ${}^{2}J_{SiP}$ and

⁽²⁵⁾ Bent, H. A. Chem. Rev. 1961, 61, 276-311.

Figure 7. Interaction of the Cp(PR₃)₂Ru fragment HOMO and SHOMO with linear combinations of Si–X σ^* orbitals which give rise to the ruthenium silyl group classifications.

 ${}^{1}J_{SiH}$ values for the SiH₂Cl group were essentially the same regardless of which phosphine was coordinated to ruthenium, Cp(PR₃)₂RuSiH₂Cl: ${}^{2}J_{SiP} = 32.9$ Hz (PMe₃), 32.6 Hz (PMe₂Ph), 32.2 Hz (PMePh₂) and ${}^{1}J_{SiH} = 171.1$ Hz (PMe₃), 174.7 Hz (PMe₂Ph), 171.1 Hz (PMePh₂). Replacing PMe₃ with either PMe₂Ph or PMePh₂ did not effect the electronegativity of the ruthenium fragment enough to influence the interaction between ruthenium and silicon.

B.3. Silyl Group Classifications. The grouping of the ruthenium silyl complexes into different classes (dichlorosilyl, monochlorosilyl, and "non-chlorosilyl"), as illustrated in Figures 1-3, was dependent on the number of chlorides on silicon. Tolman's χ_i parameters were not sufficient to account for the effect of chloride substitution on the spectroscopic parameters of the ruthenium silyl complexes. This "chloride effect" was attributed to d(Ru) $-\sigma^*(Si-X) \pi$ -back-bonding between the Cp(PR₃)₂Ru and SiX₃ groups. The "chloride effect" in Cp(PMe₃)₂RuSiX₃ complexes has been discussed in detail¹⁶ and will be described briefly here. Linear combinations of the Si–X (X = Cl, H, Me) σ^* orbitals of the silvl group gave rise to an a_1 and e set, assuming $C_{3\nu}$ localized symmetry. The HOMO and SHOMO (second highest occupied molecular orbital) of the $Cp(PR_3)_2Ru$ moiety²⁶⁻²⁸ had the correct symmetry to interact with the doubly degenerate e set of Si-X σ^* orbitals,²⁹ as shown in Figure 7. The magnitude of the $d(Ru) - \sigma^*(Si - X) \pi$ -back-bonding interaction depended on the silicon substituents and followed the order $Cl \gg$ $H \approx$ Me. A ramification of this d(Ru)- σ^* (Si-Cl) π -backbonding interaction was a change of hybridization at silicon, which manifested itself as a downfield chemical shift when a H or Me group was replaced with Cl, as observed in Figures 1–3. Surprisingly, replacing PMe₃ with the more π -acidic phosphines PMe₂Ph and PMePh₂ did not cause a noticeable change in the d(Ru)- σ^* (Si–Cl) π -back-bonding interaction.

Summary

The effect of silicon and phosphorus ancillary groups on the reaction of ruthenium hydride complexes $Cp(PR_3)_2RuH$ (R = Me, Ph), with a variety of chlorosilanes, $ClSiX_3$ (X = H, Cl, Me), to yield ruthenium silyl complexes $Cp(PR_3)_2RuSiX_3$ was investigated. This reaction was favored by electron-withdrawing groups on

silicon and hindered by bulky groups on phosphorus. The nature of the substituents on silicon also effected the spectroscopic properties of Cp(PR₃)₂RuSiX₃. NMR coupling constants, ${}^{2}J_{SiP}$ and ${}^{1}J_{SiH}$, increased in magnitude as the electron-withdrawing ability of the substituents on silicon increased. The ²⁹Si(SiX₃), ¹H(SiH), and ¹³C(SiMe) chemical shift data indicated the silvl groups were differentiated into three different classes: a dichlorosilyl class (SiCl₂X), a monochlorosilyl class (SiClX₂), and a "non-chlorosilyl" class (SiX₃). This silyl group classification was due to π -back-bonding between the filled HOMO and SHOMO orbitals of the ruthenium fragment and the empty σ^* orbitals of the siliconchlorine bonds. The most surprising result of this study was that the substituents on phosphorus had no effect on the spectroscopic properties of the silvl group. Thus, for a particular silyl group, the NMR coupling constants, ²J_{SiP} and ¹J_{SiH}, and chemical shifts, ²⁹Si(SiX₃), ¹H(SiH), ¹³C(SiMe), were essentially the same regardless of the phosphine (PMe₃, PMe₂Ph, PMePh₂) attached to ruthenium.

Experimental Section

General Considerations. All manipulations of the ruthenium-containing compounds were conducted under an inert atmosphere of argon. These compounds were stored in an MBraun glovebox, and reactions were carried out using highvacuum techniques. ¹H (250 MHz), ¹³C{¹H} (62.9 MHz), and $^{31}P\{^{1}H\}$ (101.3 MHz) NMR spectra were obtained using a Bruker 250 MHz spectrometer. ²⁹Si DEPT (79.5 MHz) NMR spectra were obtained using a Varian VXR 400S spectrometer. The PMe and PMe₂ resonances in these compounds did not appear as a simple first-order pattern in the ¹H NMR spectrum; 16 instead, they appeared as an $A_3XX^\prime A^\prime_3$ and A_6 XX'A'₆ pattern, respectively. The appearance of these patterns were described as a "filled-in doublet" (fd) with the separation of the outer lines $N = {}^{2}J_{\text{PH}} + {}^{4}J_{\text{PH}}$.^{30,31} Likewise, in the ¹³C{¹H} NMR spectrum, the PMe and PMe₂ resonances appeared as a virtual triplet (vt) with the separation of the outer lines $N = {}^{1}J_{PC} + {}^{3}J_{PC}$.^{30,31} All NMR data were obtained in CD₂Cl₂. ¹H NMR data were referenced to the residual proton signal of the solvent at 5.32 ppm. ³¹P NMR data were externally referenced (0.00 ppm) to a capillary containing H_3 -PO₄ (85%) sealed in a NMR tube containing CD₂Cl₂. ¹³C NMR data were referenced to the carbon signal of the solvent at 53.8 ppm. ²⁹Si NMR data were externally referenced to a CD₂Cl₂ solution of SiMe₄ at 0.00 ppm. The multinuclear NMR data were summarized in Table 1. Elemental analyses were performed by Oneida Research Services (Whitesboro, NY) and Desert Analytics (Tucson, AZ).

Materials. The chloro ruthenium complexes $Cp(PR_3)_2RuCl$ (PR₃ = PPh₂Me, PPhMe₂)³² and the ruthenium hydrides $Cp(PR_3)_2RuH$ (PR₃ = PPh₃, PPh₂Me, PPhMe₂)³³ were prepared by the literature methods. The chlorosilanes and CH_2Cl_2 were stored over CaH₂, degassed, and vacuum transferred immediately prior to use. AlMe₃ (2 M in toluene, Aldrich) and MeMgCl (3 M in THF, Aldrich) were used as received. LiAlH₄ (Aldrich) was degassed in vacuo and stored in the glovebox. DBU was degassed prior to use. Hexanes, toluene, and THF were dried and distilled from potassium/benzophenone. Hexanes, toluene, THF, and anhydrous diethyl ether were stored

⁽²⁶⁾ Kostíc, N. M.; Fenske, R. F. Organometallics 1982, 1, 974–982.
(27) Grumbine, S. K.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L. J. Am. Chem. Soc. 1994, 116, 5495–5496.

⁽²⁸⁾ Arnold, F. P., Jr. Organometallics 1999, 18, 4800-4809.

⁽²⁹⁾ Orpen, A. G.; Connelly, N. G. *Organometallics* **1990**, *9*, 1206–1210.

⁽³⁰⁾ Harris, R. K. Can. J. Chem. 1964, 42, 2275-2281.

⁽³¹⁾ Harris, R. K.; Hayter, R. G. *Can. J. Chem.* **1964**, *42*, 2282–2291.

⁽³²⁾ Lomprey, J. R.; Selegue, J. P. J. Am. Chem. Soc. 1992, 114, 5518–5523.

⁽³³⁾ Freeman, S. T. N.; Lemke, F. R.; Haar, C. M.; Nolan, S. P.; Petersen, J. L. Organometallics **2000**, *19*, 4828–4833.

Organometallics, Vol. 21, No. 22, 2002 4783

over $[Cp_2TiCl]_2ZnCl_2$.³⁴ CD_2Cl_2 was stored over CaH_2 . C_6D_6 was dried using NaK and stored over $[Cp_2TiCl]_2ZnCl_2$.³⁴ All solvents were transferred under vacuum.

 $Cp(PPhMe_2)_2RuSiX_3$ [SiX₃ = SiCl₃ (1), SiHCl₂ (2), SiH-MeCl (4)]. These ruthenium silyl complexes were prepared by the reaction of Cp(PPhMe₂)₂RuH with X₃SiCl in CH₂Cl₂ in the absence or presence of excess DBU. Without DBU. In a typical reaction, CH_2Cl_2 (15 mL) was added by vacuum transfer to a flask charged with Cp(PPhMe₂)₂RuH (50 mg, 0.113 mmol). Using calibrated gas-bulb techniques, SiCl₄ (0.75 equiv) was transferred to the frozen Cp(PPhMe₂)₂RuH/ CH₂Cl₂ solution. The reaction mixture was allowed to slowly warm to room temperature and stirred for ~ 15 min. The solution volume was reduced to $\sim 1/4$ and then doubled with hexanes to precipitate [Cp(PPhMe₂)₂RuH₂]Cl. [Cp(PPhMe₂)₂-RuH₂]Cl was isolated by filtration. The yellow filtrate solution was evaporated to dryness to afford a mixture of 1 and Cp(PPhMe₂)₂RuCl. With DBU. In a typical reaction, a flask was charged with Cp(PPhMe₂)₂RuH (50 mg, 0.113 mmol), DBU (25.3 μ L, 0.169 mmol), and CH₂Cl₂ (15 mL) in the glovebox. Using calibrated gas-bulb techniques, excess SiCl₄ (1.5 equiv) was transferred to the frozen Cp(PPhMe₂)₂RuH/DBU/CH₂Cl₂ solution. The frozen yellow mixture was warmed to room temperature and allowed to stir for 1.5 h. The volatiles were removed under vacuum to give a yellow-orange paste. This paste was extracted with diethyl ether and filtered through Celite. The extracts were reduced to 1/2 volume and tripled with hexanes. The mixture was then reduced to 1/4 volume. The precipitate was isolated by filtration and dried under vacuum to afford 1 as a pale yellow solid (57.5 mg, 88.2%). Typical yields for 1, 2, and 4 were in the range of 80-90%. Anal. Calcd for C₂₁H₂₇Cl₃P₂RuSi (1): C, 43.72; H, 4.72. Found: C, 43.28; H, 4.66. Anal. Calcd for C₂₁H₂₈Cl₂P₂RuSi (2): C, 46.50; H, 5.20. Found: C, 46.39; H, 4.97. Anal. Calcd for C₂₂H₃₁ClP₂RuSi (4): C, 50.62; H, 5.99. Found C, 49.65; H, 5.43. [Cp(PhMe₂)₂RuH₂]Cl: ¹H NMR (CD₂Cl₂) & 7.44 (m, 10H, PPh), 5.21 (s, 5H, Cp), 1.78 (fd, N = 9.6 Hz, 12H, PMe₂), -9.13 (t, ${}^{2}J_{\text{PH}} = 27.7$ Hz, $\hat{2}$ H, RuH₂); ${}^{31}P{}^{1}H}$ NMR (CD₂Cl₂) δ 25.12 (s).

 $Cp(PR_3)_2RuSiH_2Cl$ [PR₃ = PPhMe₂ (3), PPh₂Me (6)]. These ruthenium silyl complexes were prepared by the reaction of Cp(PR₃)₂RuH with SiH₂Cl₂ in CH₂Cl₂. However, this reaction was complicated by formation of Cp(PR₃)₂RuCl, and due to the similar solubilities of 3 or 6 and the corresponding Cp(PR₃)₂RuCl, analytically pure samples of **3** or **6** were not obtained. In a typical reaction, CH₂Cl₂ (15 mL) was added by vacuum transfer to a flask charged with Cp(PPh₂Me)₂RuH (50 mg, 0.088 mmol). Using calibrated gas-bulb techniques, SiH₂Cl₂ (0.75 equiv) was transferred to the frozen Cp(PPh₂Me)₂RuH/CH₂Cl₂ solution. The reaction mixture was allowed to slowly warm and stirred at room temperature for ${\sim}15$ min. The solution volume was reduced to ${\sim}1/4$ and then doubled with hexanes. The resulting solid was isolated by filtration to give 40 mg of a light orange solid, which was determined (by ¹H NMR) to be a mixture of 6, Cp(PPh₂Me)₂RuCl, and [Cp(PPh₂Me)₂RuH₂]Cl. Similarly, 3 was obtained contaminated with Cp(PPhMe₂)₂RuCl, even with the addition of DBU as described above.

Cp(PPhMe₂)₂RuSiH₂X [SiH₂X = SiH₃ (7), SiH₂Me (8)]. These ruthenium hydrosilyl derivatives were prepared by the reaction of LiAlH₄ with the respective chlorosilyl complex. In a typical reaction, a 25 mL Kjeldahl flask was charged with **4** (100 mg, 0.192 mmol) and LiAlH₄ (25 mg, 0.659 mmol). Et₂O (15 mL) was added to the mixture by vacuum transfer. The yellow solution was allowed to stir for 1.5 h at room temperature. The solvent was removed under vacuum to give a light gray residue. The residue was extracted with hexanes (15 mL) and filtered through Celite. The yellow extracts were evaporated to dryness to afford **8** as a yellow solid (75 mg, 80%). The reaction of **1**, **2**, or **3** with LiAlH₄ in Et₂O was used to prepare **7**. Typical yields of **7** and **8** were between 75 and 85%. Anal. Calcd for $C_{21}H_{30}P_2RuSi$ (**7**): C, 53.26; H, 6.39. Found: C, 52.84; H, 6.02. Anal. Calcd for $C_{22}H_{32}P_2RuSi$ (**8**): C, 54.19; H, 6.61. Found: C, 53.56; H, 6.13.

Cp(PPhMe₂)₂RuSiMe₃ (9). AlMe₃ (0.27 mL, 0.554 mmol) was added by syringe to a cold suspension of **1** (100 mg, 0.173 mmol) in toluene (25 mL) under an argon atmosphere. Upon addition of the AlMe₃, complex **1** dissolved to give a bright yellow solution, which was allowed to stir at room temperature for 1 h. The reaction volatiles were removed under vacuum to give a yellow paste. This paste was extracted with hexanes (10×2 mL) and filtered through Celite. The yellow extracts were evaporated to dryness to afford a yellow residue. This residue was extracted again with hexanes and filtered through Celite. The final yellow extract solution was evaporated to dryness to afford **9** as a yellow solid (66.7 mg, 76%). Anal. Calcd for C₂₄H₃₆P₂RuSi (**9**): C, 55.90; H, 7.04. Found: C, 55.32; H, 6.52.

Cp(PPh₂Me)₂RuSiHCl₂ (5). This ruthenium silyl complex was prepared by the direct reaction of Cp(PPh2Me)2RuH with HSiCl₃ in CH₂Cl₂. Typically, CH₂Cl₂ (15 mL) was added by vacuum transfer to a 25 mL O-ring, Kjeldahl flask charged with Cp(PPh₂Me)₂RuH (200 mg, 0.352 mmol). HSiCl₃ (1.5 equiv) was transferred using calibrated gas-bulb techniques to the liquid nitrogen cooled flask. The reaction mixture was slowly allowed to warm to room temperature and stirred for 1 h. The reaction volatiles were removed under vacuum to give a dark yellow-orange residue. The residue was taken up in CH_2Cl_2 (~0.5 mL) and pipetted into a 10 × 75 mm test tube, hexanes (~1.5 mL) were carefully layered on top of the CH_2Cl_2 solution, and the entire setup was cooled to -30 °C in the glovebox. Complex 5 was obtained as a crystalline yellow solid (10 mg, 8.5%). Anal. Calcd for C₃₁H₃₂P₂Cl₂RuSi (5): C, 55.86; H, 4.84. Found: C, 54.84; H, 4.03. [Cp(PPh₂Me)₂RuH₂]-Cl: ¹H NMR (CD₂Cl₂) δ 7.45(m, 20H, PPh), 5.11 (s, 5H, Cp), 1.85 (fd, N = 9.2 Hz, 6H, PMe), -8.43 (t, ${}^{2}J_{PH} = 25.4$ Hz, 2H, RuH₂); ³¹P{¹H} NMR (CD₂Cl₂) δ 41.10 (s).

Cp(PPh₂Me)₂RuMe. This ruthenium alkyl was prepared by an adaptation of the literature method.³⁵ A 25 mL, sidearm Schlenk flask, equipped with a condenser and magnetic stirbar, was charged with Cp(PPh2Me)2RuCl (100 mg, 0.166 mmol). THF (${\sim}15$ mL) was transferred to the flask via vacuum. Under a heavy flow of argon, MeMgCl (2 equiv) was added by syringe to the cool, stirring reaction mixture. The orange reaction mixture was heated to reflux for 16 h. The reaction volatiles were removed under vacuum to give a brown-yellow residue. The residue was extracted with hexanes ($\sim 25 \times 1.5$ mL) and filtered through Celite. The bright yellow solution was evaporated to dryness to afford Cp(PPh2Me)2RuMe as a bright yellow solid (85 mg, 88%). ¹H NMR (CD₂Cl₂): δ 7.23 (m, 20H, PPh₂), 4.35 (s, 5H, Cp), 1.32 (fd, N = 7.85 Hz, 6H, PMe), 0.13 (t, ${}^{3}J_{PH} = 5.9$ Hz, 3H, RuMe). ${}^{31}P{}^{1}H{}$ NMR (CD₂Cl₂): δ 42.53 (s). ¹³C{¹H} (CD₂Cl₂): δ 145.36, (vt, N = 38.44, Hz, ipso-PPh), 141.25 (vt, N = 39.37 Hz, ipso-P'Ph), 133.29 (vt, N = 10.98 Hz, ortho-PPh), 131.09 (vt, N = 10.07Hz, ortho-P'Ph), 128.82 (s, para-PPh), 128.02 (s, para-P'Ph), 127.80 (vt, N=9.15 Hz, meta-PPh) 127.60 (vt, N=8.24, meta-PPh), 82.85 (t, ${}^{2}J_{PC} = 2.29$ Hz, Cp), 15.72 (vt, N = 25.64 Hz, PMe), -26.78 (t, ${}^{2}J_{PC} = 14.19$ Hz, RuMe).

 $Cp(PPh_2Me)_2RuSiX_3$ [SiX₃ = SiCl₃ (10), SiMeCl₂ (11)]. In a typical reaction, a 50 mL round-bottom reaction vessel, equipped with a Teflon plug and stir bar, was charged with $Cp(PPh_2Me)_2RuMe$ (50 mg, 0.086 mmol) and $HSiCl_3$ (~25 mL). While frozen with liquid nitrogen, the headspace above this mixture was evacuated. The reaction mixture was allowed to

⁽³⁴⁾ Sekutowski, D. G.; Stucky, G. D. Inorg. Chem. 1975, 14, 2192–2199.

⁽³⁵⁾ Bruce, M. I.; Gardner, R. C. F.; Howard, J. A. K.; Stone, F. G. A.; Welling, M.; Woodward, P. *J. Chem. Soc., Dalton Trans.* **1977**, 621–629.

warm to room temperature. The sealed flask was heated to 100 °C with stirring for ${\sim}16$ h. The reaction mixture was allowed to cool to room temperature, and the volatiles were removed to give a pale yellow residue. The residue was dissolved in CH_2Cl_2 ({\sim}1.5 mL) and filtered through a plug of glass wool. The solution volume was doubled with hexanes, then reduced to 1/2 in vacuo to initiate precipitation. The light

precipitate was isolated by filtration and dried to afford **10** as a yellow solid (55 mg, 92%). Anal. Calcd for $C_{31}H_{31}P_2Cl_3RuSi$ (**10**): C, 53.11; H, 4.46. Found: C, 52.54; H, 4.46. Anal. Calcd for $C_{32}H_{34}P_2Cl_2RuSi$ (**11**): C, 56.47; H, 5.04. Found: C, 55.29; H, 5.25.

OM0204235