Synthesis and Characterization of Linear (CH)₈-Bridged **Bimetallic Ruthenium Complexes**

Sheng Hua Liu,[†] Yihui Chen,[†] Kam Lok Wan,[†] Ting Bin Wen,[†] Zhongyuan Zhou,[‡] Man Fung Lo,[†] Ian D. Williams,[†] and Guochen Jia^{*,†}

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received June 3. 2002

Reactions of $HC \equiv CCH_2CH(OR)CH(OR)CH_2C \equiv CH$ (R = H, $MeSO_2$) with $RuHCl(CO)(PPh_3)_3$ produced [RuCl(CO)(PPh₃)₂]₂(μ -CH=CHCH₂CH(OR)CH(OR)CH₂CH=CH), which on treatment with PMe₃ gave [RuCl(CO)(PMe₃)₃]₂(μ -CH=CHCH₂CH(OR)CH(OR)CH₂CH=CH). Treatment of $RuHCl(CO)(PPh_3)_3$ with $(3E,5E)-HC \equiv CCH = CHCH = CHC \equiv CH$ produced [RuCl-(CO)(PPh₃)₂]₂(µ-CH=CHCH=CHCH=CHCH=CH). The later complex reacted with PMe₃, 4-phenylpyridine (PhPy), and 2,6-(Ph₂PCH₂)₂C₅H₃N (PMP) to give $[RuCl(CO)(PMe_3)_3]_2(\mu$ -CH=CHCH=CHCH=CHCH=CH), [RuCl(CO)(PhPy)(PPh₃)₂]₂(u-CH=CHCH=CHCH=CHCH= CH), and $[RuCl(CO)(PMP)]_2(\mu$ -CH=CHCH=CHCH=CHCH=CH), respectively. The structures of RuCl(CO)(PMe₃)₃]₂(u-CH=CHCH₂CH(OH)CH(OH)CH₂CH=CH) and [RuCl(CO)(PMe₃)₃]₂-(*u*-CH=CHCH=CHCH=CHCH=CH) have been confirmed by X-ray diffraction.

Introduction

Bimetallic and polymetallic complexes with conjugated hydrocarbon ligands bridging metal centers are attracting considerable current interest.^{1,2} Linear C_x and $(CH)_x$ are probably the simplest hydrocarbon bridging ligands. In the past decade, the synthesis and properties of bimetallic complexes with C_x bridges have been intensively investigated. A variety of complexes of the type $L_n M(\mu - C_x) M' L'_n$ with x up to 20 and with M or M' = Re, Fe, Ru, Pt, Pd, Mn, W, and Rh have now been synthesized.³⁻¹¹ These complexes can behave like mo-

32, 923. (g) Paul, F.; Lapinte, C. Coord. Chem. 1998, 178, 431.
(2) For examples of recent work, see: (a) Enriquez, A. E.; Templeton, J. L. Organometallics 2002, 21, 852. (b) Yam, V. W. Y.; Tao, C. H.; Zhang, L.; Wong, K. M. C.; Cheung, K. K. Organometallics 2001, 20, 453. (c) Matsumi, N.; Chujo, Y.; Lavastre, O.; Dixneuf, P. H. Organometallics 2001, 20, 2425. (d) Wong, W. Y.; Choi, K. H.; Lu, G. L.; Shi, J. X.; Lai, P. Y.; Chan, S. M.; Lin, Z. Organometallics 2001, 20, 5446. (e) Dijkstra, H. P.; Meijer, M. D.; Patal, J.; Kreiter, R.; van Klink, G. P. M.; Lutz, M.; Spek, A. L.; Canty, A. J.; van Koten, G. Organometallics 2001, 20, 3159. (f) Le Stang, S.; Paul, F.; Lapinte, C. Organometallics 2000, 19, 1035. (g) Weyland, T.; Costuas, K.; Toupet, L.; metallics 2000, 19, 1035. (g) Weyland, T.; Costuas, K.; Toupet, L.;
Halet, J. F.; Lapinte, C. Organometallics 2000, 19, 4228. (h) Weyland,
T.; Ledoux, I.; Brasselet, S.; Zyss, J.; Lapinte, C. Organometallics 2000, 19, 5235. (i) MacDonald, M. A.; Puddephatt, R. J.; Yap, G. P. A.
Organometallics 2000, 19, 2194.
(3) Che, C. M.; Chao, H. Y.; Miskowski, V. M.; Li, Y.; Cheung, K. K.
J. Am. Chem. Soc. 2001, 123, 4895.
(4) Paul, F.; Meyer, W. E.; Toupet, L.; Jiao, H.; Gladysz, J. A.;
Lapinte, C. J. Am. Chem. Soc. 2000, 122, 9405.
(5) (a) Bruce, M. I.; Low, P. J.; Costuas, K.; Halet, J. F.; Best, S. P.;
Heath, G. A. J. Am. Chem. Soc. 2000, 122, 1949. (b) Bruce, M. I.; Hall,
B. C.; Kelly, B. D.; Low, P. J.; Skelton, B. W.; White, A. H. J. Chem.
Soc., Dalton Trans. 1999, 3719.
(6) Gil-Rubio, J.; Laubender, M.; Werner, H. Organometallics 2000,

(6) Gil-Rubio, J.; Laubender, M.; Werner, H. Organometallics 2000, 19. 1365.

lecular wires and have luminescent properties. In contrast to bimetallic complexes with C_x bridges, very few studies have been carried out with bimetallic complexes with linear $(CH)_x$ bridges, despite the fact that many conjugated organic materials (e.g., polyacetylenes, push/pull stilbenes) have only sp² hybridized carbons in their backbones.¹² Previously reported examples of (CH)_x-bridged bimetallic complexes are limited to a few of those with linear $(CH)_{2}$,¹³ $(CH)_{4}$,^{14–16} (CH)₅,¹⁷ and (CH)₆¹⁸ bridges. Related to (CH)_x-bridged bimetallic complexes, several bimetallic complexes of

(7) (a) Meyer, W. E.; Amoroso, A. J.; Horn, C. R.; Jaeger, M.; Gladysz, J. A. Organometallics 2001, 20, 1115. (b) Dembinski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A. J. Am. Chem. Soc. 2000, 122, 810. (c) Brady, M.; Weng, W.; Gladysz, J. A. J. Chem. Soc., Chem. Commun. 1994, 2665

(8) Coate, F.; Lapinte, C. Organometallics 1996, 15, 477.

(9) (a) Peters, T. B.; Bohling, J. C.; Arif, A. M.; Gladysz, J. A. Organometallics **1999**, *18*, 3261. (b) Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. Inorg. Chem. 2001, 40, 3263.

(10) (a) Sakurai, A.; Akita, M.; Moro-oka, Y. Organometallics 1999, 18, 3241. (b) Akita, M.; Chung, M. C.; Sakurai, A.; Sugimoto, S.; Terada, M.; Tanaka, M.; Moro-oka, Y. Organometallics **1997**, *16*, 4882. (11) (a) Bruce, M. I.; Ke, M.; Low, P. J.; Skelton, B. W.; White, A.

H. Organometallics 1998, 17, 3539. (b) Bruce, M. I.; Kelly, B. D.;
 Skelton, B. W.; White, A. H. J. Organomet. Chem. 2000, 604, 150.
 (12) See for example: (a) Kanis, D. R.; Ratner, M. A.; Marks, T. J.

Chem. Rev. 1994, 94, 195, and references therein. (b) Bredas, J. L.; Adant, C.; Tackx, P.; Peraoons, A. *Chem. Rev.* **1994**, *94*, 243. (c) *Handbook of Conducting Polymers*; Skotheim, T. A., Elsenbaumer, R. L.; Reynolds, J. R., Eds.; Maecel Dekker: New York, 1998.

(13) (a) Rajapakse, N.; James, B. R.; Dolphin, D. *Can. J. Chem.* **1990**, *68*, 2274. (b) Bullock, R. M.; Lemke, F. R.; Szalda, D. J. J. Am. Chem. Soc. **1990**, *112*, 3244. (c) Lemke, F. R.; Szalda, D. J.; Bullock, R. M. J. Am. Chem. Soc. **1990**, *112*, 3244. (c) Lemke, Soc. **1990**, *112*, 3244. (c) Lemk

Am. Chem. Soc. **1991**, *113*, 8466. (14) (a) Sponsler, M. B. *Organometallics* **1995**, *14*, 1920, and references therein. (b) Etzenhouser, B. A.; Chen, Q.; Sponsler, M. B. *Organometallics* **1994**, *13*, 4176. (c) Etzenhouser, B. A.; Cavanaugh, M. D.; Spurgeon, H. N.; Sponsler, M. B. J. Am. Chem. Soc. 1994, 116, 2221

(15) Niu, X.; Gopal, L.; Masingale, M. P.; Braden, D. A.; Hudson, B.
 S.; Sponsler, M. B. *Organometallics* 2000, *19*, 649.
 (16) Xia, H. P.; Yeung, R. C. Y.; Jia, G. *Organometallics* 1998, *17*,

4762

(17) (a) Xia, H. P.; Jia, G. *Organometallics* **1997**, *16*, 1. (b) Xia, H. P.; Yeung, R. C. Y.; Jia, G. *Organometallics* **1997**, *16*, 3557.

[†] The Hong Kong University of Science and Technology.

¹ The Hong Kong Polytechnic University. (1) (a) Long, N. J. Angew. Chem., Int. Ed. Engl. **1995**, 34, 21, and references therein. (b) Bunz, U. H. F. Angew. Chem., Int. Ed. Engl. **1996**, 35, 969. (c) Lotz, S.; Van Rooyen, P. H.; Meyer, R. Adv. Organomet. Chem. **1995**, 37, 219. (d) Ward, M. D. Chem. Soc. Rev. 1995, 121. (e) Lang, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 547. (f) Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 923. (g) Paul, F.; Lapinte, C. Coord. Chem. 1998, 178, 431.

type $L_nM=C(OR)-CH=CH-C(OR)=ML_n$ and $L_nM=CR-R-CR=ML_n$ have been synthesized.¹⁹ In this report, the synthesis, characterization, and electrochemical properties of (CH)₈-bridged bimetallic complexes will be described.

Results and Discussion

Reactions of HC=CCH₂CH(OR)CH(OR)CH₂C= CH (2a, R = H, 2b, R = Ms) with RuHCl(CO)(PPh₃)₃ (1). Reactions of RuHCl(CO)(PPh₃)₃ (1) with HC=CR are known to give RuCl(CH=CHR)(CO)(PPh₃)₂.^{20,21} The reaction has been used to prepare bimetallic complexes such as [RuCl(CO)(PPh₃)₂]₂(μ -CH=CH-Ar-CH=CH)²² and [RuCl(CO)(PPh₃)₂]₂(μ -CH=CH-CH=CH).¹⁶ Thus it is expected that reactions of 1 with 2 will produce [RuCl-(CO)(PPh₃)₂]₂(μ -CH=CHCH₂CH(OR)CH(OR)CH₂CH= CH) (3). Compounds 3 were synthesized because they are potentially useful precursors to linear (CH)₈-bridged bimetallic complexes and they could be used to compare the properties with those of bimetallic complexes containing a linear (CH)₈ bridge.

The compound $HC \equiv CCH_2CH(OH)CH(OH)CH_2C \equiv CH$ (2a) was obtained from the reaction of LiC=CH with racemic 1,3-butadiene diepoxide.²³ Treatment of 1 with 2a in dichloromethane produced the expected insertion product 3a (Scheme 1), which can be readily characterized by the NMR and analytical data. The ³¹P{¹H} NMR spectrum in CD₂Cl₂ showed AB pattern ³¹P signals at 30.5 and 29.8 ppm with a ²J(PP) coupling of 322.4 Hz. The magnitude of the coupling constant indicates that the two PPh₃ ligands are trans to each other. Monomeric complexes RuCl(RC=CHR')(CO)(PPh₃)₂ are known to adopt a distorted trigonal bipyramidal geometry with the two PPh₃ ligands in the apical positions.²⁰ Thus it is reasonable to assume that complex 3a has a similar geometry around ruthenium. Observation of two ³¹P signals for **3a** with such a structure is expected, because the two ruthenium centers are equivalent by symmetry, but the two PPh₃ ligands on each ruthenium is chemically nonequivalent due to the presence of the asymmetric carbon center (CH(OH)). In the ¹H NMR spectrum (in CD₂Cl₂), the vinylic proton signals were observed at 7.18 and 4.68 ppm with a ³J(HH) coupling

(21) For recent work, see for example: (a) Maruyama, Y.; Yamamura, K.; Sagawa, T.; Katayama, H.; Ozawa, F. Organometallics **2000**, *19*, 1308. (b) Maruyama, Y.; Yamamura, K.; Nakayama, I.; Yoshiuchi, K.; Ozawa, F. J. Am. Chem. Soc. **1998**, *120*, 1421. (c) Harlow, K. J.; Hill, A. F.; Welton, T. J. Chem. Soc., Dalton Trans. **1999**, 1911. (d) Hill, A. F.; Ho, C. T.; Wilton-Ely, J. D. E. T. Chem. Commun. **1997**, 2207. (e) Harlow, K. J.; Hill, A. F.; Welton, T.; White, A. J. P.; Williams, D. J. Organometallics **1998**, *17*, 1916. (f) Jia, G.; Wu, W. F.; Yeung, R. C. Y.; Xia, H. J. Organomet. Chem. **1997**, *538*, 31.

(22) (a) Gómez-Lor, B.; Santos, A.; Ruiz, M.; Echavarren, A. M. *Eur. J. Inorg. Chem.* **2001**, 2305. (b) Jia, G.; Wu, W. F.; Yeung, R. C. Y.; Xia, H. P. *J. Organomet. Chem.* **1997**, *539*, 53. (c) Santos, A.; López, J.; Montoya, J.; Noheda, P.; Romero, A.; Echavarren A. M. Organometallics **1994**, *13*, 3605.

(23) Quayle, P.; Rahman, S.; Herbert, J. Tetrahedron Lett. 1995, 36, 8087.

constant of 13.4 Hz. The magnitude of the coupling constant indicates that the two vinylic protons are in trans geometry and that the acetylene is cis inserted into the Ru–H bond.

The 16e complex 3a can be converted to the sixcoordinated 18e complex [RuCl(CO)(PMe₃)₃]₂(µ-CH= CHCH₂CH(OH)CH(OH)CH₂CH=CH) (4a) by treatment with PMe₃. Complex 4a has been characterized by elemental analysis and multinuclear (¹H, ³¹P, and ¹³C) NMR spectroscopy. The ³¹P{¹H} NMR spectrum in CD₂- Cl_2 showed a doublet at -8.2 ppm for the mutually trans PMe₃ and a triplet at -20.0 ppm for the unique PMe₃, indicating that the PMe₃ ligands are meridionally coordinated to ruthenium. Apparently, the mutually trans PMe₃ ligands, which are nonequivalent, coincidently have the same chemical shift. The ${}^{13}C{}^{1}H$ NMR spectrum (in CDCl₃) showed the signals of the bridging ligand at 160.8 (Ru-CH), 129.9 (Ru-CH=CH), 53.2 (CH-(OH)), and 43.7 (CH₂) ppm. The vinyl group is trans to the unique PMe₃, as indicated by the large ${}^{2}J(PC)$ coupling constant (76.4 Hz). The structure of 4a has been confirmed by X-ray diffraction (see below).

The compound $HC \equiv CCH_2CH(OMs)CH(OMs)CH_2C \equiv$ CH (**2b**) was prepared by treating **2a** with $MsCl/NEt_3$. Reaction of **1** with **2b** produced $[RuCl(CO)(PPh_3)_2]_2(\mu$ -CH=CHCH_2CH(OMs)CH(OMs)CH_2CH=CH) (**3b**), which can be isolated as a red solid in high yield (Scheme 1). Complex **3b** could also be converted to the six-coordinated complex $[RuCl(CO)(PMe_3)_3]_2(\mu$ -CH=CHCH_2CH-(OMs)CH(OMs)CH_2CH=CH) (**4b**) by treatment with excess PMe_3. Compounds **3b** and **4b** have been characterized by elemental analysis and multinuclear (¹H, ³¹P, and ¹³C) NMR spectroscopy. Except for the additional NMR signals of OMs, the NMR data of complexes **3b**

⁽¹⁸⁾ Fox, H. H.; Lee, J. K.; Park, L. Y.; Schrock, R. R. Organometallics 1993, 12, 759.

⁽¹⁹⁾ See for example: (a) Guillaume, V.; Mahias, V.; Mari, A.; Lapinte, C. Organometallics **2000**, *19*, 1422. (b) Fernández, I.; Sierra, M. A.; Mancheño, M. J.; Gómez-Gallego, M.; Ricart, S. Organometallics **2001**, *20*, 4304. (c) Ulrich, K.; Guerchais, V.; Dötz, K. H.; Toupet, L.; Le Bozec, H. Eur. J. Inorg. Chem. **2001**, 725. (d) Rabier, A.; Lugan, N.; Mathieu, R. J. Organomet. Chem. **2001**, *617*, 681. (e) Briel, O.; Fehn, A.; Beck, W. J. Organomet. Chem. **1999**, *578*, 247.

⁽²⁰⁾ Torres, M. R.; Vegas, A.; Santos, A.; Ros, J. J. Organomet. Chem. 1986, 309, 169.

and **4b** are very similar to those of **3a** and **4a**, respectively, suggesting that they have similar coordination spheres.

Alcohols RCH₂CH(OH)R' could be converted to olefins RCH=CHR' on treatment with acids.²⁴ Dehydration of hydroxyhydrocarbon ligands promoted by Lewis acids is also known. For example, Werner et al. have observed that the rhodium complexes RhCl(P(*i*-Pr)₃)₂(=C=CHC-(OH)RR') reacted with alumina to give either vinylvinylidene complexes or allenylidene complexes;²⁵ we have shown that RuCl(CH=CHCH(OH)CHRR')(CO)(PPh₃)₂ reacted with alumina to give dienyl complexes RuCl-(CH=CHCH=CRR')(CO)(PPh₃)₂.^{21f} Dehydration reactions of RuCl(CH=CH-cyclo-C₆H₁₀(OH))(CO)(P(i-Pr)₃)₂²⁶ and RuCl(CH=CHCH(OH)'CHRR')(CO)(BSD)(PPh₃)₂ (BSD = benzo-2, 1, 3-selenadiazole) have also been described.²⁷ In this work, we have reacted complexes **3a** and 4a with various acids, to see if complexes with a linear (CH)₈ bridge could be prepared. No reaction was observed when 3a was treated with alumina at room temperature. Complex **3a** decomposed to a complicated mixture when it was treated with HBF₄·Et₂O or P₂O₅. Attempts to obtain (CH)8-bridged bimetallic complexes by treating 4a with various acids also failed. No reaction was observed when 4a was treated with acidic alumina at room temperature. A mixture of species were obtained when complex 4a was treated with P_2O_5 . One the decomposed products was identified to be trans-mer-RuCl₂(CO)(PMe₃)₃ (5).²⁸ Complex 4a reacted rapidly with aqueous HCl to give 5 and CH₂=CHCH₂CH(OH)- $CH(OH)CH_2CH=CH_2^{-}$ (6).²⁹

It is known that mesylates RCH₂CH(OMs)R' could be converted to olefins RCH=CHR' by base-induced elimination of HOMs.³⁰ Thus the reactions of **4b** with various bases were attempted with a hope to prepare (CH)₈bridged bimetallic complexes by elimination of HOMs. However, no reactions were observed when 4b was treated with K_2CO_3 or proton sponge. When **4b** was treated with the strong base $NaN(SiMe_3)_2$, a mixture of complexes was obtained. The ¹H NMR spectrum of the crude product did not show the characteristic CH-(OMs) signals of 4b, but showed many new peaks in the region 5–8 ppm, suggesting that elimination of HOMs from **4b** occurred. However, the ³¹P{¹H} NMR spectrum showed multipletes around -20 and -8 ppm, the chemical shifts of which are very close to those of the starting material 4b, implying that a mixture of species was generated. It was impossible to get pure compounds from the reactions.

Preparation of (3*E***,5***E***)-HC≡CCH=CHCH=CHC≡ CH (12). The results discussed above indicate that welldefined conjugated bimetallic complexes with a linear**

 $(CH)_8$ bridge could not be prepared from complexes 3 and 4. Thus it is necessary to find alternative routes to prepare bimetallic complexes with a linear (CH)₈ bridge. To this end, we have prepared the dialkyne (3E, 5E)-HC=CCH=CHCH=CHC=CH (12) and investigated its reaction with RuHCl(CO)(PPh₃)₃. Compound 12 has previously been briefly mentioned in a communication.³¹ In that work, 12 was generated by desilylation of (3E,5E)-Me₃SiC=CCH=CHCH=CHC=CSiMe₃(11), which was obtained in very low yield together with cis-cis, and cis-trans isomers by multistep synthesis from *trans*-HC=CCH₂CH=CHCH₂C=CH. However the detailed procedure to the compounds as well as the NMR spectroscocopic data of 12 were not given. It appears that the reported synthetic route is very laborious, and it is difficult to obtain pure 12 in substantial quantity. Thus we have developed a simpler synthetic route to 12.

Our synthetic route to **12** is outline in Scheme 2. Reactions of (E)-ICH=CHCO₂Et (**8**)³² with HC=CSiMe₃ (**7**) in the presence of PdCl₂(PPh₃)₂/CuI produced (E)-Me₃SiC=CCH=CHCO₂Et (**9**). Compound **9** could also be made by reacting Me₃SiC=CCHO with $(EtO)_2P(O)$ -CH₂CO₂Et in the presence of NaH.³³ Reduction of **9** with DIBALH in THF produced the aldehyde **10**. The aldehyde **10** underwent a Wittig reaction with Me₃SiC= CCH₂PPh₃Br (using NaN(SiMe₃)₂ as the base) to produce compound **11**. Treatment of **11** with NaOH produced **12**, which was isolated as a pale yellow solid. Compound **12** is unstable and polymerized readily when stored at room temperature. Thus it should be used immediately after it was produced. Compound **12** can be readily characterized by NMR spectroscopy. In

^{(24) (}a) Larock, R. C. *Comprehensive Organic Transformation*, 2nd ed.; Wiley-VCH: Weinheim, 1999. (b) Posner, G. H.; Shulman-Roskes, E. M.; Oh, C. H.; Carry, J. C.; Green, J. V.; Clark, A. B.; Dai, H. Anjeh, T. E. N. *Tetrahedron Lett.* **1991**, *32*, 6489. (c) Allen, C. F. H.; Bell, A. *Organic Synthesis Wiley*. New York, 1955: Collect Vol. 3, p. 312

Organic Synthesis, Wiley: New York, 1955; Collect. Vol. 3, p 312. (25) Werner, H.; Rappert, T.; Weidemann, W.; Wolf, J.; Mahr, N. Organometallics **1994**, *13*, 2721.

⁽²⁶⁾ Estereulas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Zeier, B. Organometallics 1994, 13, 4258.

⁽²⁷⁾ Harris, C. J.; Hill, A. F. Organometallics 1991, 10, 3903.

⁽²⁸⁾ Krassowski, D. W.; Nelson, J. H.; Brower, K. R.; Hauenstein, D.; Jacobson, R. A. *Inorg. Chem.* **1988**, *27*, 4294.

⁽²⁹⁾ Einhorn, C.; Luche, J. L. J. Organomet. Chem. 1987, 322, 177.
(30) See for example: (a) Zanoni, G.; Vidari, G. J. Org. Chem. 1995, 60, 5319. (b) Takano, S.; Shimazaki, Y.; Ogasawara, K. Tetrahedron Lett. 1990, 31, 3325.

⁽³¹⁾ Mitchell, G. H.; Sondheimer, F. J. Am. Chem. Soc. **1969**, *91*, 7520.

⁽³²⁾ Takeuchi, R.; Tanabe, K.; Tanaka, S. *J. Org. Chem.* **2000**, *65*, 1558.

⁽³³⁾ Krause, N. Chem. Ber. 1990, 123, 2173.

Scheme 3

particular, the ¹H NMR spectrum (in C_6D_6) showed one =CH signal at 2.79 ppm and two =CH signals at 5.26 and 6.30 ppm; the ¹³C{¹H} NMR spectrum (in C_6D_6) showed the acetylenic carbon signals at 82.0 and 82.7 ppm and the vinyl signals at 113.3 and 141.9 ppm.

Preparation of Bimetallic Complexes from 12. Reaction of **12** with **1** in dichloromethane produced the insertion product [RuCl(CO)(PPh₃)₂]₂(μ -CH=CHCH= CHCH=CHCH=CH) (**13**), which can be isolated as a purple solid in 92% yield (Scheme 2). In the ¹H NMR spectrum in CD₂Cl₂, the Ru–CH signal was observed at 7.96 ppm; the γ -CH and δ -CH were observed at 6.00 and 5.54 ppm, respectively; the β -CH is buried in the signals of PPh₃. The ³¹P{¹H} NMR spectrum in CD₂Cl₂ showed a singlet at 29.4 ppm, which is typical for RuCl-(CH=CHR)(CO)(PPh₃)₂.

Several related (CH)₈-bridged bimetallic complexes were prepared from complex 13. Treatment of 13 with PMe₃ produced the six-coordinated complex [RuCl(CO)- $(PMe_3)_3]_2(\mu$ -CH=CHCH=CHCH=CHCH=CH) (14). The PMe₃ ligands in 14 are meridionally coordinated to ruthenium, as indicated by the AM₂ pattern ${}^{31}P{}^{1}H$ NMR spectrum. The presence of the (CH)₈ chain is indicated by the ¹H NMR spectrum (in CD₂Cl₂), which showed the vinyl proton signals at 7.51 (Ru-CH), 6.45 (β -CH), 6.22 (γ -CH), and 5.93 (δ -CH) ppm. In the ¹³C- $\{^{1}H\}$ NMR spectrum (in CD₂Cl₂), the CH signals were observed at 172.7 (Ru–CH), 139.3 (β-CH), 137.2 (γ-CH), and 125.0 (δ -CH) ppm. The vinyl group is trans to the unique PMe₃, as indicated by the large ${}^{2}J(PC)$ coupling constant (78.0 Hz). The structure of 14 has been confirmed by X-ray diffraction study (see below).

Reactions of **13** with 4-phenylpyridine and 2,6-(Ph₂-PCH₂)₂C₅H₃N (PMP) give the corresponding six-coordinated complexes [RuCl(PhPy)(CO)(PPh₃)₂]₂(μ -CH=CHCH=CHCH=CHCH=CH)(**15**) and [RuCl(CO)(PMP)]₂-(μ -CH=CHCH=CHCH=CH)(**16**), respectively. These complexes have been characterized by NMR spectroscopy and elemental analysis. Closely related mononuclear complexes RuCl(CH=CHR)(L)(CO)(PPh₃)₂(L = 2e nitrogen donor ligands) have been prepared from the reaction of HC=CR with RuHCl(L)(CO)(PPh₃)₂.³⁴ A few ruthenium PMP complexes have been reported

recently, for example, $RuCl_2(PPh_3)(PMP)$ and $RuHX-(PPh_3)(PMP)$ (X = Cl, OAc).³⁵

Many C₈-bridged bimetallic complexes have been reported, for example, Cp*(NO)(PR₃)Re−(C≡C)₄−Re(NO)- $(PR_3)Cp^{*,7}Cp^{*}(dppe)Fe^{-(C \equiv C)_4 - Fe(dppe)Cp^{*,8}((tolyl)_3P)_2 - Fe(dppe)Cp^{*,8}((tol$ $(tolyl)Pt-(C \equiv C)_4-Pt(tolyl)(P(tolyl)_3)_2$,^{9a} $(tolyl)_3P)_2(C_6F_5) Pt-(C \equiv C)_4 - Pt(C_6F_5)(P(tolyl)_3)_2$, ^{9b} $Cp^*(CO)_2Fe-(C \equiv C)_4$ - $Fe(CO)_2Cp^{*}$, ¹⁰ $Cp(CO)_3M - (C \equiv C)_4 - M(CO)_3Cp$ (M = Mo, W),^{11a} and Cp(PPh₃)₂Ru-(C=C)₄-Ru(PPh₃)₂Cp.^{11b} To our knowledge, complexes 13-16 are the first examples of (CH)₈-bridged bimetallic complexes. In fact, only a few bimetallic complexes with linear (CH)_x bridges are known. Reported $(CH)_{x}$ -bridged bimetallic complexes include (TMP)Ru=CH-CH=Ru(TMP) (TMP = tetramesitylporphyrin),^{13a} Cp(Me₃P)₂Ru-CH=CH-ZrClCp₂,^{13b,c} $CpL_2Fe-(CH=CH)_2-FeCp(L_2)$ (L₂ = dppm, (CO)₂, (P-Ph₃)(CO)),¹⁴ Cl₂(PCy₃)₂Ru=CH-CH=CH=CH=RuCl₂-(PCy₃)₂,¹⁵ (PMe₃)₃(CO)ClRu-(CH=CH)₂-RuCl(CO)(P-Me₃)₃,¹⁶ [(dppe)(PPh₃)(CO)ClRu=CH-CH=CH-CH= CH-RuCl(CO)(PPh₃)(dppe)]BF₄,^{17b} and (dme)(RO)₂(ArN)- $Mo=CH-(CH=CH)_2-CH=MoNAr)(OR)_2(dme)$ (dme = MeOCH₂CH₂OMe).¹⁸

Description of the Structures of 4a and 14. The molecular structure of [RuCl(CO)(PMe₃)₃]₂(µ-CH=CH- $CH_2CH(OH)CH(OH)CH_2CH=CH)$ (4a) is depicted in Figure 1. The crystallographic details and selected bond distances and angles are given in Tables 1 and 2, respectively. As shown in Figure 1, the compound contains two ruthenium centers linked by a CH= CHCH₂CH(OH)CH(OH)CH₂CH=CH bridge. The two ruthenium centers are related by a C₂ rotation axis. The geometry around ruthenium can be described as a distorted octahedron with three meridionally bound PMe₃ ligands. The vinyl group is trans to the unique PMe₃ ligand, and the chloride is trans to the CO, as suggested by the solution NMR data. The mutually trans PMe₃ ligands are bent away from the unique PMe₃ but toward the vinyl ligand, as reflected by the P(1)-Ru-P(2) (96.32(3)°), P(1)-Ru-P(3) (94.80(3)°), C(11)-Ru-P(2) (84.49(6)°), and C(11)-Ru-(P3) (84.46(6)°) angles. Such a structural feature could be related to the steric interaction between the PMe₃ ligands. As one might expect, the unique Ru-P(1) bond (2.4010(7) Å)

^{(34) (}a) Santos, A.; López, J.; Galán, A.; González, J. J.; Tinoco, P.; Echavarren, A. M. Organometallics **1997**, *16*, 3482. (b) Romereo, A.; Santos, A.; López, J.; Echavarren, A. M. J. Organomet. Chem. **1990**, *391*, 219.

^{(35) (}a) Jia, G.; Lee, H. M.; Williams, I. D.; Lau, C. P.; Chen, Y. *Organometallics* **1997**, *16*, 3941. (b) Rahmouni, N.; Osborn, J. A.; De Cian, A.; Fischer, J.; Ezzamarty, A. *Organometallics* **1998**, *17*, 2470, and references therein.

Figure 1. Molecular structure of $[RuCl(CO)(PMe_3)_3]_2(\mu$ -CH=CHCH₂CH(OH)CH(OH)CH₂CH=CH) (4a). The hydrogen atoms of PMe₃ are omitted for clarity. Thermal ellipsoids are drawn at the 30% probability level.

Table 1. Crystal Data and Structure Refinemen	ts
for [RuCl(CO)(PMe ₃) ₃] ₂ -	
(µ-Ch=CHCH ₂ CH(OH)CH(OH)CH ₂ CH=CHCH=C	H)
(4a) and $[RuCl(CO)(PMe_3)_3]_2$ -	
$(\mu$ -CH=CHCH=CHCH=CHCH=CH) (14)	

	4a	14
formula	$C_{28}H_{62}Cl_2O_2P_6Ru_2$	C ₂₈ H ₆₆ Cl ₂ O ₄ P ₆ Ru ₂
fw	889.64	925.67
cryst syst	triclinic	monoclinic
space group	$P\overline{1}$	C2/c
a, Å	8.5217(12)	27.0706(17)
<i>b</i> , Å	9.0370(12)	8.5615(6)
<i>c</i> , Å	15.631(12)	18.7152(12)
α, deg	84.307(3)	
β , deg	80.258(3)	93.4720(10)
γ , deg	64.880(2)	
V, Å ³	1073.7(3)	4329(5)
Ζ	1	4
$d_{\rm calc}$, g cm ⁻³	1.376	1.420
θ range, deg	2.00 to 27.53	1.51 to 26.37
no. of reflns collected	7409	11 734
no. of ind reflns	4881 (<i>R</i> _{int} = 2.07%)	4413 ($R_{int} = 2.44\%$)
no. of obsd reflns	3912 ($I > 2\sigma(I)$)	
no. of params refined	197	190
final \hat{R} indices	R = 3.48%,	R = 3.06%,
$(I > 2\sigma(I))$	$wR_2 = 7.83\%$	$wR_2 = 6.55\%$
goodness of fit	0.952	1.049
largest diff peak, e Å ⁻³	0.731	0.493
$\begin{array}{c} \text{largest diff hole,} \\ e \ \mathring{A}^{-3} \end{array}$	-0.583	-0.307

is slightly longer than those of the mutually trans Ru-P bonds (2.3559(7) and 2.3592(7) Å), due to the strong trans influence of the vinyl ligand. It is noted that mutually trans Ru-P bonds are also shorter than the Ru-P bond trans to a vinyl ligand in RuH(CH= CMeCO₂Bu)(CO)(PPh₃)₃³⁶ and [RuCl(CO)(PEt₃)₃]₂(µ-CH=CHCH=CH).¹⁶ Complexes such as RuH(OAc)-(PPh₃)₃³⁷ and RuCl₂(PPh₃)₃,³⁸ where the unique phosphorus is not trans to a strong trans influence ligand, have mutually trans Ru-P bonds longer than the unique Ru–P bond. The Ru–C and $C(\alpha)$ – $C(\beta)$ bond distances of complex **4a** are within the range of those reported for ruthenium vinyl complexes.³⁹ It is very interesting to note that the vinyl groups are essentially coplanar with Cl-Ru-CO. Thus the atoms Cl(1), Ru-(1), C(10), O(1), C(11), and C(12) form a plane with maximum deviation from the least-squares plane of 0.049 Å for C(11). The coplanarity of the vinyl group and CO is expected because stabilization due to π interaction of CO and vinyl with metal centers is maximized in such a conformation.⁴⁰

Molecules of 4a are assembled in an interesting chain structure in the solid state through weak intermolecular hydrogen bonding between the two OH groups and the two CO ligands (see Figure 2). The O…OC distance is 3.189(3) Å, which is at the upper end of those of reported examples.⁴¹ Hydrogen bonding involving carbonyl ligands is currently receiving considerable attention in the field of solid state intermolecular interactions.⁴¹

The molecular structure of complex [RuCl(CO)- $(PMe_3)_3]_2(\mu$ -CH=CHCH=CHCH=CHCH=CH) (14) is depicted in Figure 3. The crystallographic details and selected bond distances and angles are given in Tables 1 and 3, respectively. As shown in Figure 3, the compound contains two ruthenium centers linked symmetrically by a linear (CH)8 bridge. There is an inversion center at the midpoint of the C4-C4A bond. Overall, the geometry around ruthenium is very similar to that of 4a.

The (CH)₈ ligand shows a single/double carboncarbon bond alternation. All the olefinic double bonds are in trans geometry. Like complex 4a, the vinyl groups are also essentially coplanar with Cl-Ru-CO. The atoms Cl(1), Ru(1), C(01), O(1), C(1), and C(2) are in a plane with maximum deviation from the least-squares plane of 0.025 Å for C(1). The carbon atoms of the (CH)₈ chain and the ruthenium atoms are also essentially coplanar, with maximum deviation from the leastsquares plane of 0.033 Å for C(1). The formal double bonds have an average bond distance of 1.344 Å, and the formal single bonds have an average bond distance of 1.443 Å. The difference in the average single and double bond distances is 0.099 Å. The structural parameters of the (CH)8 chain are similar to those of PhCH=CH(CH=CH)₂CH=CHPh⁴² and [MoTp*Cl(NO)]₂- $(\mu$ -4,4'-NC₅H₄(CH=CH)₄C₅H₄N).⁴³ In these complexes, the difference in the average single and double bond distances is 0.092 and 0.11 Å, respectively.

Electrochemical Study. Electrochemistry has often be used to probe metal-metal interactions in bimetallic complexes with σ , σ -bridging hydrocarbon chains.^{1g} Electrochemical properties of bimetallic complexes with C_xbridges have been extensively studied by cyclic volta-

⁽³⁶⁾ Komia, S.; Ito, T.; Cowie, M.; Yamamoto, A.; Ibers, J. A. J. Am. Chem. Soc. 1976, 98, 3874.

⁽³⁷⁾ Skapski, A. C.; Stephens, F. A. J. Chem. Soc., Dalton Trans. 1974, 390

⁽³⁸⁾ La Placa, S. J.; Ibers, J. A. Inorg. Chem. 1965, 4, 778.

⁽³⁹⁾ See for example: (a) Torres, M. R.; Santos, A.; Perales, A. Ros, J. J. Organomet. Chem. 1988, 353, 221. (b) Romero, A.; Santos, A.; Vegas, A. Organometallics 1988, 7, 1988. (c) López, J.; Romero, A.; Santos, A.; Vegas, A.; Echavarren, A. M.; Noheda, P. J. Organomet. Chem. **1989**, 373, 249. (e) Alcock, N. W.; Hill, A. F.; Melling, R. P. Organometallics **1991**, 10, 3898. (f) Wakatsuki, Y.; Yamazaki, H.; Kumegawa, N.; Satoh, T.; Satoh, J. Y. J. Am. Chem. Soc. 1991, 113, 9604

⁽⁴⁰⁾ Choi, S. H.; Bytheway, I.; Lin, Z.; Jia, G. Organometallics 1998, 17, 3974.

<sup>17, 3974.
(41)</sup> See for example: (a) Cabeza, J. A.; Llamazares, A.; Riera, V.; Trivedi, R.; Grepioni, F. Organometallics 1998, 17, 5580. (b) Braga, D.; Grepioni, F. Acc. Chem. Res. 1997, 30, 81. (c) Braga, D.; Grepioni, F.; Sabatino, P.; Desiraju, G. R. Organometallics 1994, 13, 3532.
(42) Drenth, W.; Wiebenga, E. H. Acta Crystallogr. 1955, 8, 755.
(43) McWhinnie, S. L. W.; Thomas, J. A.; Hamor, T. A.; Jones, C. J.; McCleverty, J. A.; Collison, D.; Mabbs, F. E.; Harding, C. J.; Yellowlees, L. J.; Hutchings, M. G. Inorg. Chem. 1996, 35, 760.

Table 2. Selected Bond Distances (Å) and Angles (deg) for [RuCl(CO)(PMe₃)₃]₂(µ-CH=CHCH₂CH(OH)CH(OH)CH₂CH=CHCH=CH) (4a)

Bond Distances (Å)					
Ru(1) - P(1)	2.4010(7)	Ru(1) - P(2)	2.3559(7)	Ru(1) - P(3)	2.3592(7)
Ru(1)-Cl(1)	2.4688(7)	Ru(1) - C(10)	2.096(3)	Ru(1) - C(11)	1.832(3)
C(11)-C(12)	1.316(3)	C(12)-C(13)	1.498(4)	C(13)-C(14)	1.521(3)
C(14)-C(14A) ^a	1.525(5)	O(1)-C(10)	1.122(3)		
		Bond Ang	gles (deg)		
P(1)-Ru(1)-P(2)		96.32(3)	P(1)-Ru(1)-P	(3)	94.80(3)
P(1)-Ru(1)-Cl(1)		93.25(3)	P(1)-Ru(1)-C	(10)	89.75(9)
P(1)-Ru(1)-C(11)		179.05(7)	P(2)-Ru(1)-P	(3)	166.90(3)
P(2)-Ru(1)-Cl(1)		85.48(3)	P(2)-Ru(1)-C	(10)	93.85(8)
P(2)-Ru(1)-C(11)		84.49(6)	P(3)-Ru(1)-C	1(1)	87.01(3)
P(3)-Ru(1)-C(10)		93.09(8)	P(3)-Ru(1)-C	(11)	84.46(6)
Cl(1) - Ru(1) - C(10)		176.98(9)	Cl(1)-Ru(1)-C	C(11)	87.29(7)
C(10) - Ru(1) - C(11)		89.71(11)	Ru(1) - C(10) - C(10	O(1)	177.9(3)
Ru(1) - C(11) - C(12)		132.8(2)			

^a Symmetry transformations used to generate equivalent atoms: -x+1, y, -z+1/2.

Figure 2. Hydrogen-bonding interactions in [RuCl(CO)- $(PMe_3)_3]_2(\mu$ -CH=CHCH₂CH(OH)CH(OH)CH₂CH=CH) (**4a**). The methyl groups of PMe₃ and the hydrogen atoms (except the OH) are omitted for clarity.

Figure 3. Molecular structure of $[RuCl(CO)(PMe_3)_3]_2(\mu-CH=CH-CH=CH-CH=CH-CH=CH)$ (14). The hydrogen atoms of PMe₃ are omitted for clarity. Thermal ellipsoids are drawn at the 40% probability level.

mmetry. In contrast, electrochemical properties of bimetallic complexes with $(CH)_x$ bridges have rarely been exploited. In this work, we have collected cyclic voltammograms of complexes **14–16** in dichloromethane containing 0.10 M *n*-Bu₄NClO₄ as the supporting electrolyte. For comparison, the cyclic voltammogram of complex **4b** has also been collected.

The cyclic voltammograms of complexes **14**–**16** have very similar features. The cyclic voltammogram of complex **14** is shown in Figure 4. As shown in Figure 4, complex **14** exhibited two partially reversible oxidation waves at -0.06 and 0.18 V vs Ag/AgCl. These two waves can be attributed to the formation of $[(PMe_3)_3(CO)CIRu-(CH=CH)_4-RuCl(CO)(PMe_3)_3]^+$ and $[(PMe_3)_3(CO)CIRu=CH-(CH=CH)_3-CH=RuCl(CO)-(PMe_3)_3]^{2+}$, respectively. The pyridine-containing complexes **15** and **16** can be oxidized more easily compared to the PMe_3-containing complex **14**. Complex **15** showed two partially reversible oxidation waves at -0.19 and -0.02 V vs Ag/AgCl. The two oxidation waves of complex

Table 3.	Selected Bond Distances (Å) and Angles
	(deg) for [RuCl(CO)(PMe ₃) ₃] ₂ -
(µ-C	CH=CHCH=CHCH=CHCH=CH) (14)

Bond Distances (Å)					
Ru(1)-P(1)	2.3604(8)	Ru(1) - P(2)	2.3662(9)	Ru(1)-P(3)	2.4056(8)
Ru(1)-Cl(1)	2.4771(8)	Ru(1) - C(1)	2.095(3)	Ru(1)-C(01)	1.817(3)
C(1)-C(2)	1.333(4)	C(2)-C(3)	1.450(4)	C(3)-C(4)	1.345(4))
$C(4) - C(4A)^{a}$	1.435(5)	O(1)-C(01)	1.145(4)		

Bond Angles (deg)				
P(1)-Ru(1)-P(2)	167.48(3)	P(1) - Ru(1) - P(3)	95.60(3)	
P(1)-Ru(1)-Cl(1)	86.06(3)	P(1)-Ru(1)-C(1)	85.59(8)	
P(1)-Ru(1)-C(01)	93.42(11)	P(2)-Ru(1)-P(3)	94.10(3)	
P(2)-Ru(1)-Cl(1)	85.38(3)	P(2)-Ru(1)-C(1)	85.01(9)	
P(2)-Ru(1)-C(01)	94.80(11)	P(3)-Ru(1)-C1(1)	94.04(3)	
P(3)-Ru(1)-C(1)	177.59(9)	P(3)-Ru(1)-C(01)	88.07(10)	
Cl(1) - Ru(1) - C(1)	88.12(9)	Cl(1) - Ru(1) - C(01)	177.86(10)	
C(1) - Ru(1) - C(01)	88.77(13)	Ru(1)-C(01)-O(1)	178.8(4)	
Ru(1) - C(1) - C(2)	132.7(2)	C(1)-C(2)-C(3)	125.4(3)	
C(2) - C(3) - C(4)	126.1(3)	$C(3)-C(4)-C(4A)^{a}$	125.8(4)	

^{*a*} Symmetry transformations used to generate equivalent atoms: -x+2, -y, -z+1.

Figure 4. Cyclic voltammogram of $[RuCl(CO)(PMe_3)_3]_2$ -(μ -CH=CH-CH=CH-CH=CH-CH=CH) (14).

16 were observed at -0.22 and -0.08 V vs Ag/AgCl. These two waves can be attributed to the formation of $[L_5Ru-(CH=CH)_4-RuL_5]^+$ and $[L_5Ru=CH-(CH=CH)_3-CH=RuL_5]^{2+}$, respectively.

The peak separations of the two oxidation waves for complexes **14**, **15**, and **16** are dependent on ligands and are at 0.24, 0.17, and 0.14 V, respectively. The peak separations are smaller than that reported for the $(CH)_4$ -bridged complex $Cp(dppm)Fe-(CH=CH)_2$ -Fe- $(dppm)Cp (0.44 V).^{14b}$ Observation of two oxidation waves for complexes **14–17** may imply that the two metal centers can interact with each other. For comparison, it is noted that the cyclic voltammogram of complex **4a**, in which the metal centers are connected by the nonconjugated bridge CH=CH-CH₂CH(OMs)-

CH(OMs)CH₂CH=CH, showed only one irreversible oxidation peak at 1.09 V vs Ag/AgCl.

The electrochemical properties of C₈-bridged bimetallic complexes Cp*(dppe)Fe−(C≡C)₄−Fe(dppe)Cp*8 and $Cp^{*}(NO)(PR_{3})Re^{-}(C \equiv C)_{4} - Re(NO)(PR_{3})Cp^{*7}$ have been reported. The complex $Cp^*(dppe)Fe^{-(C \equiv C)_4 - Fe(dppe)}$ -Cp* exhibits two oxidation waves at -0.23 and 0.20 V vs SCE with a peak separation of 0.43 V; the complex $Cp^{*}(NO)(PPh_{3})Re^{-}(C \equiv C)_{4} - Re(NO)(PPh_{3})Cp^{*}$ exhibits two oxidation waves at 0.24 and 0.52 V vs SCE with a peak separation of 0.28 V; the complex Cp*(NO)(PCy₃)- $Re-(C \equiv C)_4 - Re(NO)(PCy_3)Cp^*$ exhibited two oxidation waves at 0.11 and 0.43 V vs SCE with a peak separation of 0.22 V.

Summary. We have successfully prepared bimetallic complexes with metal centers bridged by CH=CHCH₂-CH(OH)CH(OH)CH2CH=CH or CH=CHCH=CHCH= CHCH=CH. The structures of $[RuCl(CO)(PMe_3)_3]_2(\mu$ -CH=CHCH₂CH(OH)CH(OH)CH₂CH=CH) (4a) and [Ru- $Cl(CO)(PMe_3)_3]_2(\mu-CH=CHCH=CHCH=CHCH=CH)$ (14) have been confirmed by X-ray diffraction. Electrochemical study shows that the metal centers in bimetallic complexes containing the CH=CHCH=CHCH= CHCH=CH bridge interact with each other.

Experimental Section

All manipulations were carried out at room temperature under a nitrogen atmosphere using standard Schlenk techniques, unless otherwise stated. Solvents were distilled under nitrogen from sodium-benzophenone (hexane, diethyl ether, THF, benzene) or calcium hydride (dichloromethane, CHCl₃). The starting materials RuHCl(CO)(PPh₃)₃,⁴⁴ HC≡CCH₂CH (OH)CH(OH)CH₂C≡CH,²³ ethyl (E)-3-iodo-2-propenate,³² and 2,6-(Ph₂PCH₂)₂C₅H₃N (PMP)⁴⁵ were prepared according to literature methods. Microanalyses were performed by M-H-W Laboratories (Phoenix, AZ). ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were collected on a Bruker ARX-300 spectrometer (300 MHz). ¹H and ¹³C NMR chemical shifts are relative to TMS, and ³¹P NMR chemical shifts are relative to 85% H₃PO₄.

The electrochemical measurements were performed with a PAR model 273 potentiostat. A three-component electrochemical cell was used with a glassy-carbon electrode as the working electrode, a platinum wire as the counter electrode, and a Ag/ AgCl electrode as the reference electrode. The cyclic voltammograms were collected with a scan rate of 100 mV/s in CH₂Cl₂ containing 0.10 M *n*-Bu₄NClO₄ as the supporting electrolyte. The peak potentials reported were referenced to Ag/AgCl. The ferrocene/ferrocenium redox couple was located at 0.26 V under our experimental conditions.

[RuCl(CO)(PPh₃)₂]₂(µ-CH=CHCH₂CH(OH)CH(OH)-CH₂CH=CH) (3a). A solution of 1,7-octadiyne-4,5-diol (2a) (155 mg, 1.12 mmol) in CH₂Cl₂ (5 mL) was slowly added to a suspension of RuHCl(CO)(PPh₃)₃ (2.15 g, 2.26 mmol) in CH₂-Cl₂ (30 mL). The reaction mixture was stirred at room temperature for 5 min, and then the volume of the blood red reaction mixture was reduced to ca. 5 mL under vacuum. Diethyl ether (60 mL) was added to the reaction mixture to give an orange solid. The solid was collection by filtration, washed with diethyl ether (3 \times 30 mL), and dried under vacuum. Yield: 1.32 g, 77.7%. Anal. Calcd for C₈₂H₇₂Cl₂O₄P₄-Ru₂: C, 64.80; H, 4.78. Found: C, 64.71; H, 4.82. ³¹P{¹H} NMR (121.50 MHz, CD_2Cl_2): δ 30.5 (d, J(PP) = 322.4 Hz), 29.8 (d, J(PP) = 322.4 Hz). ¹H NMR (300.13 MHz, CD₂Cl₂): δ 1.9 (br, 4 H, CH₂), 2.8 (br, 2 H, CH (OH)), 4.68 (m, 2 H, Ru-CH=

CH), 7.18 (d, J(HH) = 13.4 Hz, 2 H, Ru-CH), 7.4-7.7 (m, 60 H, PPh₃). ¹³C{¹H} NMR (75.47 MHz, CDCl₃): δ 42.0 (s, CH₂), 53.5 (s, CH(OH)), 128.2-135.1 (m, PPh₃), 132.5 (s, Ru-CH= *C*H), 142.3 (t, *J*(PC) = 9.8 Hz, Ru–CH), 203.1 (t, *J*(PC) = 15.6 Hz, Ru-CO).

 $[RuCl(CO)(PMe_3)_3]_2(\mu-CH=CHCH_2CH(OH)CH(OH)-$ CH₂CH=CH) (4a). A 1 M THF solution of PMe₃ (10 mL, 10 mmol) was added to a solution of complex 3a (0.40 g, 0.26 mmol) in THF (30 mL). The reaction mixture was stirred at room temperature for 3 days to give a light pink solution. The volume of the reaction mixture was reduced to ca. 5 mL under vacuum. Addition of diethyl ether (40 mL) to the residue generated a white solid, which was collected by filtration, washed with diethyl ether (2 imes 30 mL), and dried under vacuum. Yield: 0.18 g, 71%. Anal. Calcd for C₂₈H₆₆Cl₂O₄P₆-Ru₂: C, 36.28; 7.18. Found: C, 36.75; H, 6.95. ³¹P{¹H} NMR (121.50 MHz, CD₂Cl₂): δ -20.0 (t, J(PP) = 22.5 Hz), -8.2 (d, J(PP) = 22.5 Hz). ¹H NMR (300.13 MHz, CD₂Cl₂): δ 1.47 (t, J(PH) = 3.2 Hz, 18 H, PMe₃), 1.48 (t, J(PH) = 3.2 Hz, 18 H, PMe₃), 1.56 (d, J(PH) = 6.5 Hz, 18 H, PMe₃), 2.38 (br, 4 H, CH₂), 3.61 (m, 2 H, CH(OH)), 5.53 (m, 2 H, Ru-CH=CH), 6.94 (m, 2 H, Ru-CH). ¹³C{¹H} NMR (75.47 MHz, CDCl₃): δ 16.4 $(t, J(PC) = 7.8 \text{ Hz}, PMe_3), 19.9 (d, J(PC) = 20.7 \text{ Hz}, PMe_3),$ 43.7 (d, J(PC) = 8.2 Hz, CH_2), 53.2 (t, J(PC) = 27.2 Hz, CH_2 (OH)), 129.9 (s, Ru-CH=CH), 160.8 (dt, J(PC) = 76.4, 16.2 Hz, Ru-CH), 202.4 (q, J(PC) = 13.9 Hz, Ru-CO).

4,5-Bis(methanesulfonyl)-1,7-octadiyne (2b). To a vigorously stirred solution of 2a (0.25 g, 1.80 mmol) in CH₂Cl₂ (20 mL) pre-cooled at 0 °C was slowly added methanesulfonyl chloride (0.40 mL, 5.2 mmol) and then triethylamine (0.80 mL, 5.7 mmol), while the temperature was maintained at 0 °C. After the addition was completed, the mixture was allowed to warm to room temperature and stirred for an additional 30 min, and the reaction was quenched with 1 N HCl aqueous solution. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (10 mL). The combined organic extracts were washed with saturated (NH₄)₂SO₄ and NaCl solutions, dried over MgSO₄, filtered, and concentrated to give an oil. The crude product was purified by column chromatography (silica gel, hexane/EtOAc = 1:1) to give 2bas a yellow oil. Yield: 0.36 g, 68%. ¹H NMR (300.13 MHz, CDCl₃): δ 2.28 (s, 2 H, HC≡C), 2.93 (m, 4 H, CH₂), 3.27 (s, 6 H, CH₃), 5.12 (m, 2 H, HCOSO₂Me). ¹³C{¹H} NMR (75.47 MHz, CDCl₃): ∂ 21.7 (s, CH₂), 38.8 (s, CH₃), 72.8 (s, HC≡C), 76.9 (s, C≡CH), 77.1 (s, H*C*OSO₂Me).

[RuCl(CO)(PPh₃)₂]₂(µ-CH=CHCH₂CH(OMs)CH(OMs)-CH₂CH=CH) (3b). To a suspension of RuHCl(CO)(PPh₃)₃ (3.20 g, 3.36 mmol) in CH₂Cl₂ (50 mL) was slowly added a solution of 2b (0.57 g, 1.9 mmol) in CH₂Cl₂ (20 mL). The reaction mixture was stirred for 30 min to give a red solution, which was filtered through a column of Celite. The solvent of the filtrate was removed under vacuum. The residue was washed with diethyl ether and dried under vacuum to give a deep red solid. Yield: 2.4 g, 86%. Anal. Calcd for C₈₄H₇₆-Cl₂O₈P₄S₂Ru₂: C, 60.25; H, 4.58. Found: C, 60.31; H, 4.60. ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ 30.0 (d, J(PP) = 320.2 Hz), 29.0 (d, J(PP) = 320.2 Hz). ¹H NMR (CD₂Cl₂, 300.13 MHz): δ 1.93 (m, 2 H, CHH), 2.25 (m, 2 H, CHH), 2.74 (s, 6 H, Me), 4.42 (s, 2 H, HCOSO₂Me), 4.61 (m, 2 H, RuCH=CH), 7.24-7.67 (m, 62 H, PPh₃, Ru-CH).

[RuCl(CO)(PMe₃)₃]₂(µ-CH=CHCH₂CH(OMs)CH(OMs)-**CH₂CH=CH) (4b).** To a solution of complex **3b** (1.60 g, 1.28 mmol) in THF (50 mL) was added a 1 M THF solution of PMe₃ (13.0 mL, 13.0 mmol). The reaction mixture was stirred for 15 h. The solvents were removed completely. Diethyl ether (40 mL) was added, and the mixture was stirred for 30 min to give a white solid, which was collected by filtration, washed with diethyl ether, and dried under vacuum to give a white solid. Yield: 1.2 g, 87%. Anal. Calcd for C₃₀H₇₀Cl₂O₈P₆S₂-Ru₂·0.5C₂H₅OC₂H₅: C, 34.35; H, 6.77. Found: C, 34.33; H, 6.48. ³¹P{¹H} NMR (121.5 MHz, C₆D₆): δ -20.0 (t, J(PP) =

⁽⁴⁴⁾ Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F.;
Wonchoba, E. R.; Parshall, G. W. *Inorg. Synth.* **1974**, *15*, 45.
(45) Dahlhoff, W. V.; Nelson, S. M. *J. Chem. Soc. (A)* **1971**, 2184.

23.6 Hz), -8.0 (d, J(PP) = 23.1 Hz). ¹H NMR (300.13 MHz, C₆D₆): δ 1.22 (d, J(PH) = 6.6 Hz, 18 H, PMe₃), 1.44 (t, J(PH) = 3.6 Hz, 18 H, PMe₃), 1.48 (t, J(PH) = 3.3 Hz, 18 H, PMe₃), 2.79 (s, 6 H, MeSO₃), 3.10 (br, 4 H, CH₂), 5.44 (s, 2 H, *H*COSO₂-Me), 6.00 (m, 2 H, RuCH=*CH*), 7.63 (m, 2 H, Ru-CH).

Reaction of Hydrochloric Acid with [RuCl(CO)(P-Me₃)₃]₂(\mu-CH=CHCH₂CH(OH)CH(OH)CH₂CH=CH). A mixture of 4a (60 mg, 0.065 mmol), CDCl₃ (0.5 mL), and hydrochloric acid (37% aqueous solution, 0.05 mL) was allowed to stand for 30 min. The solution was subjected to column chromatography (silica gel, eluent: MeOH) to give RuCl₂(CO)-(PMe₃)₃ (5)²⁸ and CH₂=CHCH₂CH(OH)CH(OH)CH₂CH=CH₂ (**6**),²⁹ which have been reported previously. Characterization data for **5**: ³¹P{¹H} NMR (121.5 MHz, CD₃OD): δ -8.8 (d, J(PP) = 29.6 Hz), 10.4 (t, J(PP) = 29.6 Hz). ¹H NMR (300.13 MHz, CD₃OD): δ 1.55 (d, J(PH) = 9.5 Hz, 9 H, PMe₃), 1.59 (t, J(PH) = 3.8 Hz, 18 H, PMe₃). Characterization data for **6**: ¹H NMR (300.13 MHz, CD₃OD): δ 2.34 (m, 4 H, CH₂), 3.39 (br, 2 H, OH), 3.58 (m, 2 H, OCH), 5.14 (m, 4 H, =CH₂), 5.90 (m, 2 H, =CH).

(E)-Me₃SiC=CCH=CHCOOEt (9). To a mixture of ethyl (E)-3-iodo-2-propenate (6.47 g, 28.6 mmol), PdCl₂(PPh₃)₂ (0.30 g, 0.43 mmol), and CuI (0.050 g, 0.26 mmol) in Et₃N (100 mL) was added trimethylsilylacetylene (3.34 g, 34.0 mmol). The reaction mixture was stirred at 50 °C for 15 h. After the mixture was cooled to room temperature, diethyl ether (100 mL) and water (100 mL) were added, and the aqueous layer was extracted with 2×70 mL of diethyl ether. The combined organic layers were dried over MgSO₄. The solvents were removed by rotary evaporation, and the residue was purified by column chromatography (silica gel, eluent: ethyl acetate/ hexane, 2:98) to give a yellow oil. Yield: 4.3 g, 77%. The compound has been synthesized previously by an alternative route.³³ ¹H NMR (300.13 MHz, CDCl₃): δ 0.23 (s, 9 H, SiMe₃), 1.29 (t, J(HH) = 7.0 Hz, 3 H, CH₃), 4.22 (q, J(HH) = 7.0 Hz, 2 H, OCH₂), 6.25 (d, J(HH) = 16.0 Hz, 1 H, HC=), 6.72 (d, J(HH) = 16.0 Hz, 1 H, =CHCOOEt). ¹³C{¹H} NMR (75.47) MHz, CDCl₃): δ -0.7 (s, SiMe₃), 13.9 (s, CH₃), 60.5 (s, OCH₂), 101.0 (s, $C \equiv CSiMe_3$), 104.5 (s, $C \equiv CSiMe_3$), 124.5 (s, HC=), 130.9 (s, =CHCOOEt), 165.5 (s, CO).

(E)-Me₃SiC=CCH=CHCHO (10). A solution of 9 (2.62 g, 13.4 mmol) in CH₂Cl₂ (30 mL) was cooled to -78 °C. A 1 M CH₂Cl₂ solution of diisobutylalumium hydride (13.0 mL, 13.0 mmol) was slowly added to the solution at such a rate that the temperature did not exceed -75 °C. The reaction mixture was stirred at -75 to -70 °C for an additional 1 h. Then MeOH (10 mL) was slowly added while the temperature of the mixture was maintained at -75 °C. Immediately after the addition, a 20% aqueous potassium tartrate solution (30 mL) was added to the cold reaction mixture. The cooling bath was removed, the mixture was stirred for 15 min, and then diethyl ether (20 mL) was added. The organic layer was separated, and the aqueous layer was extracted with diethyl ether (2 imes15 mL). The combined organic layers were dried over MgSO₄. The solvents were then removed by rotary evaporation. The residue was purified by column chromatograph (silica gel, eluent: ethyl acetate in hexane = 5%, 10% in turn) to give a yellow oil. Yield: 1.4 g, 69%. Anal. Calcd for C₈H₁₂OSi: C 63.11; H, 7.94. Found: C, 62.57; H, 7.71. MS(CI): m/z 153 [M + 1]. ¹H NMR (300.13 MHz, CDCl₃): δ 0.26 (s, 9 H, SiMe₃), 6.47 (dd, J(HH) = 15.9, 7.4 Hz, 1 H, =CHCHO), 6.59 (d, J(HH) = 15.9 Hz, 1 H, =CH), 9.56 (d, J(HH) = 7.4 Hz, 1 H, CHO). $^{13}C{^{1}H}$ NMR (75.47 MHz, CDCl₃): δ -0.9 (s, SiMe₃), 100.2 (s, C≡CSiMe₃), 110.9 (s, C≡CSiMe₃), 131.7 (s, HC=), 139.7 (s, =CHCHO), 192.7 (s, CHO).

(*3E*,*5E*)-Me₃SiC=CCH=CHCH=CHC=CSiMe₃ (11). To a slurry of (3-trimethylsilyl-2-propynyl)triphenylphosphonium bromide (3.58 g, 7.89 mmol) in THF (40 mL) was added a 1 M THF solution of NaN(SiMe₃)₂ (7.5 mL, 7.5 mmol). The mixture was stirred at room temperature for 30 min, and then a solution of **10** (1.20 g, 7.89 mmol) in THF (20 mL) was added

slowly. The resulting solution was stirred for 30 min, and then water (80 mL) was added. The layers were separated, and the aqueous layer was further extracted with diethyl ether (3 × 50 mL). The combined organic layers were washed with a saturated aqueous solution of sodium chloride (2 × 50 mL) and dried over MgSO₄, filtered, and then concentrated under rotary evaporation. The crude product was purified by column chromatography (silica gel, eluent: hexane) to give a yellow solid. Yield: 1.1 g, 59%. ¹H NMR (300.13 MHz, CDCl₃): δ 0.21 (s, 18 H, SiMe₃), 5.70 (m, 2 H, HC=), 6.63 (m, 2 H, =CH). ¹³C{¹H} NMR (75.47 MHz, CDCl₃): δ -0.3 (s, SiMe₃), 99.5 (s, C=C), 103.9 (s, C=C), 113.5 (s, CH=CH), 141.2 (s, CH=CH).

(*3E*,*5E*)-HC=CCH=CHCH=CHC=CH (12). To a mixture of sodium hydroxide aqueous solution (50%, 10 mL) and EtOH (80 mL) was slowly added **11** (1.4 g, 5.9 mmol) in EtOH (20 mL). The resulting solution was stirred for 4 h, and then a saturated aqueous solution of sodium chloride (70 mL) was added to the mixture. The solution was extracted with hexane (4 × 60 mL). The solvents of the extraction were removed to give a brown-yellow solid. Yield: 0.41 g, 68%. ¹H NMR (300.13 MHz, C₆D₆): δ 2.79 (d, *J*(HH) = 2.2 Hz, 2 H, HC=C), 5.26 (m, 2 H, HC=C), 6.30 (m, 2 H, =CH-C=C). ¹³C{¹H} NMR (75.47 MHz, C₆D₆): δ 82.0 (s, H*C*=C), 82.7 (s, *C*=CH), 113.3 (s, HC=), 141.9 (s, =CH).

[RuCl(CO) (PPh₃)₂]₂(\mu-CH=CHCH=CHCH=CHCH=CHCH= CH) (13). To a suspension of RuHCl(CO)(PPh₃)₃ (3.5 g, 3.67 mmol) in CH₂Cl₂ (50 mL) was slowly added a solution of **12** (0.300 g, 2.94 mmol) in CH₂Cl₂ (30 mL). The reaction mixture was stirred for 30 min to give a red solution. The reaction mixture was filtered through a column of Celite. The volume of the filtrate was reduced to ca. 10 mL under vacuum. Addition of hexane (80 mL) to the residue produced a purple solid, which was collected by filtration, washed with hexane, and dried under vacuum. Yield: 2.5 g, 92%. Anal. Calcd for C₈₂H₆₈Cl₂O₂P₄Ru₂: C, 66.44; H, 4.62. Found: C, 66.38; H, 4.88. ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ 29.4 (s). ¹H NMR (300.13 MHz, CD₂Cl₂): δ 5.54 (m, 2 H, δ -CH), 6.00 (m, 2 H, γ -CH), 7.41–7.73 (m, 62 H, β -CH, PPh₃), 7.96 (br d, *J*(HH) = 12.7 Hz, 2 H, Ru–CH).

[RuCl(CO)(PMe₃)₃]₂(µ-CH=CHCH=CHCH=CHCH= CH) (14). To a solution of complex 13 (0.5 g, 0.34 mmol) in CH₂Cl₂ (50 mL) was added a 1 M THF solution of PMe₃ (5.0 mL, 5.0 mmol). The reaction mixture was stirred for 10 h. The volume of the reaction mixture was reduced to ca. 2 mL, and then hexane (20 mL) was added. The pale yellow solid was collected by filtration, washed with hexane, and dried over vacuum. Yield: 0.26 g, 86%. Anal. Calcd for C₂₈H₆₂Cl₂O₂P₆-Ru₂·CH₂Cl₂: C, 35.74; H, 6.62. Found: C, 36.00; H, 6.16. ³¹P-{¹H} NMR (121.5 MHz, CD₂Cl₂): δ -20.5 (t, *J*(PP) = 22.6 Hz), -8.45 (d, J(PP) = 22.6 Hz). ¹H NMR (300.13 MHz, CD₂Cl₂): δ 1.45 (t, J(PH) = 3.4 Hz, 36 H, PMe₃), 1.52 (d, J(PH) = 6.8 Hz, 18 H, PMe₃), 5.93 (m, 2 H, δ -CH), 6.22 (m, 2 H, γ -CH), 6.45 (m, 2 H, β -CH), 7.51 (ddt, J(HH) = 17.0 Hz, J(PH) = 8.8, 4.0 Hz, 2 H, Ru-CH). ¹³C{¹H} NMR (75.5 MHz, CD₂Cl₂): δ 17.8 (t, J(PC) = 15.3 Hz, PMe₃), 21.1 (d, J(PC) = 20.8 Hz, PMe₃), 125.0 (s, δ -CH), 137.2 (s, γ -CH), 139.3 (s, β -CH), 172.7 (dt, J(PC) = 78.0, 18.5 Hz, Ru-CH), 203.8 (q, J(PC) = 11.5)Hz, CO)

[RuCl(PhPy)(CO)(PPh₃)₂]₂(μ-CH=CHCH=CHCH= CHCH=CH) (15). A mixture of complex 13 (0.50 g, 0.34 mmol) and 4-phenylpyridine (0.21 g, 1.36 mmol) in CH₂Cl₂ (30 mL) was stirred for 30 min. The solution was filtered through a column of Celite. The volume of the filtrate was reduced to ca. 5 mL under vacuum. Addition of hexane (30 mL) to the residue produced a yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.51 g, 84%. Anal. Calcd for C₁₀₄H₈₆Cl₂N₂O₂P₄Ru₂·CH₂-Cl₂: C, 67.17; H, 4.72; N, 1.49. Found: C, 67.46; H, 5.14; N, 1.55. ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ 25.2 (s). ¹H NMR (300.13 MHz, CD₂Cl₂): δ 5.74 (m, 2 H, δ-CH), 6.00 (m, 2 H, γ-CH), 6.88 (br, 4 H, C₅H₂H₂N), 7.27–7.65 (m, 72 H, Ph, β-CH), 8.20 (br d, J(HH) = 16.1 Hz, 2 H, Ru–CH), 8.57 (br, 4 H, $C_5H_2H_2N$).

[RuCl(CO)(PMP)]₂(μ-CH=CHCH=CHCH=CHCH= CH) (16). A mixture of complex 13 (0.50 g, 0.34 mmol) and PMP (0.32 g, 0.70 mmol) in CH₂Cl₂ (30 mL) was stirred for 15 h. The solution was filtered through a column of Celite. The volume of the filtrate was reduced to ca. 5 mL under vacuum. Addition of hexane (30 mL) to the residue produced a pale yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.38 g, 89%. Anal. Calcd for C₇₂H₆₂Cl₂N₂O₂P₄Ru₂: C, 62.47; H, 4.52; N, 2.02. Found: C, 62.19; H, 4.76; N, 2.02. ³¹P{¹H} NMR (121.5 MHz, CD₂Cl₂): δ 48.8 (s). ¹H NMR (300.13 MHz, CD₂Cl₂): δ 4.26 (m, 4 H, CH*H*(C₅H₃N)CH*H*), 4.66 (m, 4 H, C*H*H(C₅H₃N)C*H*H), 5.34 (m, 2 H, δ-CH), 5.71 (m, 2H, γ-CH), 7.15–7.78 (m, 42 H, PPh₂, β-CH), 7.95 (m, 2 H, Ru–CH).

Crystallographic Analysis for [RuCl(CO)(PMe₃)₃]₂(µ-CH=CHCH2CH(OH)CH(OH)CH2CH=CH) (4a). Crystals suitable for X-ray diffraction were grown from a CH₂Cl₂ solution layered with hexane. A crystal was mounted on a glass fiber, and the diffraction intensity data were collected on a Bruker CCD diffractometer with graphite-monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). Lattice determination and data collection were carried out using SMART version 5.625 software. Data reduction and absorption corrections were performed using SAINT version 6.26 and SADABS version 2.03. Structure solution and refinement were performed using the SHELXTL version 6.10 software package. The molecule has a crystallographic 2-fold axis; thus the asymmetric unit contains half of one molecule. All non-hydrogen atoms were refined anisotropically. The hydroxy proton was seen in the Fourier difference map, and all hydrogens were included in their idealized positions and refined using a riding model. Further crystallographic details are summarized in Table 1, and selected bond distances and angles are given in Table 2.

Crystallographic Analysis for [RuCl(CO)(PMe₃)₃]₂(\mu-CH=CHCH=CHCH=CH) (14). Crystals suitable for X-ray diffraction were grown from a CH₂Cl₂ solution layered with hexane. A colorless single crystal with approximate dimensions of $0.20 \times 0.20 \times 0.15$ mm was mounted on a glass fiber for diffraction experiments. Intensity data were collected on a Bruker SMART CCD area detector and corrected for SADABS (Siemens Area Detector Absorption)⁴⁶ (from 0.7975 to 1.0000 on I). The structure was solved by Patterson methods, expanded by difference Fourier syntheses, and refined by full matrix least-squares on F^2 using the Bruker SHELXTL (version 5.10)⁴⁷ program package. The molecule is centrosymmetric, with the inversion center at the midpoint of C4 and C4A; thus the crystallographic asymmetric unit contains half of one molecule. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms (H1, H2, H3, H4) of the C₈H₈ backbone were located from the difference Fourier maps and refined with isotropic thermal parameters. The remaining hydrogen atoms were introduced at their geometric positions and refined as riding atoms. Further crystallographic details are summarized in Table 1, and selected bond distances and angles are given in Table 3.

Acknowledgment. The authors acknowledge financial support from the Hong Kong Research Grants Council.

Supporting Information Available: Tables of bond distances and angles, atomic coordinates and equivalent isotropic displacement coefficients, and anisotropic displacement coefficients for [RuCl(CO)(PMe₃)₃]₂(μ -CH=CHCH₂CH=(OH)CH(OH)CH₂CH=CH)(**4a**) and [RuCl(CO)(PMe₃)₃]₂(μ -CH=CH-CH=CH(H=CH)(**4a**) and [RuCl(CO)(PMe₃)₃]₂(μ -CH=CH-CH=CHCH=CH)(**14**). The materials are available free of charge via the Internet at http://pubs.acs.org.

OM020442E

⁽⁴⁶⁾ Sheldrick, G. M. SADABS, Empirical Absorption Correction Program, University of Göttingen: Germany, 1996.
(47) Bruker SHELXTL Reference Manual (Version 5.1); Bruker

⁽⁴⁷⁾ Bruker SHELXTL Reference Manual (Version 5.1); Bruker Analytical X-Ray Systems Inc.: Madison, WI, 1997.