Synthetic, Structural, Chemical, and Electrochemical Studies of the Metallatricarbadecaboranyl Analogues of Ferrocene, Ruthenocene, and Osmocene and the Observation of a Reversible $\eta^6-\eta^4$ Tricarbadecaboranyl Coordination that Is Analogous to the $\eta^5-\eta^3$ Cyclopentadienyl Ring-Slippage Process

Bhaskar M. Ramachandran, ¹ Sabrina M. Trupia, ² William E. Geiger, *, ² Patrick J. Carroll, ¹ and Larry G. Sneddon*, ¹

Departments of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, and University of Vermont, Burlington, Vermont 05405

Received September 12, 2002

The tricarbadecaboranyl anions, 6-R-nido-5,6,9- $C_3B_7H_9^-$ (R = CH₃ or C_6H_5), have been employed to produce a series of metallatricarbadecaboranyl analogues of the group VIII metallocenes, $(\eta^5-C_5H_5)_2M$, M = Fe, Ru, and Os, including $1-(\eta^5-C_5Me_5)-2-Me-closo-1,2,3,4-$ RuC₃B₇H₉ (3), commo-Ru-(2-Me-closo-1,2,3,4-RuC₃B₇H₉)₂ (4), commo-Os-(4'-Me-closo-1',2',3',4'- $OsC_3B_7H_9$) (2-Me-closo-1,2,3,4-OsC₃B₇H₉) (5), commo-Os-(2-Me-closo-1,2,3,4-OsC₃B₇H₉)₂ (6), $1-(\eta^5-C_5H_5)-2-Ph-closo-1,2,3,4-FeC_3B_7H_9$ (7), and $1-(\eta^5-C_5Me_5)-2-Ph-closo-1,2,3,4-RuC_3B_7H_9$ (8). In the mixed ligand complexes 3, 7, and 8, formal Fe^{2+} and Ru^{2+} ions are sandwiched between the tricarbadecaboranyl and cyclopentadienyl monoanionic ligands, while in complexes 4, 5, and 6 the Ru²⁺ and Os²⁺ ions are sandwiched between two tricarbadecaboranyl ligands. In all complexes, the metals are η^6 -coordinated to the puckered six-membered face of the tricarbadecaboranyl cage. Reaction of 7 with Cr(CO)6 resulted in the formation of the arene-substituted complex $1-(\eta^5-C_5H_5)-2-[(\eta^6-C_6H_5)Cr(CO)_3]-closo-1,2,3,4-FeC_3B_7H_9$ (9). Complexes 3 and 7 were also found to undergo reversible cage-slippages between the $\eta^6 - \eta^4$ coordination modes during the association—dissociation reactions of these complexes with tert-butylisocyanide to produce $8-(\eta^5-C_5Me_5)-8-(CNBu')-9-Me-nido-8,7,9,10-RuC_3B_7H_9$ (10) and $8-(\eta^5-C_5H_5)-8-(CNBu^7)-9-Ph-nido-8,7,9,10-FeC_3B_7H_9$ (11), respectively. This reversible $\eta^6 \eta^4$ coordination is analogous to the $\eta^5-\eta^3$ ring-slippage process that is proposed to occur in related reactions of cyclopentadienyl-metal complexes. Electrochemical studies revealed that the tricarbadecaboranyl compounds undergo reversible one-electron oxidations and two successive one-electron reductions. Comparison of oxidation $E_{1/2}$ values for Cp and RC₃B₇H₉ analogues indicates a comparative electronic effect of +0.44 V for the tricarbadecaboranyl group. Reduction $E_{1/2}$ values indicate a stabilization energy of 1.2–1.7 V in excess of the comparative electronic effect. It is likely that the overall ligand-induced stabilization of low metal oxidation states arises in part from redox-induced hapticity changes of the tricarbadecaboranyl ligand. Formal M⁰ dianions are detected that have no precedence in the metallocenes.

Introduction

We have previously demonstrated³ that, because of their equivalent charges and formal electron-donating abilities, the coordination properties of the tricarbade-caboranyl, 6-Me-nido-5,6,9- $C_3B_7H_9^{-}$,⁴ and the cyclopentadienide monoanions (Figure 1) are in many ways similar, but that metallatricarbadecaboranyl complexes have significantly greater oxidative, chemical, thermal, and hydrolytic stabilities than their metallocene counterparts. For example, we recently reported^{3g} the formation of a series of vanadatricarbadecaboranyl analogues,

Figure 1. Comparison of the structures of the cyclopentadienyl and tricarbadecaboranyl anions.

i.e., $(Me-C_3B_7H_9)_2V$, of vanadocene $(\eta^5-C_5H_5)_2V$, that are, unlike vanadocene, both air- and water-stable. In this paper we report the synthetic, structural, chemical, and

⁽¹⁾ University of Pennsylvania.

⁽²⁾ University of Vermont.

electrochemical studies of a series of new ferra-, ruthena-, and osmatricarbadecaboranyl analogues of ferrocene, ruthenocene, and osmocene that again illustrate the unique properties of the tricarbadecaboranyl ligand. In addition, we also report the discovery of a reversible cage-slippage of the tricarbadecaboranyl ligand between $\eta^6 - \eta^4$ coordination modes that occurs during the association-dissociation reactions of several of these complexes with tert-butylisocyanide.5 This process is analogous to the $\eta^5-\eta^3$ ring-slippage that is proposed to occur in related reactions of cyclopentadienyl-metal complexes.6

Experimental Section

General Synthetic Procedures and Materials. Unless otherwise noted, all reactions and manipulations were performed in dry glassware under a nitrogen or argon atmosphere using the high-vacuum or inert-atmosphere techniques described by Shriver. Li⁺(6-Me-*nido*-5,6,9- $C_3B_7H_9^-$) (1⁻)^{3a,g,4} and $Li^{+}(6-Ph^{-}nido^{-}5,6,9-C_{3}B_{7}H_{9}^{-})$ (2⁻)⁸ were prepared by the reported methods. LiH, $[Ru(1,5-C_8H_{12})Cl_2]_x$, $(\eta^{\bar{5}}-C_5H_5)\bar{F}e(CO)_2I$, Na₂(OsCl₆)·4H₂O, Cr(CO)₆, dibutyl ether, tert-butylisocyanide, benzonitrile, and (Cp*RuCl₂)_x polymer were purchased from Strem or Aldrich and used as received. Spectrochemical grade glyme, diethyl ether, tetrahydrofuran, toluene, acetonitrile, dichloromethane, and hexanes were purchased from Fisher or EM Science. Glyme and tetrahydrofuran were freshly distilled from sodium-benzophenone ketyl prior to use. Acetonitrile was dried over P₂O₅, transferred onto activated 4 Å molecular sieves, and stored under vacuum. All other solvents were used as received unless noted otherwise.

Preparative thin-layer chromatography was conducted on 0.5 mm (20 \times 20) silica gel F-254 plates (Merck-5744). The yields of all metallatricarbaborane products are calculated on the basis of the starting metal reagents.

Physical Methods. The ¹¹B NMR at 64.2 MHz and ¹H NMR at 200 MHz were obtained on a Bruker AC 200 Fourier transform spectrometer equipped with appropriate decoupling accessories. ¹¹B NMR at 160.5 MHz, ¹³C NMR at 125.7 MHz, and ¹H NMR at 500 MHz were obtained on a Bruker AM-500 spectrometer equipped with the appropriate decoupling accessories. All ¹¹B chemical shifts are referenced to BF₃·OEt₂ (0.0 ppm), with a negative sign indicating an upfield shift. All proton chemical shifts were measured relative to internal

Table 1 NMD Date

		Table 1. NMR Data
compound	nucleus	δ (mult, J (Hz), assignt)
12 ^{3a}	$^{11}\mathrm{B}^{a,b}$	2.6 (d, 158), 1.9 (d, 172),
		-7.4 (d, 147), -10.6 (d, 147), -24.6 (d, 145),
	1 1 1 2 c	-27.7 (d, 156), -32.2 (d, 157)
	${}^{1}\mathrm{H}^{a,c}$	6.60 (br s, C3H), 3.85 (s, Cp), 2.57 (s, Me), 0.71 (s br, C4H)
3	${}^{11}\mathbf{B}^{a,b}$	3.5 (d, 185), 2.3 (d, 165), -6.4 (d, 148), -7.8
-	_	(d, 148), -27.4 (d, 126), -28.2 (2, d, 154)
	${}^{1}\mathrm{H}^{a,c}$	4.78 (br s, C3H), 2.28 (s, Me), 1.35 (s, Cp*),
_	11D - h	1.27 (br s, C4H)
4	${}^{11}\mathrm{B}^{a,b}$	9.2 (d, 163), 4.1 (d, 170), 1.9 (d, 154), -4.8 (d, 162), -22.6 (d, 184), -23.8 (d, 169),
		-27.0 (d, 159)
	${}^{1}\mathbf{H}^{a,c}$	6.05 (s, C3H), 2.14 (s, Me), 1.73 (s, C4H)
5	$^{11}\mathrm{B}^{a,b}$	10.1 (2, d, 162), 6.3 (2, d, 175), -10.1 (d,
		134), -10.8 (d, 150), -11.9
		(d, 168), -13.4 (d, 164), -23.3 (d, 164),
		-25.6 (d, 165), -27.9 (2, d, 165), -29.0 (d,
	¹Ha,c	175), -30.1 (d, 171) 6.53 (s, CH), 5.37 (s, CH), 5.04 (s, CH), 2.08
	**	(s, Me), 1.92 (s, CH), 0.76 (s, Me)
6	$^{11}\mathbf{B}^{b,f}$	9.2 (d, 158), 5.8 (d, 164), -3.1 (d, 155),
		-11.4 (d, 156), -27.2 (d, 162),
	$^{1}\mathrm{H}^{c,f}$	-28.1 (d, 147), -30.4 (d, 165)
7	¹ 1B ^{a,b}	6.15 (s, C3H), 2.69 (s, Me), 1.51 (s, C4H) 4.5 (d, 151), 1.4 (d, 161), -9.6 (d, 129),
•	ь	-10.3 (d, 132), -24.2 (d, 142),
		-27.4 (d, 156), -32.8 (d, 158)
	${}^{1}\mathrm{H}^{a,c}$	8.49 (Ph), 7.26 (Ph), 6.79 (Ph), 6.74 (s,
	11 D a b	C3H), 3.75 (s, Cp), 1.50 (s, C4H)
8	${}^{11}\mathrm{B}^{a,b}$	4.6 (d, 150), 2.8 (d, 191), -7.9 (2, d, 143), -27.5 (2, d, 144), -29.1 (d, 163)
	${}^{1}\mathbf{H}^{a,c}$	8.21 (Ph), 7.27 (Ph), 6.75 (Ph), 5.08 (s,
		C3H), 2.17 (s, C4H), 1.19 (s, Cp*)
9	$^{11}\mathrm{B}^{a,b}$	8.9 (d, 150), 6.6 (d, 157), -5.1 (d, 152), -6.0
		(d, 143), -21.1 (d, 146), -22.9 (d, 163),
	¹Ha,c	-30.5 (d, 158) 6.78 (Ph), 6.23 (s, C3H), 4.68 (Ph), 4.53
	11	(Ph), 4.49 (Ph), 4.31 (Ph), 3.67 (Cp), 1.41
		(C4H)
10	$^{11}\mathrm{B}^{b,f}$	-0.9 (d, 146), -3.5 (d, 140), -12.2 (d, 141),
		-13.3 (d, ~ 150), -14.6 (d, 137), -20.4
	${}^{1}\mathbf{H}^{c,f}$	(d, 148), -33.9 (d, 131) 4.93 (br, s, C3H), 1.92 (s, Me), 1.70 (s, Bu ⁴),
	11	1.67 (s, Cp*)
	$^{13}\mathbf{C}^{d,e,f}$	94.91 (s, C ₅ Me ₅), 94.54 (s, C3H), 66.24 (br,
		s, C2H), 38.11 (br, s, C4H), 32.19 (s, Me),
11	11 D a h	31.01 (CNC{ Me_3 }), 9.60 (s, C ₅ Me_5)
11	${}^{11}\mathrm{B}^{a,b}$	7.3 (d, 126), 4.4 (d, 144), 1.5 (d, 147), -6.1 (d, 140), -7.1 (d, 173), -12.1 (d, 140),
		-21.9 (d, 130)
	${}^{1}\mathrm{H}^{a,c}$	7.33 (Ph), 7.03 (Ph), 6.94 (Ph), 4.09 (s, Cp),
	10 '	2.21 (br, s, C10H), 1.14 (Bu ⁴)
	¹³ C ^{a,d,e}	155.57 (CNC{Me ₃ }), 126.26 (s, Ph), 83.37
		(s, Cp), 81.32 (s, C3H), 53.92 (CNC {Me ₃ }), 30.62 (CNC {Me ₃ })
		30.02 (CINC[ME3])

 a In C₆D₆. b 160.5 MHz. c 500 MHz. d 125.8 MHz. e Broad-band decoupled. f In CD₂Cl₂.

residual protons from lock solvents (99.5% C₆D₆ and 99.9% CD₂Cl₂), then referenced to (CH₃)₄Si (0.0 ppm). NMR data are summarized in Table 1.

High- and low-resolution mass spectra were obtained on a VG-ZAB-E high-resolution mass spectrometer. IR spectra were obtained on a Perkin-Elmer System 2000 FTIR spectrometer. Elemental analyses were done at the University of Pennsylvania microanalysis facility. Melting points were determined using a standard melting point apparatus and are uncorrected.

Electrochemical Procedures. Electrochemical procedures were generally as described previously3g and performed in either CH₂Cl₂ or THF containing 0.1 M [NBu₄][B(C₆F₅)₄]. The supporting electrolyte was prepared by metathesis of Li- $[B(C_6F_5)_4]$ etherate (Boulder Scientific Co.) with $[NBu_4]Br$ in methanol and recrystallized several times from CH₂Cl₂/OEt₂.9 Although the experimental reference electrode was a Ag/AgCl

^{(3) (}a) Plumb, C. A.; Carroll, P. J.; Sneddon, L. G. Organometallics 1992, 11, 1665-1671. (b) Plumb, C. A.; Carroll, P. J.; Sneddon, L. G. Organometallics 1992, 11, 1672-1680. (c) Barnum, B. A.; Carroll, P. Sneddon, L. G. Organometallics 1996, 15, 645-654. (d) Weinmann, W.; Wolf, A.; Pritzkow, H.; Siebert, W.; Barnum, B. A.; Carroll, P. J.; Sneddon, L. G. *Organometallics* **1995**, *14*, 1911–1919. (e) Barnum, B. A.; Carroll, P. J.; Sneddon, L. G. *Inorg. Chem.* **1997**, *36*, 1327–1337. (f) Müller, T.; Kadlecek, D. E.; Carroll, P. J.; Sneddon, L. G.; Siebert, W. J. Organomet. Chem. 2000, 614-615, 125-130. (g) Wasczcak, M.
D.; Wang, Y.; Garg, A.; Geiger, W. E.; Kang, S. O.; Carroll, P. J.;
Sneddon, L. G. J. Am. Chem. Soc. 2001, 123, 2783-2790.

⁽⁴⁾ Kang, S. O.; Furst, G. T.; Sneddon, L. G. Inorg. Chem. 1989, 28,

⁽⁵⁾ Ramachandran, B. M.; Carroll, P. J.; Sneddon, L. G. J. Am. Chem. Soc. 2000, 122, 11033-11034.

⁽⁶⁾ For some examples see: (a) Basolo, F. New J. Chem. 1994, 18, 19-24, and references therein. (b) Basolo, F. Polyhedron 1990, 9, 1503-1535, and references therein. (c) O'Connor, J. M.; Casey, C. P. Chem. Rev. 1987, 87, 307-318, and references therein. (d) Schuster-Woldan, H. G.; Basolo, F. J. Am. Chem. Soc. 1966, 88, 1657-1663. (e) Rerek, M. E.; Basolo, F. J. Am. Chem. Soc. 1984, 106, 5908-5912. (f) Simanko, W.; Tesch, W.; Sapunov, V. N.; Mereiter, K.; Schmid, R.; Kirchner, K.; Coddington, J.; Wherland, S. *Organometallics* **1998**, *17*, Krichfel, K., Coudington, J., Wierland, S. Organometanics 1996, 17, 5674–5688. (g) Calhorda, M. J.; Gamelas, C. A.; Romão, C. C.; Veiros, L. F. Eur. J. Inorg. Chem. 2000, 331–340.
(7) Shriver, D. F.; Drezdzon, M. A. The Manipulation of Air-Sensitive Compounds, 2nd ed.; Wiley: New York, 1986.
(8) Ramachandran, B. M.; Carroll, P. J.; Sneddon, L. G. In prepara-

tion.

Table 9 Crystallographic Data Collection and Structure Refinement Information

1 able z. Cryst	allographic Data Co		e Remiement mon	
	4	5	6	7
formula	RuC ₈ B ₁₄ H ₂₄	OsC ₈ B ₁₄ H ₂₄	OsC ₈ B ₁₄ H ₂₄	FeC ₁₄ B ₇ H ₁₉
fw	372.68	461.81	461.81	318.81
cryst class	triclinic	triclinic	triclinic	triclinic
space group	P1 (#2)	P1 (#2)	P1 (#2)	$P\bar{1}$ (#2)
Z	2	2	2	2
a, Å	6.6631(5)	10.706(3)	7.7980(6)	8.0188(3)
b, Å	7.7448(7)	12.373(3)	17.6859(11)	15.4779(7)
c, Å	17.686(2)	6.828(2)	6.6743(4)	6.7169(2)
α, deg	78.034(9)	92.45(2)	99.126(5)	97.413(2)
β , deg	80.883(9)	94.08(2)	109.228(4)	107.522(3)
γ, deg	71.114(8)	105.70(2)	78.123(4)	76.351(3)
V , $Å^3$	840.67(14)	866.7(4)	846.41(10)	771.02(5)
μ , cm ⁻¹	9.13	73.38	75.14	9.62
cryst size, mm	$0.25\times0.20\times0.15$	$0.42\times0.24\times0.04$	$0.30 \times 0.11 \times 0.02$	$0.35 \times 0.30 \times 0.14$
$D_{\rm calc}$, g/cm ³	1.472	1.770	1.812	1.373
F(000)	372	436	436	328
radiation	Μο Κα	Μο Κα	Μο Κα	Μο Κα
	$(\lambda = 0.71069 \text{ Å})$	$(\lambda = 0.71069 \text{ Å})$	$(\lambda = 0.71069 \text{ Å})$	$(\lambda = 0.71069 \text{ Å})$
2θ range, deg	5.74 - 54.9	3.42 - 50.7	5.6 - 55.02	5.42 - 50.7
hkl collected	$-7 \le h \le 8$;	$-12 \le h \le 12$;	$-10 \le h \le 10$;	$-9 \le h \le 9$;
	$-7 \leq k \leq 9$;	$-14 \leq k \leq 14;$	$-22 \leq k \leq 21;$	$-21 \leq k \leq 19$;
	$-22 \leq I \leq 22$	$-7 \leq l \leq 8$	$-8 \le I \le 8$	$-12 \leq l \leq 11$
no. reflns measd	5439	4873	9073	6640
no. unique reflns	3199	2761	3539	2614
•	$(R_{\rm int} = 0.0169)$	$(R_{\rm int} = 0.0417)$	$(R_{\rm int} = 0.0450)$	$(R_{\rm int} = 0.0247)$
no. obsd reflns	$2969 (F > 4\sigma)$	$2386 (F > 4\sigma)$	$3370 (F>4\sigma)$	$2482 (F > 4\sigma)$
no. reflns used in refinement	3199	2761	3539	2614
no. params	304	210	209	255
R indices $(F > 4\sigma)$	$R_1 = 0.0208$	$R_1 = 0.0784$	$R_1 = 0.0500$	$R_1 = 0.0407$
,	$wR_2 = 0.0488$	$wR_2 = 0.1709$	$wR_2 = 0.1296$	$wR_2 = 0.1066$
R indices (all data)	$R_1 = 0.0236$	$R_1 = 0.0904$	$R_1 = 0.0529$	$R_1 = 0.0433$
,	$wR_2 = 0.0495$	$wR_2 = 0.1818$	$wR_2 = 0.1372$	$wR_2 = 0.1105$
GOF	1.017	1.123	1.073	1.040
(1())				
final diff peaks, e/Å ³	+0.394, -0.867	+2.604, -2.413	+2.007, -2.472	+0.359, -0.524
final diff peaks, e/ų	+0.394, -0.867 8	+2.604, -2.413 9	+2.007, -2.472 10	+0.359, -0.524
final diff peaks, e/ų formula	+0.394, -0.867 8 RuC ₁₉ B ₇ H ₂₉	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃	+2.007, -2.472 10 RuC ₁₉ B ₇ H ₃₆ N	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N
final diff peaks, e/ų formula fw	+0.394, -0.867 8 RuC ₁₉ B ₇ H ₂₉ 434.16	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84	+2.007, -2.472 10 RuC ₁₉ B ₇ H ₃₆ N 455.23	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94
final diff peaks, e/ų formula fw cryst class	+0.394, -0.867 8 RuC ₁₉ B ₇ H ₂₉ 434.16 triclinic	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic	+2.007, -2.472 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic
final diff peaks, e/ų formula fw cryst class space group	$+0.394, -0.867$ $footnote{8}$ $RuC_{19}B_7H_{29}$ 434.16 $triclinic$ $Par{1}$ (#2)	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14)	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 triclinic $P\overline{1}$ (#2)	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic P2 ₁ (#4)
final diff peaks, e/ų formula fw cryst class space group Z	$+0.394, -0.867$ 8 RuC ₁₉ B ₇ H ₂₉ 434.16 triclinic $P\bar{1}$ (#2) 4	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8	$+2.007, -2.472$ 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic $P\bar{1}$ (#2) 2	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic P2 ₁ (#4) 2
final diff peaks, e/ų formula fw cryst class space group Z a, Å	$+0.394, -0.867$ 8 RuC ₁₉ B ₇ H ₂₉ 434.16 triclinic $P\bar{1}$ (#2) 4 14.8296(2)	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3)	$+2.007, -2.472$ 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic $P\bar{1}$ (#2) 2 9.9335(4)	$+0.359, -0.524$ 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10)
final diff peaks, e/ų formula fw cryst class space group Z a, Å b, Å	$+0.394, -0.867$ 8 RuC ₁₉ B ₇ H ₂₉ 434.16 triclinic $P\bar{1}$ (#2) 4 14.8296(2) 16.5710(1)	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3)	$+2.007, -2.472$ 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic $P\bar{1}$ (#2) 2 9.9335(4) 13.4379(4)	$+0.359, -0.524$ 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10) 9.6335(5)
final diff peaks, e/ų formula fw cryst class space group Z a, Å b, Å c, Å	$+0.394, -0.867$ 8 RuC ₁₉ B ₇ H ₂₉ 434.16 triclinic $P\bar{1}$ (#2) 4 14.8296(2) 16.5710(1) 9.7056(1)	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3)	$+2.007, -2.472$ 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic $P\bar{1}$ (#2) 2 9.9335(4) 13.4379(4) 9.6881(4)	$+0.359, -0.524$ 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10)
final diff peaks, e/ų formula fw cryst class space group Z a, Å b, Å c, Å c, Å	$+0.394, -0.867$ 8 RuC ₁₉ B ₇ H ₂₉ 434.16 triclinic $P\bar{1}$ (#2) 4 14.8296(2) 16.5710(1)	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3)	$+2.007, -2.472$ 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic $P\bar{1}$ (#2) 2 9.9335(4) 13.4379(4)	$+0.359, -0.524$ 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10) 9.6335(5)
final diff peaks, e/ų formula fw cryst class space group Z a, Å b, Å	$+0.394, -0.867$ 8 RuC ₁₉ B ₇ H ₂₉ 434.16 triclinic $P\bar{1}$ (#2) 4 14.8296(2) 16.5710(1) 9.7056(1)	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3)	$+2.007, -2.472$ 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic $P\bar{1}$ (#2) 2 9.9335(4) 13.4379(4) 9.6881(4) 104.997(3) 110.448(2)	$+0.359, -0.524$ 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10) 9.6335(5)
final diff peaks, e/ų formula fw cryst class space group Z a, Å b, Å c, Å α, deg β, deg β, deg	$+0.394, -0.867$ $\begin{array}{c} \textbf{8} \\ \text{RuC}_{19} \text{B}_{7} \text{H}_{29} \\ 434.16 \\ \text{triclinic} \\ P\overline{1} \ (\#2) \\ 4 \\ 14.8296(2) \\ 16.5710(1) \\ 9.7056(1) \\ 96.141(1) \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3) 20.0208(3)	$+2.007, -2.472$ 10 RuC ₁₉ B ₇ H ₃₆ N 455.23 triclinic $P\bar{1}$ (#2) 2 9.9335(4) 13.4379(4) 9.6881(4) 104.997(3)	$+0.359, -0.524$ 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10) 9.6335(5) 11.0574(10)
final diff peaks, e/ų formula fw cryst class space group Z a, Å b, Å c, Å α, deg β, deg γ, deg V, ų	$+0.394, -0.867$ $\begin{array}{c} \textbf{8} \\ \text{RuC}_{19}\text{B}_{7}\text{H}_{29} \\ 434.16 \\ \text{triclinic} \\ P\overline{1} \ (\#2) \\ 4 \\ 14.8296(2) \\ 16.5710(1) \\ 9.7056(1) \\ 96.141(1) \\ 97.725(1) \\ 115.837(1) \\ 2090.20(4) \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13)	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$	$+0.359, -0.524$ 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10) 9.6335(5) 11.0574(10) 113.370(3) 1033.0(2)
final diff peaks, $e/Å^3$ formula fw cryst class space group Z a , $Å$ b , $Å$ c , $Å$ a , deg β , deg γ , deg V , $Å^3$ μ , cm ⁻¹	$+0.394, -0.867$ $\begin{array}{c} \textbf{8} \\ \text{RuC}_{19}\text{B}_{7}\text{H}_{29} \\ 434.16 \\ \text{triclinic} \\ P\overline{1} \ (\#2) \\ 4 \\ 14.8296(2) \\ 16.5710(1) \\ 9.7056(1) \\ 96.141(1) \\ 97.725(1) \\ 115.837(1) \\ 2090.20(4) \\ 7.51 \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic P2 ₁ (#4) 2 10.5638(10) 9.6335(5) 11.0574(10) 113.370(3) 1033.0(2) 7.34
final diff peaks, $e/Å^3$ formula fw cryst class space group Z a , $Å$ b , $Å$ c , $Å$ a a a b b b c d	$+0.394, -0.867$ $\begin{array}{c} \textbf{8} \\ \text{RuC}_{19} \text{B}_7 \text{H}_{29} \\ 434.16 \\ \text{triclinic} \\ P\overline{1} \ (\#2) \\ 4 \\ 14.8296(2) \\ 16.5710(1) \\ 9.7056(1) \\ 96.141(1) \\ 97.725(1) \\ 115.837(1) \\ 2090.20(4) \\ 7.51 \\ 0.36 \times 0.22 \times 0.06 \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$	$+0.359, -0.524$ 11 $FeC_{19}B_7H_{28}N$ 401.94 $monoclinic$ $P2_1 (#4)$ 2 $10.5638(10)$ $9.6335(5)$ $11.0574(10)$ $113.370(3)$ $1033.0(2)$ 7.34 $0.15 \times 0.12 \times 0.1$
final diff peaks, e/Å ³ formula fw cryst class space group Z a , Å b , Å c , Å α , deg β , deg γ , deg V , Å ³ V V , Å ³ V	$+0.394, -0.867$ $\begin{array}{c} \textbf{8} \\ \text{RuC}_{19} B_7 H_{29} \\ 434.16 \\ \text{triclinic} \\ P\overline{1} \text{ (#2)} \\ 4 \\ 14.8296(2) \\ 16.5710(1) \\ 9.7056(1) \\ 96.141(1) \\ 97.725(1) \\ 115.837(1) \\ 2090.20(4) \\ 7.51 \\ 0.36 \times 0.22 \times 0.06 \\ 1.380 \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic P2 ₁ (#4) 2 10.5638(10) 9.6335(5) 11.0574(10) 113.370(3) 1033.0(2) 7.34 0.15 × 0.12 × 0.11 1.292
final diff peaks, $e/Å^3$ formula fw cryst class space group Z a , $Å$ b , $Å$ c , $Å$ α , deg β , deg γ , γ , deg γ , deg γ , γ , deg γ	$+0.394, -0.867$ $\begin{array}{c} \textbf{8} \\ \text{RuC}_{19} B_7 H_{29} \\ 434.16 \\ \text{triclinic} \\ \hline P\overline{1} \ (\#2) \\ 4 \\ 14.8296(2) \\ 16.5710(1) \\ 9.7056(1) \\ 96.141(1) \\ 97.725(1) \\ 115.837(1) \\ 2090.20(4) \\ 7.51 \\ 0.36 \times 0.22 \times 0.06 \\ 1.380 \\ 888 \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic P2 ₁ /n (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic P2 ₁ (#4) 2 10.5638(10) 9.6335(5) 11.0574(10) 113.370(3) 1033.0(2) 7.34 0.15 × 0.12 × 0.1 1.292 420
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å c , Å c , deg β , deg γ , deg γ , γ , deg γ	$+0.394, -0.867$ $\begin{array}{c} \textbf{8} \\ \text{RuC}_{19} B_7 H_{29} \\ 434.16 \\ \text{triclinic} \\ P\overline{1} \ (\#2) \\ 4 \\ 14.8296(2) \\ 16.5710(1) \\ 9.7056(1) \\ 96.141(1) \\ 97.725(1) \\ 115.837(1) \\ 2090.20(4) \\ 7.51 \\ 0.36 \times 0.22 \times 0.06 \\ 1.380 \\ 888 \\ \text{Mo } \text{K}\alpha \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} \ (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo \ K\alpha$	$+0.359, -0.524$ 11 $FeC_{19}B_7H_{28}N$ 401.94 $monoclinic$ $P2_1 (#4)$ 2 $10.5638(10)$ $9.6335(5)$ $11.0574(10)$ $113.370(3)$ $1033.0(2)$ 7.34 $0.15 \times 0.12 \times 0.1$ 1.292 420 $Mo \ K\alpha$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å c , Å c , Å c , deg β , deg γ , deg V , ų μ , cm ⁻¹ cryst size, mm D_{calc} , g/cm^3 $F(000)$ radiation	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19}B_{7}H_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ \textbf{P1} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \text{Å}) \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å)	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo \ K\alpha$ $(\lambda = 0.71069 \ Å)$	$+0.359, -0.524$ 11 $FeC_{19}B_7H_{28}N$ 401.94 $monoclinic$ $P2_1 (\#4)$ 2 $10.5638(10)$ $9.6335(5)$ $11.0574(10)$ $113.370(3)$ $1033.0(2)$ 7.34 $0.15 \times 0.12 \times 0.1$ 1.292 420 $Mo \ K\alpha$ $(\lambda = 0.71069 \ Å)$
final diff peaks, e/Å ³ formula fw cryst class space group Z a , Å b , Å c , deg β , deg γ	$\begin{array}{c} \textbf{8} \\ \hline \textbf{RuC}_{19}\textbf{B}_{7}\textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ \textbf{P}\bar{\textbf{1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{97.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \text{Å}) \\ \textbf{5.04-54.96} \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo \ K\alpha$ $(\lambda = 0.71069 \ Å)$ $5.02-50.7$	$+0.359, -0.524$ 11 $FeC_{19}B_7H_{28}N$ 401.94 $monoclinic$ $P2_1 (#4)$ 2 $10.5638(10)$ $9.6335(5)$ $11.0574(10)$ $113.370(3)$ $1033.0(2)$ 7.34 $0.15 \times 0.12 \times 0.1$ 1.292 420 $Mo \ K\alpha$ $(\lambda = 0.71069 \ Å)$ $5.84-50.7$
final diff peaks, e/Å ³ formula fw cryst class space group Z a , Å b , Å c , deg β , deg γ , deg V , Å ³ μ , cm ⁻¹ cryst size, mm D_{calc} , g/cm ³ $F(000)$ radiation 2θ range, deg	$\begin{array}{c} \textbf{8} \\ \hline \textbf{RuC}_{19}\textbf{B}_{7}\textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ \textbf{\textit{P1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \text{Å}) \\ \textbf{5.04-54.96} \\ \textbf{-19} \leq \textit{h} \leq \textbf{19}; \\ \hline \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17;	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $10.4.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.02-50.7$ $-11 \le h \le 11;$	$+0.359, -0.524$ 11 $FeC_{19}B_7H_{28}N$ 401.94 $monoclinic$ $P2_1 (#4)$ 2 $10.5638(10)$ $9.6335(5)$ $11.0574(10)$ $113.370(3)$ $1033.0(2)$ 7.34 $0.15 \times 0.12 \times 0.1$ 1.292 420 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.84-50.7$ $-12 \leq h \leq 12;$
final diff peaks, e/Å ³ formula fw cryst class space group Z a , Å b , Å c , deg β , deg γ	$\begin{array}{c} \textbf{8} \\ \hline \textbf{RuC}_{19}\textbf{B}_{7}\textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ \hline \textbf{P1} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296} \ (2) \\ \textbf{16.5710} \ (1) \\ \textbf{9.7056} \ (1) \\ \textbf{96.141} \ (1) \\ \textbf{97.725} \ (1) \\ \textbf{115.837} \ (1) \\ \textbf{2090.20} \ (4) \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K} \alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ \textbf{-19} \leq h \leq \textbf{19}; \\ \textbf{-16} \leq k \leq \textbf{16}; \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ k ≤ 16;	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.02-50.7$ $-11 \le h \le 11;$ $-16 \le k \le 16;$	$+0.359, -0.524$ 11 $FeC_{19}B_7H_{28}N$ 401.94 $monoclinic$ $P2_1 (#4)$ 2 $10.5638(10)$ $9.6335(5)$ $11.0574(10)$ $113.370(3)$ $1033.0(2)$ 7.34 $0.15 \times 0.12 \times 0.1$ 1.292 420 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.84-50.7$ $-12 \leq h \leq 12;$ $-11 \leq k \leq 11;$
final diff peaks, e/Å ³ formula fw cryst class space group Z a , Å b , Å c , deg g , deg g , deg g ,	$\begin{array}{c} \textbf{8} \\ \hline \textbf{RuC}_{19} \textbf{B}_{7} \textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ P\overline{\textbf{1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \text{Å}) \\ \textbf{5.04-54.96} \\ -\textbf{19} \leq h \leq \textbf{19}; \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{23} \leq l \leq \textbf{24} \\ \hline \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ k ≤ 16; -23 ≤ l ≤ 24	$\begin{array}{c} \textbf{10} \\ \hline \textbf{RuC}_{19}B_7H_{36}N \\ \textbf{455.23} \\ \textbf{triclinic} \\ \hline P\overline{1} \ (\#2) \\ 2 \\ 9.9335(4) \\ 13.4379(4) \\ 9.6881(4) \\ 104.997(3) \\ 110.448(2) \\ 76.334(3) \\ 1155.16(7) \\ 6.83 \\ 0.40 \times 0.20 \times 0.07 \\ 1.309 \\ 472 \\ \textbf{Mo K}\alpha \\ (\lambda = 0.71069 \ \text{Å}) \\ 5.02-50.7 \\ -11 \le h \le 11; \\ -16 \le k \le 16; \\ -11 \le l \le 11 \\ \hline \end{array}$	$+0.359, -0.524$ 11 $FeC_{19}B_7H_{28}N$ 401.94 $monoclinic$ $P2_1 (#4)$ 2 $10.5638(10)$ $9.6335(5)$ $11.0574(10)$ $113.370(3)$ $1033.0(2)$ 7.34 $0.15 \times 0.12 \times 0.1$ 1.292 420 $Mo \ K\alpha$ $(\lambda = 0.71069 \ Å)$ $5.84-50.7$ $-12 \le h \le 12;$ $-11 \le k \le 11;$ $-13 \le l \le 13$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å c , Å c , Å c , deg β , deg γ	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19} \textbf{B}_{7} \textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ P\overline{\textbf{1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ -19 \leq h \leq 19; \\ -16 \leq k \leq 16; \\ -23 \leq l \leq 24 \\ \textbf{21.788} \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ h ≤ 16; -23 ≤ I ≤ 24 28 993	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.02-50.7$ $-11 \le h \le 11;$ $-16 \le k \le 16;$ $-11 \le l \le 11$ 9708	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10) 9.6335(5) 11.0574(10) 113.370(3) 1033.0(2) 7.34 0.15 × 0.12 × 0.10 1.292 420 Mo K α (λ = 0.71069 Å) 5.84-50.7 -12 ≤ h ≤ 12; -11 ≤ k ≤ 11; -13 ≤ l ≤ 13 7727
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å c , Å c , Å c , deg β , deg γ , deg V , ų μ , cm ⁻¹ cryst size, mm D_{calc} , g/cm^3 $F(000)$ radiation	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19}B_7H_{29} \\ \textbf{434.16} \\ \textbf{triclimic} \\ \textbf{PI} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ \textbf{-19} \leq h \leq \textbf{19}; \\ \textbf{-16} \leq k \leq \textbf{16}; \\ \textbf{-23} \leq l \leq \textbf{24} \\ \textbf{21.788} \\ \textbf{8818} \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo Κα (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ h ≤ 17; -16 ≤ h ≤ 16; -23 ≤ I ≤ 24 28 993 6890	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.02-50.7$ $-11 \le h \le 11;$ $-16 \le k \le 16;$ $-11 \le l \le 11$ 9708 3919	$\begin{array}{c} +0.359, -0.524 \\ \hline & \textbf{11} \\ \hline \\ \text{FeC}_{19}B_7H_{28}N \\ 401.94 \\ \text{monoclinic} \\ P2_1 \ (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.10 \\ 1.292 \\ 420 \\ \text{Mo K}\alpha \\ (\lambda = 0.71069 \ \text{Å}) \\ 5.84 - 50.7 \\ -12 \le h \le 12; \\ -11 \le k \le 11; \\ -13 \le l \le 13 \\ 7727 \\ 3564 \\ \hline \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å c , Å c , Å d	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19} \textbf{B}_{7} \textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ P\overline{\textbf{1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ -19 \leq h \leq 19; \\ -16 \leq k \leq 16; \\ -23 \leq l \leq 24 \\ \textbf{21.788} \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ h ≤ 16; -23 ≤ I ≤ 24 28 993	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.02-50.7$ $-11 \le h \le 11;$ $-16 \le k \le 16;$ $-11 \le l \le 11$ 9708	+0.359, -0.524 11 FeC ₁₉ B ₇ H ₂₈ N 401.94 monoclinic $P2_1$ (#4) 2 10.5638(10) 9.6335(5) 11.0574(10) 113.370(3) 1033.0(2) 7.34 0.15 × 0.12 × 0.10 1.292 420 Mo K α (λ = 0.71069 Å) 5.84-50.7 -12 ≤ h ≤ 12; -11 ≤ k ≤ 11; -13 ≤ l ≤ 13 7727
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , deg β , deg γ , deg V , ų μ , cm ⁻¹ cryst size, mm D_{calc} , g/cm^3 $F(000)$ radiation 2θ range, deg hkl collected no. reflns measd no. unique reflns no. obsd reflns	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19}B_7H_{29} \\ \textbf{434.16} \\ \textbf{triclimic} \\ \textbf{PI} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ \textbf{-19} \leq h \leq \textbf{19}; \\ \textbf{-16} \leq k \leq \textbf{16}; \\ \textbf{-23} \leq l \leq \textbf{24} \\ \textbf{21.788} \\ \textbf{8818} \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo Κα (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ h ≤ 17; -16 ≤ h ≤ 16; -23 ≤ I ≤ 24 28 993 6890	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.02-50.7$ $-11 \le h \le 11;$ $-16 \le k \le 16;$ $-11 \le l \le 11$ 9708 3919	$\begin{array}{c} +0.359, -0.524 \\ \hline & \textbf{11} \\ \hline \\ \text{FeC}_{19}B_7H_{28}N \\ 401.94 \\ \text{monoclinic} \\ P2_1 \ (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.10 \\ 1.292 \\ 420 \\ \text{Mo K}\alpha \\ (\lambda = 0.71069 \ \text{Å}) \\ 5.84 - 50.7 \\ -12 \le h \le 12; \\ -11 \le k \le 11; \\ -13 \le l \le 13 \\ 7727 \\ 3564 \\ \hline \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , deg β , deg γ , deg V , ų μ , cm ⁻¹ cryst size, mm D_{calc} , g/cm^3 $F(000)$ radiation 2θ range, deg hkl collected no. reflns measd no. unique reflns no. obsd reflns	$\begin{array}{c} \textbf{8} \\ \hline \textbf{RuC}_{19}\textbf{B}_{7}\textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ P\overline{\textbf{1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ \textbf{-19} \leq h \leq \textbf{19}; \\ \textbf{-16} \leq k \leq \textbf{16}; \\ \textbf{-23} \leq l \leq \textbf{24} \\ \textbf{21.788} \\ \textbf{8818} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \hline \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ k ≤ 16; -23 ≤ I ≤ 24 28 993 6890 (R_{int} = 0.0499)	$+2.007, -2.472$ 10 $RuC_{19}B_7H_{36}N$ 455.23 $triclinic$ $P\overline{1} (\#2)$ 2 $9.9335(4)$ $13.4379(4)$ $9.6881(4)$ $104.997(3)$ $110.448(2)$ $76.334(3)$ $1155.16(7)$ 6.83 $0.40 \times 0.20 \times 0.07$ 1.309 472 $Mo K\alpha$ $(\lambda = 0.71069 \text{ Å})$ $5.02-50.7$ $-11 \le h \le 11;$ $-16 \le k \le 16;$ $-11 \le l \le 11$ 9708 3919 $(R_{int} = 0.0506)$	$\begin{array}{c} +0.359, -0.524 \\ \hline \\ 11 \\ \hline \\ FeC_{19}B_7H_{28}N \\ 401.94 \\ monoclinic \\ P2_1 \ (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.1 \\ 1.292 \\ 420 \\ Mo \ K\alpha \\ (\lambda = 0.71069 \ \mathring{A}) \\ 5.84 - 50.7 \\ -12 \leq h \leq 12; \\ -11 \leq k \leq 11; \\ -13 \leq l \leq 13 \\ 7727 \\ 3564 \\ (R_{int} = 0.0531) \\ \hline \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , A c , deg c	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19} \textbf{B}_{7} \textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ \textbf{P}\bar{\textbf{1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296} \ (2) \\ \textbf{16.5710} \ (1) \\ \textbf{97.725} \ (1) \\ \textbf{115.837} \ (1) \\ \textbf{2090.20} \ (4) \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ -19 \leq h \leq 19; \\ -16 \leq k \leq 16; \\ -23 \leq l \leq 24 \\ \textbf{21.788} \\ \textbf{8818} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{8202} \ (F > 4\sigma) \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo K α (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ k ≤ 16; -23 ≤ l ≤ 24 28 993 6890 (R_{int} = 0.0499) 6206 (F > 4 σ)	$\begin{array}{c} \textbf{10} \\ \textbf{RuC}_{19} \textbf{B}_7 \textbf{H}_{36} \textbf{N} \\ \textbf{455.23} \\ \textbf{triclinic} \\ P^{\bar{1}} \ (\#2) \\ \textbf{2} \\ \textbf{9.9335} (4) \\ \textbf{13.4379} (4) \\ \textbf{9.6881} (4) \\ \textbf{104.997} (3) \\ \textbf{110.448} (2) \\ \textbf{76.334} (3) \\ \textbf{1155.16} (7) \\ \textbf{6.83} \\ \textbf{0.40} \times \textbf{0.20} \times \textbf{0.07} \\ \textbf{1.309} \\ \textbf{472} \\ \textbf{Mo K} \alpha \\ (\lambda = \textbf{0.71069 Å}) \\ \textbf{5.02-50.7} \\ -\textbf{11} \leq h \leq \textbf{16}; \\ -\textbf{11} \leq l \leq \textbf{11} \\ \textbf{9708} \\ \textbf{3919} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{3755} \ (F > 4\sigma) \\ \end{array}$	$\begin{array}{c} +0.359, -0.524 \\ \hline \\ 11 \\ \hline \\ FeC_{19}B_7H_{28}N \\ 401.94 \\ monoclinic \\ P2_1 (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.1 \\ 1.292 \\ 420 \\ Mo \ K\alpha \\ (\lambda = 0.71069 \ \mathring{A}) \\ 5.84-50.7 \\ -12 \leq h \leq 12; \\ -11 \leq k \leq 11; \\ -13 \leq l \leq 13 \\ 7727 \\ 3564 \\ (R_{int} = 0.0531) \\ 3351 (F>4\sigma) \\ \hline \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å c , Å c , Å d	$\begin{array}{c} \textbf{8} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$\begin{array}{c} \textbf{9} \\ \hline \textbf{FeCrC}_{17}\textbf{B}_{7}\textbf{H}_{19}\textbf{O}_{3} \\ \textbf{454.84} \\ \textbf{monoclinic} \\ \textbf{\textit{P2}}_{1}/n \ (\#14) \\ \textbf{8} \\ \textbf{14.6585}(3) \\ \textbf{13.7293}(3) \\ \textbf{20.0208}(3) \\ \textbf{102.640}(1) \\ \hline \textbf{3931.55}(13) \\ \textbf{13.07} \\ \textbf{0.22} \times \textbf{0.20} \times \textbf{0.008} \\ \textbf{1.537} \\ \textbf{1840} \\ \textbf{Mo K}\alpha \\ (\lambda = \textbf{0.71069 Å}) \\ \textbf{5.12-50.7} \\ \textbf{-16} \leq h \leq \textbf{17}; \\ \textbf{-16} \leq k \leq \textbf{16}; \\ \textbf{-23} \leq l \leq \textbf{24} \\ \textbf{28.993} \\ \textbf{6890} \\ (R_{\text{int}} = \textbf{0.0499}) \\ \textbf{6206} \ (F > 4\sigma) \\ \textbf{6890} \\ \end{array}$	$\begin{array}{c} \textbf{10} \\ \textbf{RuC}_{19}B_7H_{36}N \\ \textbf{455.23} \\ \textbf{triclinic} \\ \textbf{\textit{P}$\overline{1}$ (#2)} \\ \textbf{2} \\ \textbf{9.9335}(4) \\ \textbf{13.4379}(4) \\ \textbf{9.6881}(4) \\ \textbf{104.997}(3) \\ \textbf{110.448}(2) \\ \textbf{76.334}(3) \\ \textbf{1155.16}(7) \\ \textbf{6.83} \\ \textbf{0.40} \times \textbf{0.20} \times \textbf{0.07} \\ \textbf{1.309} \\ \textbf{472} \\ \textbf{Mo K}\alpha \\ (\lambda = 0.71069 \text{ Å}) \\ \textbf{5.02-50.7} \\ -11 \leq h \leq 11; \\ -16 \leq k \leq 16; \\ -11 \leq l \leq 11 \\ \textbf{9708} \\ \textbf{3919} \\ (R_{int} = \textbf{0.0506}) \\ \textbf{3755} \ (F > 4\sigma) \\ \textbf{3919} \\ \end{array}$	$\begin{array}{c} \textbf{11} \\ \hline \textbf{FeC}_{19}B_7H_{28}N \\ \textbf{401.94} \\ \textbf{monoclinic} \\ P2_1 \ (\#4) \\ 2 \\ \textbf{10.5638} (10) \\ \textbf{9.6335} (5) \\ \textbf{11.0574} (10) \\ \hline \textbf{113.370} (3) \\ \hline \textbf{1033.0} (2) \\ \textbf{7.34} \\ \textbf{0.15} \times \textbf{0.12} \times \textbf{0.1} \\ \textbf{1.292} \\ \textbf{420} \\ \textbf{Mo K}\alpha \\ (\lambda = \textbf{0.71069 Å}) \\ \textbf{5.84-50.7} \\ -\textbf{12} \leq h \leq \textbf{12}; \\ -\textbf{11} \leq k \leq \textbf{11}; \\ -\textbf{13} \leq l \leq \textbf{13} \\ \textbf{7727} \\ \textbf{3564} \\ (R_{\text{int}} = \textbf{0.0531}) \\ \textbf{3351} \ (F \!\!\!> \! \textbf{4}\sigma) \\ \textbf{3564} \\ \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å α , deg β , deg γ , deg V , ų V V , ų V	$\begin{array}{c} \textbf{8} \\ \hline \textbf{RuC}_{19}\textbf{B}_{7}\textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ \textbf{\textit{P1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296} \ (2) \\ \textbf{16.5710} \ (1) \\ \textbf{9.7056} \ (1) \\ \textbf{96.141} \ (1) \\ \textbf{97.725} \ (1) \\ \textbf{115.837} \ (1) \\ \textbf{2090.20} \ (4) \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K} \alpha \\ (\lambda = \textbf{0.71069} \ \text{Å}) \\ \textbf{5.04-54.96} \\ \textbf{-19} \leq h \leq \textbf{19}; \\ \textbf{-16} \leq k \leq \textbf{16}; \\ \textbf{-23} \leq l \leq \textbf{24} \\ \textbf{21.788} \\ \textbf{8818} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{8202} \ (F > 4\sigma) \\ \textbf{8818} \\ \textbf{561} \\ \end{array}$	$\begin{array}{c} \textbf{9} \\ \hline \textbf{FeCrC}_{17}\textbf{B}_{7}\textbf{H}_{19}\textbf{O}_{3} \\ \textbf{454.84} \\ \textbf{monoclinic} \\ P2_{1}/n \ (\#14) \\ \textbf{8} \\ \textbf{14.6585} \ (3) \\ \textbf{13.7293} \ (3) \\ \textbf{20.0208} \ (3) \\ \hline \textbf{102.640} \ (1) \\ \hline \textbf{3931.55} \ (13) \\ \textbf{13.07} \\ \textbf{0.22} \times \textbf{0.20} \times \textbf{0.008} \\ \textbf{1.537} \\ \textbf{1840} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.12-50.7} \\ -\textbf{16} \leq h \leq \textbf{17}; \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{23} \leq l \leq \textbf{24} \\ \textbf{28} \ \textbf{993} \\ \textbf{6890} \\ (R_{\text{int}} = \textbf{0.0499}) \\ \textbf{6206} \ (F > 4\sigma) \\ \textbf{6890} \\ \textbf{595} \\ \hline \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline \textbf{RuC}_{19} \textbf{B}_7 \textbf{H}_{36} \textbf{N} \\ \textbf{455.23} \\ \textbf{triclinic} \\ \hline P\overline{\textbf{1}} \ (\#2) \\ \textbf{2} \\ \textbf{9.9335}(\textbf{4}) \\ \textbf{13.4379}(\textbf{4}) \\ \textbf{9.6881}(\textbf{4}) \\ \textbf{104.997}(\textbf{3}) \\ \textbf{110.448}(\textbf{2}) \\ \textbf{76.334}(\textbf{3}) \\ \textbf{1155.16}(\textbf{7}) \\ \textbf{6.83} \\ \textbf{0.40} \times \textbf{0.20} \times \textbf{0.07} \\ \textbf{1.309} \\ \textbf{472} \\ \textbf{Mo K}\alpha \\ (\lambda = \textbf{0.71069 Å}) \\ \textbf{5.02-50.7} \\ -\textbf{11} \leq h \leq \textbf{11}; \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{11} \leq l \leq \textbf{11} \\ \textbf{9708} \\ \textbf{3919} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{3755} \ (F > 4\sigma) \\ \textbf{3919} \\ \textbf{290} \\ \end{array}$	$\begin{array}{c} +0.359, -0.524 \\ \hline \\ \hline 11 \\ \hline \\ FeC_{19}B_7H_{28}N \\ 401.94 \\ monoclinic \\ P2_1 \ (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \hline \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.1 \\ 1.292 \\ 420 \\ Mo \ K\alpha \\ (\lambda = 0.71069 \ \mathring{A}) \\ 5.84 - 50.7 \\ -12 \leq h \leq 12; \\ -11 \leq k \leq 11; \\ -13 \leq l \leq 13 \\ 7727 \\ 3564 \\ (R_{int} = 0.0531) \\ 3351 \ (F>4\sigma) \\ 3564 \\ 254 \\ \hline \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , deg β , deg γ ,	$\begin{array}{c} \textbf{8} \\ \hline \textbf{RuC}_{19}\textbf{B}_{7}\textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ P^{\overline{1}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296(2)} \\ \textbf{16.5710(1)} \\ \textbf{9.7056(1)} \\ \textbf{96.141(1)} \\ \textbf{97.725(1)} \\ \textbf{115.837(1)} \\ \textbf{2090.20(4)} \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.04-54.96} \\ -\textbf{19} \leq h \leq \textbf{19}; \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{23} \leq l \leq \textbf{24} \\ \textbf{21.788} \\ \textbf{8818} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{8202} \ (F > 4\sigma) \\ \textbf{8818} \\ \textbf{561} \\ R_1 = \textbf{0.0439} \\ \end{array}$	$\begin{array}{c} \textbf{9} \\ \hline \textbf{FeCrC}_{17}\textbf{B}_{7}\textbf{H}_{19}\textbf{O}_{3} \\ \textbf{454.84} \\ \textbf{monoclinic} \\ P2_{1}/n \ (\#14) \\ \textbf{8} \\ \textbf{14.6585} \ (3) \\ \textbf{13.7293} \ (3) \\ \textbf{20.0208} \ (3) \\ \hline \textbf{102.640} \ (1) \\ \hline \textbf{3931.55} \ (13) \\ \textbf{13.07} \\ \textbf{0.22} \times \textbf{0.20} \times \textbf{0.008} \\ \textbf{1.537} \\ \textbf{1840} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.12-50.7} \\ -\textbf{16} \leq h \leq \textbf{17}; \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{23} \leq l \leq \textbf{24} \\ \textbf{28} \ \textbf{993} \\ \textbf{6890} \\ (R_{\text{int}} = \textbf{0.0499}) \\ \textbf{6206} \ (F > 4\sigma) \\ \textbf{6890} \\ \textbf{595} \\ R_{1} = \textbf{0.0632} \\ \end{array}$	$\begin{array}{c} \textbf{10} \\ \hline \textbf{RuC}_{19}B_7H_{36}N \\ \textbf{455.23} \\ \textbf{triclinic} \\ \hline P\overline{1} \ (\#2) \\ 2 \\ 9.9335(4) \\ 13.4379(4) \\ 9.6881(4) \\ 104.997(3) \\ 110.448(2) \\ 76.334(3) \\ 1155.16(7) \\ 6.83 \\ 0.40 \times 0.20 \times 0.07 \\ 1.309 \\ 472 \\ \textbf{Mo K}\alpha \\ (\lambda = 0.71069 \text{ Å}) \\ 5.02-50.7 \\ -11 \leq h \leq 11; \\ -16 \leq k \leq 16; \\ -11 \leq l \leq 11 \\ 9708 \\ 3919 \\ (R_{\text{int}} = 0.0506) \\ 3755 \ (F>4\sigma) \\ 3919 \\ 290 \\ R_1 = 0.0577 \\ \hline \end{array}$	$\begin{array}{c} +0.359, -0.524 \\ \hline \\ 11 \\ \hline \\ FeC_{19}B_7H_{28}N \\ 401.94 \\ monoclinic \\ P2_1 \ (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \hline \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.1 \\ 1.292 \\ 420 \\ Mo \ K\alpha \\ (\lambda = 0.71069 \ \mathring{A}) \\ 5.84 - 50.7 \\ -12 \leq h \leq 12; \\ -11 \leq k \leq 11; \\ -13 \leq l \leq 13 \\ 7727 \\ 3564 \\ (R_{int} = 0.0531) \\ 3351 \ (F > 4\sigma) \\ 3564 \\ 254 \\ R_1 = 0.0780 \\ \hline \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å α , deg β , deg γ , deg V , ų V V , ų V	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19} \textbf{B}_{7} \textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ P\overline{\textbf{I}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296} \ (2) \\ \textbf{16.5710} \ (1) \\ \textbf{9.7056} \ (1) \\ \textbf{96.141} \ (1) \\ \textbf{97.725} \ (1) \\ \textbf{115.837} \ (1) \\ \textbf{2090.20} \ (4) \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \textbf{Å}) \\ \textbf{5.04-54.96} \\ -19 \leq h \leq 19; \\ -16 \leq k \leq 16; \\ -23 \leq l \leq 24 \\ \textbf{21.788} \\ \textbf{8818} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{8202} \ (F > 4\sigma) \\ \textbf{8818} \\ \textbf{561} \\ R_1 = \textbf{0.0439} \\ wR_2 = \textbf{0.1066} \\ R_1 = \textbf{0.0480} \\ \end{array}$	+2.604, -2.413 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo Kα (λ = 0.71069 Å) 5.12-50.7 -16 ≤ h ≤ 17; -16 ≤ k ≤ 16; -23 ≤ I ≤ 24 28 993 6890 (R_{int} = 0.0499) 6206 (F > 4 σ) 6890 595 R_1 = 0.0632 wR_2 = 0.1391 R_1 = 0.0728	$\begin{array}{c} \textbf{10} \\ \textbf{RuC}_{19} \textbf{B}_7 \textbf{H}_{36} \textbf{N} \\ \textbf{455.23} \\ \textbf{triclinic} \\ P\overline{\textbf{1}} \ (\#2) \\ \textbf{2} \\ \textbf{9.9335} (4) \\ \textbf{13.4379} (4) \\ \textbf{9.6881} (4) \\ \textbf{104.997} (3) \\ \textbf{110.448} (2) \\ \textbf{76.334} (3) \\ \textbf{1155.16} (7) \\ \textbf{6.83} \\ \textbf{0.40} \times \textbf{0.20} \times \textbf{0.07} \\ \textbf{1.309} \\ \textbf{472} \\ \textbf{Mo} \ \textbf{K}\alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.02-50.7} \\ -\textbf{11} \leq h \leq \textbf{11} \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{11} \leq l \leq \textbf{11} \\ \textbf{9708} \\ \textbf{3919} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{3755} \ (F > 4\sigma) \\ \textbf{3919} \\ \textbf{290} \\ R_1 = \textbf{0.0577} \\ wR_2 = \textbf{0.1562} \\ R_1 = \textbf{0.0594} \\ \end{array}$	$\begin{array}{c} +0.359, -0.524 \\ \hline & \textbf{11} \\ \hline \\ \text{FeC}_{19}B_7H_{28}N \\ 401.94 \\ \text{monoclinic} \\ P2_1 \ (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \hline \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.1 \\ 1.292 \\ 420 \\ \text{Mo K}\alpha \\ (\lambda = 0.71069 \ \text{Å}) \\ 5.84 - 50.7 \\ -112 \ k \le 11; \\ -13 \ \le l \le 13 \\ 7727 \\ 3564 \\ (R_{\text{int}} = 0.0531) \\ 3351 \ (F > 4\sigma) \\ 3564 \\ 254 \\ R_1 = 0.0780 \\ wR_2 = 0.2090 \\ R_1 = 0.0824 \\ \hline \end{array}$
final diff peaks, e/ų formula fw cryst class space group Z a , Å b , Å c , Å c , Å c , Å c , Å d	$\begin{array}{c} \textbf{8} \\ \textbf{RuC}_{19} \textbf{B}_{7} \textbf{H}_{29} \\ \textbf{434.16} \\ \textbf{triclinic} \\ P\overline{\textbf{I}} \ (\#2) \\ \textbf{4} \\ \textbf{14.8296} \ (2) \\ \textbf{16.5710} \ (1) \\ \textbf{9.7056} \ (1) \\ \textbf{96.141} \ (1) \\ \textbf{97.725} \ (1) \\ \textbf{115.837} \ (1) \\ \textbf{2090.20} \ (4) \\ \textbf{7.51} \\ \textbf{0.36} \times \textbf{0.22} \times \textbf{0.06} \\ \textbf{1.380} \\ \textbf{888} \\ \textbf{Mo} \ \textbf{K} \alpha \\ (\lambda = \textbf{0.71069} \ \text{Å}) \\ \textbf{5.04-54.96} \\ -\textbf{19} \leq h \leq \textbf{19}; \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{23} \leq l \leq \textbf{24} \\ \textbf{21.788} \\ \textbf{8818} \\ \textbf{(R}_{int} = \textbf{0.0506}) \\ \textbf{8202} \ (F > 4 \sigma) \\ \textbf{8818} \\ \textbf{561} \\ R_1 = \textbf{0.0439} \\ w R_2 = \textbf{0.1066} \\ \end{array}$	$+2.604, -2.413$ 9 FeCrC ₁₇ B ₇ H ₁₉ O ₃ 454.84 monoclinic $P2_1/n$ (#14) 8 14.6585(3) 13.7293(3) 20.0208(3) 102.640(1) 3931.55(13) 13.07 0.22 × 0.20 × 0.008 1.537 1840 Mo Κα $(λ = 0.71069 \text{ Å})$ 5.12-50.7 -16 ≤ $h \le 17$; -16 ≤ $k \le 16$; -23 ≤ $l \le 24$ 28 993 6890 $(R_{\text{int}} = 0.0499)$ 6206 $(F > 4\sigma)$ 6890 595 $R_1 = 0.0632$ $wR_2 = 0.1391$	$\begin{array}{c} \textbf{10} \\ \textbf{RuC}_{19} \textbf{B}_{7} \textbf{H}_{36} \textbf{N} \\ \textbf{455.23} \\ \textbf{triclinic} \\ P\overline{\textbf{1}} \ (\#2) \\ \textbf{2} \\ \textbf{9.9335} (4) \\ \textbf{13.4379} (4) \\ \textbf{9.6881} (4) \\ \textbf{104.997} (3) \\ \textbf{110.448} (2) \\ \textbf{76.334} (3) \\ \textbf{1155.16} (7) \\ \textbf{6.83} \\ \textbf{0.40} \times \textbf{0.20} \times \textbf{0.07} \\ \textbf{1.309} \\ \textbf{472} \\ \textbf{Mo K} \alpha \\ (\lambda = \textbf{0.71069} \ \mathring{\textbf{A}}) \\ \textbf{5.02-50.7} \\ -\textbf{11} \leq h \leq \textbf{11} \\ -\textbf{16} \leq k \leq \textbf{16}; \\ -\textbf{11} \leq l \leq \textbf{11} \\ \textbf{9708} \\ \textbf{3919} \\ (R_{\text{int}} = \textbf{0.0506}) \\ \textbf{3755} \ (F > 4\sigma) \\ \textbf{3919} \\ \textbf{290} \\ R_1 = \textbf{0.0577} \\ wR_2 = \textbf{0.1562} \\ \end{array}$	$\begin{array}{c} +0.359, -0.524 \\ \hline \\ 11 \\ \hline \\ FeC_{19}B_7H_{28}N \\ 401.94 \\ monoclinic \\ P2_1 \ (\#4) \\ 2 \\ 10.5638 (10) \\ 9.6335 (5) \\ 11.0574 (10) \\ \hline \\ 113.370 (3) \\ \hline \\ 1033.0 (2) \\ 7.34 \\ 0.15 \times 0.12 \times 0.10 \\ 1.292 \\ 420 \\ Mo \ K\alpha \\ (\lambda = 0.71069 \ \mathring{A}) \\ 5.84 - 50.7 \\ -12 \leq h \leq 12; \\ -11 \leq k \leq 11; \\ -13 \leq l \leq 13 \\ 7727 \\ 3564 \\ (R_{\rm int} = 0.0531) \\ 3351 \ (F > 4\sigma) \\ 3564 \\ 254 \\ R_1 = 0.0780 \\ wR_2 = 0.2090 \\ \hline \end{array}$

electrode, all potentials in this paper are referred to the ferrocene/ferrocenium potential, which was determined in each experiment at an appropriate point by using Cp2Fe as an internal standard. Each process had diffusion-controlled be-

havior, and no electrode history problems were encountered at either glassy carbon or platinum electrodes (of 2 mm diameter). The potentiostat was a Princeton Applied Research Model 273 system interfaced to a personal computer. Standard

diagnostics¹⁰ were applied to voltammetric responses, details of which are available elsewhere. 11 The following potentials of metallocene redox processes were used when comparing their potentials to the $E_{1/2}$ values of the tricarbadecaboranyl compounds: $Cp_2Fe^{+/0} = 0$; $Cp_2Fe^{0/1-} = -3.4 \text{ V}$; $Cp_2Ru^{+/0} = 0.41$ V; $\hat{CpCp*Ru^{+/0}} = 0.11 \text{ V}$; $\hat{Cp_2Ru^{0/1-}} = -3.9 \text{ V}$; $\hat{CpCp*Ru^{0/1-}} = -3.9 \text{ V}$ $-4.2 \text{ V (estimated; not reported); } \text{Cp}_2\text{Os}^{+/0} = 0.25 \text{ V; } \text{Cp}_2\text{Os}^{0/1-}$ = -3.9 V (see Tables for literature sources).

 $1-(\eta^5-C_5Me_5)-2-Me-closo-1,2,3,4-RuC_3B_7H_9$ (3). A toluene solution of 1- (1.5 mL of 0.5 M, 0.75 mmol) was added dropwise to a stirring solution of $[Cp*RuCl_2]_x$ (0.11 g, 0.37 mmol) in glyme (35 mL). After stirring for 12 h at 50 °C, the dark brown solution was exposed to air and filtered. The solvent was vacuum evaporated from the filtrate to give a dark red residue, which was then extracted with Et₂O. TLC separation (7:3 hexanes/ CH_2Cl_2) gave a single orange band (R_f 0.60). For 3: $1-(\eta^5-C_5Me_5)-2-Me-closo-1,2,3,4-RuC_3B_7H_9$, yield 75% (0.10 g, 0.28 mmol); orange, mp 211 °C. Anal. Calcd: C, 45.19, H, 7.31. Found: C, 44.91; H, 7.32. HRMS calcd for ¹²C₁₄¹H₂₇¹¹B₇¹⁰⁴Ru m/e 376.1819, found 376.1840; IR (KBr, cm⁻¹) 2920 (m), 2571 (s), 1559 (w), 1472 (w), 1374 (w), 1028 (w), 967 (w), 790 (w), 727 (w), 668 (m).

 $commo-Ru-(2-Me-closo-1,2,3,4-RuC_3B_7H_9)_2$ (4). A toluene solution of 1 (2.04 mL of 0.5 M, 1.02 mmol) was added dropwise to a stirring solution of [RuCl₂(cod)_x] (0.14 g, 0.51 mmol) in glyme (35 mL). After stirring for 12 h at reflux, the red solution was exposed to air and filtered through a silica gel plug. The silica gel was washed with diethyl ether to extract any product. TLC separation (9:1 hexanes/toluene) gave three bands with only the third dark red band (R_f 0.2) obtained in sufficient amount for complete characterization. For **4**: *commo-Ru-*(2-Me-*closo-*1,2,3,4-RuC₃B₇H₉)₂, yield 8% (0.02 g, 0.04 mmol); red; mp 110 °C. Anal. Calcd: C, 25.78, H, 6.49. Found: C, 26.28, H, 6.58. HRMS calcd for ¹²C₈¹H₂₄¹¹B₁₄-¹⁰⁴Ru 378.2236. Found: 378.2220. IR (KBr, cm⁻¹) 3027 (s), 2998 (m), 2938 (s), 2861 (m), 2573 (s), 1852 (w), 1439 (s), 1376 (s), 1276 (m), 1099 (s), 967 (s), 931 (m), 865 (m), 838 (m), 791 (m), 725 (w), 696 (m), 645 (w).

commo-Os-(4'-Me-closo-1',2',3',4'-OsC₃B₇H₉)(2-Me-closo-1,2,3,4-OsC₃B₇H₉) (5) and *commo-Os-*(2-Me-*closo-*1,2,3,4- $OsC_3B_7H_9)_2$ (6). A toluene solution of 1^- (2.68 mL of 0.5 M, 1.34 mmol) was added dropwise to a stirring solution of Na₂-OsCl₆·4H₂O (0.30 g, 0.67 mmol) in glyme (35 mL). After stirring for 12 h at reflux, the reddish-brown solution was exposed to air and filtered through a silica gel plug. The silica gel was washed with CH2Cl2 to extract any product. TLC separation (9:1 hexanes/toluene) gave two bands (overall yield 7.7%, 0.024 g, 0.05 mmol). For **5**: commo-Os-(4'-Me-closo-1',2',3',4'-OsC₃B₇H₉)(2-Me-*closo*-1,2,3,4-OsC₃B₇H₉), (R_f 0.3), yield 2.3% (0.007 g); orange; mp 160 °C. Anal. Calcd: C, 20.81, H, 5.24. Found: C, 20.58, H, 5.17. HRMS calcd for ¹²C₈¹H₂₄-¹¹B₁₄¹⁹²Os 466.2793, found 466.2815; IR (KBr, cm⁻¹) 3038 (m), 2937 (m), 2578 (s), 1477 (m), 1386 (m), 1276 (m), 1160 (w), 1102 (m), 921 (m), 720 (w), 668 (s), 649 (w). For 6: commo- $Os-(2-Me-closo-1,2,3,4-OsC_3B_7H_9)_2$ (R_f 0.2); yield 5.4% (0.017) g); orange; mp 162 °C. Anal. Calcd: C, 20.81, H, 5.24. Found: C, 21.04, H, 5.42. HRMS calcd for ¹²C₈¹H₂₄¹¹B₁₄¹⁹²Os 466.2793, found 466.2815; IR (KBr, cm-1) 3031 (m), 2570 (s), 1413 (w), 1329 (w), 1160 (m), 1102 (m), 921 (s), 756 (w).

1- $(\eta^5$ -C₅H₅)-2-Ph-*closo*-1,2,3,4-FeC₃B₇H₉ (7). A toluene solution of 2⁻ (2.2 mL of 0.5 M, 1.10 mmol) was added dropwise to a stirring solution of $(\eta^5-C_5H_5)$ Fe(CO)₂I (0.304 g, 1.00 mmol) in THF (35 mL). After stirring for 12 h at room temperature, the bluish-green solution was exposed to air and filtered through a silica gel plug, and the dark filtrate was evaporated to dryness. TLC separation (7:3 hexanes/CH2Cl2) gave a dark blue band (R_f 0.55). For 7: 1-(η^5 -C₅H₅)-2-Ph-*closo*-1,2,3,4-FeC₃B₇H₉, yield 49% (0.156 g, 0.49 mmol); dark blue; mp 150 °C. Anal. Calcd: C, 52.74; H, 6.01. Found: C, 52.47; H, 5.78. HRMS calcd for ¹²C₁₄¹H₁₉¹¹B₇⁵⁶Fe 320.1487, found 320.1507; IR (KBr, cm⁻¹) 3110 (m), 3063 (m), 2552 (s), 1419 (m), 1308 (m), 1260 (m), 1199 (m), 1116 (w), 939 (w), 838 (w), 738 (w),

 $1-(\eta^5-C_5Me_5)-2-Ph-closo-1,2,3,4-RuC_3B_7H_9$ (8). A toluene solution of 2- (1.6 mL of 0.5 M, 0.80 mmol) was added dropwise to a stirring solution of $[Cp*RuCl_2]_x$ (0.12 g, 0.39 mmol) in glyme (35 mL). After stirring for 12 h at 50 °C, the yelloworange solution was exposed to air and filtered through a silica gel plug. The silica gel was washed with Et2O to extract any remaining product. TLC separation (7:3 hexanes/CH₂Cl₂) gave a single orange band (R_f 0.55). For **8**: 1-(η^5 -C₅Me₅)-2-Ph-*closo*-1,2,3,4-RuC₃B₇H₉, yield 66% (0.112 g, 0.26 mmol); orange; mp 179 °C. Anal. Calcd: C, 52.56, H, 6.73. Found: C, 53.29, H, $6.87. \ \ HRMS \ \ calcd \ \ for \ \ ^{12}C_{19}{}^{1}H_{29}{}^{11}B_{7}{}^{104}Ru \ \ 438.1976, \ \ found$ 438.1991; IR (KBr, cm⁻¹) 2921 (s), 2546 (s), 1945 (m), 1494 (w), 1374 (w), 1160 (w), 1102 (m), 929 (m), 691 (m), 668 (s).

Reaction of 2⁻ with [RuCl₂(cod)_x]. A toluene solution of 2^- (2.04 mL of 0.5 M, 1.02 mmol) was added dropwise to a stirring solution of $[RuCl_2(cod)_x]$ (0.143 g, 0.51 mmol) in glyme (35 mL). After stirring for 12 h at reflux, the resulting dark brown solution was worked up as reported above for the reaction of 1 with [RuCl₂(cod)_x], but yielded no isolable products.

Reaction of 7 with $Cr(CO)_6$: Synthesis of 1- $(\eta^5-C_5H_5)$ - $2-[(\eta^6-C_6H_5)Cr(CO)_3]-closo-1,2,3,4-FeC_3B_7H_9$ (9). A 0.63 mmol (0.202 g) sample of 7 was dissolved in a 10:1 mixture of dibutyl ether/THF, and then an excess (1.39 g, 6.3 mmol) of Cr(CO)₆ was added. After reflux for 36 h, the volatiles were vacuum evaporated. TLC separation (CH₂Cl₂) gave a blue band of the unreacted starting compound 7 (R_f 0.8) (0.074 g, 0.23 mmol, 37%) and a green band (R_f 0.5) of the product. For **9**: 1-(η^5 - C_5H_5)-2-[(η^6 - C_6H_5)Cr(CO)₃]-closo-1,2,3,4-FeC₃B₇H₉; yield 12% (0.023 g, 0.05 mmol); green; mp 150 °C. Anal. Calcd: C, 44.89; H, 4.21. Found: C, 43.19; H, 4.67. HRMS calcd for ¹²C₁₇¹H₁₉- $^{11}B_7^{52}Cr^{56}Fe^{16}O_3$ 456.0740, found 456.0749; IR (KBr, cm $^{-1}$) 3118 (s), 3067 (s), 3044 (m), 2633 (s), 2563 (s), 2504 (s), 2491 (s), 1965 (s), 1894 (s), 1872 (s), 1521 (m), 1504 (m), 1452 (s), 1425 (s), 1407 (m), 1363 (w), 1299 (m), 1216 (s), 1119 (s), 1060 (w), 1012 (m), 995 (m), 850 (s), 814 (m), 731 (m).

Reaction of 3 with tert-Butylisocyanide: Synthesis of 8- $(\eta^5$ -C₅Me₅)-8-(CNBu^t)-9-Me-*nido*-8,7,9,10-RuC₃B₇H₉ (10). A 0.03 mmol (0.011 g) sample of 3 was dissolved in \sim 3 mL of glyme, and excess (1.0 mL, 8.9 mmol) tert-butylisocyanide was added. An immediate color change from reddish-orange to yellow was observed. Slow evaporation of the solution gave X-ray quality yellow-colored crystals. For **10**: nido-8- $(\eta^5$ - C_5 -Me₅)-8-(CNBu⁴)-9-Me-nido-8,7,9,10-RuC₃B₇H₉; yield 97% (0.013 g, 0.029 mmol); orange. Anal. Calcd: C, 50.13; H, 7.97; N, 3.08. Found: C, 49.98; H, 8.14; N, 2.74. IR (KBr, cm⁻¹) 3014 (s), 2983 (s), 2911 (s), 2855 (s), 2527(s), 2163 (s), 2069 (s), 1856 (m), 1460 (s), 1377 (s), 1259 (m), 1232 (s), 1085 (s), 1048 (s), 971 (s), 951 (m), 928 (w), 886 (m).

Reaction of 7 with tert-Butylisocyanide: Synthesis of 8- $(\eta^5$ -C₅H₅)-8-(CNBu⁴)-9-Ph-*nido*-8,7,9,10-FeC₃B₇H₉ (11). A 0.03 mmol (0.010 g) sample of 7 was dissolved in \sim 3 mL of toluene, and excess (1.0 mL, 8.9 mmol) tert-butylisocyanide was added. An immediate color change from blue-green to brownish-red was observed. X-ray quality brownish-red colored crystals were obtained by cooling the brownish-red solution at 0 °C. For **11**: $8-(\eta^5-C_5H_5)-8-(CNBu^6)-9-Ph-$ *nido*-8,7,9,10- $FeC_3B_7H_9$; yield 63% (0.008 g, 0.019 mmol); brownish-red. Anal. Calcd: C, 56.77; H, 7.02; N, 3.48. Found: C, 56.17; H, 7.06; N, 3.54. IR (KBr, cm⁻¹) 3110 (s), 3087 (s), 2985 (s), 2870 (m), 2555 (s), 2166 (s), 2048 (m), 1961 (m), 1862 (m), 1494 (s), 1445 (s), 1370 (s), 1232 (w), 1199 (s), 1068 (m), 939 (s), 894 (m), 839 (s).

⁽⁹⁾ LeSuer, R. J.; Geiger, W. E. Angew. Chem., Int. Ed. 2000, 39, 248-250.

⁽¹⁰⁾ Geiger, W. E., Kissinger, P. T., Heineman, W. R., Eds. Laboratory Techniques In Electroanalytical Chemistry, 2nd ed.; Marcel Dekker: New York, 1996; Chapter 23.

⁽¹¹⁾ Trupia, S. M. Ph.D. Thesis, University of Vermont, 2002.

Reaction of 4 with *tert***-Butylisocyanide.** A 0.03 mmol (0.011 g) sample of **4** was dissolved in \sim 3 mL of glyme, and excess (1.0 mL, 8.9 mmol) *tert*-butylisocyanide was added. No color change was observed, and there was no change in the ¹¹B NMR spectrum from that of the starting compound.

Crystallographic Data. Single crystals of all compounds were grown via slow solvent evaporation from dichloromethane or a 50:50 hexanes/dichloromethane solutions in air.

Collection and Reduction of the Data. Crystallographic data and structure refinement information are summarized in Table 2. X-ray intensity data were collected on a Rigaku R-axis IIc area detector employing graphite-monochromated Mo K α radiation at a temperature of 210 K. Indexing was performed from a series of oscillation angles. A hemisphere of data was collected using 0.5° oscillation angles for 4, 10° for 5 and 7, 5° for 6, 9, and 11, 4° for 8, and 6° for 10 and a crystal-to-detector distance of 82 mm. Oscillation images were processed using bioteX, 12 producing a listing of unaveraged F and $\sigma(F)$ values that were then passed to the teXsan program package 13 for further processing and structure solution on a Silicon Graphics Indigo R4000 computer. The intensity data were corrected for Lorentz and polarization effects but not for absorption.

Solution and Refinement of the Structures. The structures were solved by direct methods (SIR92).¹⁴ Refinements were by full-matrix least squares based on F^2 using SHELXL-93.¹⁵ All reflections were used during refinement (values of F^2 that were experimentally negative were replaced by $F^2 = 0$).

Results and Discussion

Syntheses and Structural Characterizations. As illustrated in eq 1, we have previously shown^{3a,b} that ferratricarbadecaboranyl analogues of ferrocene, including both bis-cage (Me-C₃B₇H₉)₂Fe and mixed-ligand (η^5 -C₅H₅)Fe(Me-C₃B₇H₉) complexes, can be prepared by the reactions of the 6-Me-*nido*-5,6,9-C₃B₇H₉⁻ ($\mathbf{1}^-$) anion with (η^5 -C₅H₅)Fe(CO)₂I.

$$\begin{split} (\eta^5\text{-}C_5\text{H}_5)\text{Fe}(\text{CO})_2\text{I} + \\ \text{Li}^+(6\text{-}\text{Me-}\textit{nido-}5,6,9\text{-}\text{C}_3\text{B}_7\text{H}_9)^- \rightarrow \\ \textbf{1}^- \\ 1\text{-}(\eta^5\text{-}\text{C}_5\text{H}_5)\text{-}2\text{-}\text{Me-}\textit{closo-}1,2,3,4\text{-}\text{Fe}\text{C}_3\text{B}_7\text{H}_9 + \\ \textbf{12} \\ 1\text{-}(\eta^5\text{-}\text{C}_5\text{H}_5)\text{-}4\text{-}\text{Me-}\textit{closo-}1,2,3,4\text{-}\text{Fe}\text{C}_3\text{B}_7\text{H}_9 + \\ \textbf{13} \\ \textit{commo-}\textit{Fe-}(5\text{-}\text{Me-}\textit{closo-}1,2,3,5\text{-}\text{C}_3\text{B}_7\text{H}_9) \\ \text{(4\text{-}\text{Me-}\textit{closo-}1,2,3,4\text{-}\text{C}_3\text{B}_7\text{H}_9)} \\ \textbf{14} \\ \text{LiI} + 2\text{CO} \quad (1) \end{split}$$

We have now used the reactions given in eqs 2-4 to prepare methyltricarbadecaboranyl analogues of ruthenocene and osmocene.

$$\begin{split} [(\eta^5\text{-C}_5\text{Me}_5)\text{RuCl}_2]_{\text{x}} + \\ 2\text{Li}^+(6\text{-Me-}nido\text{-}5,6,9\text{-C}_3\text{B}_7\text{H}_9)^- \rightarrow \\ \mathbf{1}^- \\ 1\text{-}(\eta^5\text{-C}_5\text{Me}_5)\text{-}2\text{-Me-}closo\text{-}1,2,3,4\text{-RuC}_3\text{B}_7\text{H}_9 + \\ \mathbf{3} \\ 2\text{LiCl} \ \ (2) \end{split}$$

$$[\text{RuCl}_2(\text{cod})_x] + 2\text{Li}^+(6\text{-Me-}nido\text{-}5,6,9\text{-}C_3B_7H_9)^- \rightarrow \\ \textbf{1}^- \\ commo\text{-}Ru\text{-}(2\text{-Me-}closo\text{-}1,2,3,4\text{-}RuC_3B_7H_9)_2 + \\ \textbf{4} \\ 2\text{LiCl} \ \ (3)$$

Likewise, the syntheses of the phenyltricarbadecaboranyl analogues of ferrocene and ruthenocene were achieved by the reactions given in eqs 5 and 6 employing the new 6-Ph-nido-5,6,9- $C_3B_7H_9^-$ anion.⁸

$$(\eta^{5}-C_{5}H_{5})Fe(CO_{2})I +$$

$$Li^{+}(6-Ph-nido-5,6,9-C_{3}B_{7}H_{9})^{-} \rightarrow 2^{-}$$

$$1-(\eta^{5}-C_{5}H_{5})-2-Ph-closo-1,2,3,4-FeC_{3}B_{7}H_{9} + LiI +$$

$$7$$

$$2CO (5)$$

$$\begin{split} [(\eta^5\text{-C}_5\text{Me}_5)\text{RuCl}_2]_{\text{x}} + \\ 2\text{Li}^+(6\text{-Ph-}nido\text{-}5,6,9\text{-C}_3\text{B}_7\text{H}_9)^- \rightarrow \\ \mathbf{2}^- \\ 1\text{-}(\eta^5\text{-C}_5\text{Me}_5)\text{-}2\text{-Ph-}closo\text{-}1,2,3,4\text{-RuC}_3\text{B}_7\text{H}_9 + \\ \mathbf{8} \\ 2\text{LiCl} \ \ (6) \end{split}$$

Significant differences were observed in the reactions employing the 6-Me-nido-5,6,9-C₃B₇H₉⁻ (1⁻) and 6-Phnido-5,6,9-C₃B₇H₉⁻ (**2**⁻) anions. For example, 6-Me-nido-5,6,9-C₃B₇H₉⁻ reactions usually result in some cagecarbon rearrangement to produce isomeric side products, such as the $1-(\eta^5-C_5H_5)-4-Me-closo-1,2,3,4-FeC_3B_7H_9$ (13) complex in eq 1, in which "methyl-migration" to the 4-cage carbon has occurred. 16 However, in comparable reactions employing the 6-Ph-nido-5,6,9-C₃B₇H₉ anion, no such isomerization occurs and only one isomer is produced. Likewise, in 6-Me-nido-5,6,9-C₃B₇H₉⁻ reactions such as in eq 1, bis-cage, (Me-C₃B₇H₉)₂M, side products are usually produced (for example, complex **14**), but in the 6-Ph-*nido*-5,6,9- $C_3B_7H_9$ ⁻ reactions in eqs 5 and 6, no bis-cage (Ph- $C_3B_7H_9$)₂M, M = Fe or Ru, were observed. In fact, even reactions, such as shown in eq 7, intentionally designed to produce bis-cage complexes

⁽¹²⁾ *bioteX*: A suite of Programs for the Collection, Reduction and Interpretation of Imaging Plate Data; Molecular Structure Corporation, 1995.

⁽¹³⁾ teXsan: Crystal Structure Analysis Package; Molecular Structure Corporation, 1985 & 1992.

⁽¹⁴⁾ SIR92: Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, M.; Giacovazzo, C.; Guagliardi, A.; Polidoro, G. J. Appl. Crystallogr. 1994, 27, 435

⁽¹⁵⁾ Sheldrick, G. M. SHELXL-93: Program for the Refinement of Crystal Structures; University of Göttingen: Germany, 1993.

⁽¹⁶⁾ Plumb, C. A.; Sneddon, L. G. *Organometallics* **1992**, *11*, 1681–1685.

from the 6-Ph-nido-5,6,9- $C_3B_7H_9^-$ anion were unsuccessful.

$$[RuCl_2(cod)_x] + 2Li^+(6-Ph-nido-5,6,9-C_3B_7H_9)^- \rightarrow \text{no reaction}$$
 (7)

The inability to form bis-cage complexes containing the 6-Ph-*nido*-5,6,9-C₃B₇H₉⁻ ligand is most probably a result of the unfavorable steric interactions between the phenyl substituents of the two cages. As will be reported elsewhere,8 we have used this feature to advantage in achieving the high yield syntheses of a series of halfsandwich complexes that were unattainable using the 6-Me-nido-5,6,9-C₃B₇H₉⁻ anion. The absence of both cage-isomerization and bis-cage side products in the reactions with the 6-Ph-nido-5,6,9-C₃B₇H₉⁻ results in these reactions being more selective than the corresponding reactions with 6-Me-nido-5,6,9-C₃B₇H₉⁻. Thus, reactions with the 6-Ph-nido-5,6,9-C₃B₇H₉⁻ anion provide a more efficient route to metallatricarbadecaboranyl complexes than those reactions employing the 6-Menido-5,6,9-C₃B₇H₉⁻ anion.

All complexes resulting from the reactions in eqs 1-6 were isolated as air-stable solids and were easily purified by TLC. The compositions of all compounds were established by mass spectrometry and/or elemental analyses. The proposed structures are strongly supported by their NMR data, with the structures of compounds 4, 5, 6, 7, and 8 being further confirmed by crystallographic determinations.

The ¹¹B NMR spectra (Table 1) of the mixed-ligand complexes, $1-(\eta^5-C_5Me_5)-2-Me-closo-1,2,3,4-RuC_3B_7H_9$ (3), $1-(\eta^5-C_5H_5)-2-Ph-closo-1,2,3,4-FeC_3B_7H_9$ (7), and $1-(\eta^5-C_5Me_5)-2-Ph-closo-1,2,3,4-RuC_3B_7H_9$ (8), are each consistent with C_1 cage symmetries and are very similar to that previously reported for $1-(\eta^5-C_5H_5)-2-Me-closo-$ 1,2,3,4-FeC₃B₇H₉ (12).^{3a} The ¹H NMR spectra for compounds 3, 7, and 8 are likewise similar to that of 12, each showing, in addition to the appropriate Me or Ph resonances, two C-H resonances with one occurring at a low-field shift (\sim 6.8 to 4.8 ppm) characteristic of the proton attached to the low-coordinate C3 carbon, which is adjacent to the metal, and the other at a high-field shift (>2.2 ppm) characteristic of the C4-H proton.

In agreement with the spectroscopic data, the crystallographic determinations of $1-(\eta^5-C_5H_5)-2-Ph-closo-$ 1,2,3,4-FeC₃B₇H₉ (7) (Figure 2) and $1-(\eta^5-C_5Me_5)-2$ -Phcloso-1,2,3,4-RuC₃B₇H₉ (8) (Figure 3) confirm that the metal atoms in these complexes, as in 12, are η^6 coordinated to the puckered six-membered face of the tricarbadecaboranyl cage with the Me or Ph groups bonded to the C2 cage carbon adjacent to the metal. Thus, these complexes, as well as **12** and $1-(\eta^5-C_5Me_5)$ -2-Me-closo-1,2,3,4-RuC₃B₇H₉ (3), can be considered as mixed ligand analogues of ferrocene and ruthenocene in which formal Fe2+ and Ru2+ ions are sandwiched between the tricarbadecaboranyl and cyclopentadienyl monoanionic ligands. From a cluster point of view, ¹⁷ the

Figure 2. ORTEP drawing of the structure of 1- $(\eta^5$ -C₅H₅)-2-Ph-closo-1,2,3,4-FeC₃B₇H₉ (7).

Figure 3. ORTEP drawing of the structure of 1- $(\eta^5$ -C₅-Me₅)-2-Ph-*closo*-1,2,3,4-RuC₃B₇H₉ (**8**).

Table 3. Intramolecular Distances (Å) in $\mathbf{M} = \mathbf{R}\mathbf{u} \text{ for 8}$

			,	
bond	12	7	8 ^a	9 ^a
M-C2	1.970(3)	1.982(3)	2.111(3)	1.980(4)
M-C3	1.951(3)	1.955(3)	2.073(4)	1.952(5)
M-C4	2.227(3)	2.258(3)	2.355(4)	2.274(5)
M-B5	2.264(3)	2.239(3)	2.339(5)	2.217(5)
M-B6	2.276(3)	2.253(3)	2.352(5)	2.230(6)
M-B7	2.241(3)	2.275(3)	2.358(4)	2.285(6)
$M-Cp/Cp^*$	1.681	1.695(3)	1.829(2)	1.684(5)
C2-C4	1.560(4)	1.502(4)	1.509(6)	1.496(6)
C4-B7	1.817(5)	1.750(4)	1.781(7)	1.739(7)
B7-C3	1.564(4)	1.576(4)	1.570(7)	1.557(9)
C3-B6	1.574(4)	1.578(4)	1.578(8)	1.588(9)
B6-B5	1.775(5)	1.841(5)	1.833(7)	1.854(8)
B5-C2	1.508(3)	1.593(4)	1.577(6)	1.597(7)

^a The bond distances of only one of the two independent molecules found in the asymmetric units of 8 and 9 are given, as there were no significant differences.

11-vertex MC₃B₇H₉ fragment has a *closo* skeletal electron count (24 skeletal electrons, with the CpFe and Cp*Ru groups each donating 1 skeletal electron), and it therefore adopts the octadecahedral structure normally observed for such systems.

Selected bond distances for 12, 7, 8, and 9 are compared in Table 3. The metals are approximately centered over the puckered six-membered open face, with the closest metal-cage interactions being with the

^{(17) (}a) Wade, K. Adv. Inorg. Chem. Radiochem. 1976, 18, 1–66.
(b) Williams, R. E. Adv. Inorg. Chem. Radiochem. 1976, 18, 67–142.
(c) Williams, R. E. Chem. Rev. 1992, 92, 117–201. (d) Williams, R. E. In Electron Deficient Boron and Carbon Clusters; Olah, G. A., Wade, K., Williams, R. E., Eds.; Wiley: New York, 1991.

two carbons, C2 and C3, which are puckered out of the ring. Longer and approximately equivalent bond lengths are observed between the metals and the remaining four atoms (C4, B5, B6, and B7) on the tricarbadecaboranyl bonding face. The M-C2 and M-C3 bond lengths in 7 and 8 are significantly shorter than the M-C bond lengths found to the ring-carbons in their respective cyclopentadienyl (2.051(5)-2.069(3) Å) and pentamethylcyclopentadienyl (2.158(4)-2.261(2) Å) ligands. As pointed out previously, 18 the orbitals on the open face of even a planar polyhedral cluster are orientated more directly toward the metal than in a cyclopentadienyl ring. This enhances the overlap of the metal and ligand orbitals and strengthens the bonding. In the case of the tricarbadecaboranes, even stronger interactions could be possible because the puckered ring structure allows close approach of the metal to the C2 and C3 carbons.

Regardless of whether the substituent at the C2 carbon is a methyl or phenyl group, the M-C2 distance is found to be considerably lengthened compared to the M-C3 distance. For example, the Fe-C2 distances in **12** (1.970(3) Å) and **7** (1.982(3) Å) are considerably longer than their corresponding Fe-C3 distances (1.951-(3) and 1.955(3) Å, respectively).

The ¹¹B and ¹H NMR spectra (Table 1) of the bis-cage complexes *commo-Ru-*(2-Me-*closo-*1,2,3,4-RuC₃B₇H₉)₂ (**4**) and $commo-Os-(2-Me-closo-1,2,3,4-OsC_3B_7H_9)_2$ (6) are similar to those found for complexes 3, 7, 8, and 12, indicating that the two cages in 4 and 6 are equivalent. Thus, both complexes show only seven equal intensity doublets in their ¹¹B NMR spectra. Likewise, in their ¹H NMR spectra, the complexes show only a single Me resonance, as well as only two C-H resonances, one in the low-field region (6.05 ppm, 4 and 6.15 ppm, 6) characteristic of a C3-H proton and the other at highfield (1.73 ppm, 4 and 1.51 ppm, 6) consistent with a C4-H proton.³

The ¹¹B and ¹H NMR spectra of commo-Os- $(4'-Me-closo-1',2',3',4'-OsC_3B_7H_9)(2-Me-closo-1,2,3,4 OsC_3B_7H_9$) (5) are much more complex, indicating that the two cages of the complex are not equivalent. Thus, the ¹¹B NMR resolves 14 resonances in 2:2:1:1:1:1:1: 2:1:1 ratios. The ¹H NMR spectrum shows two separate methyl resonances (one at low field, 2.08 ppm, and the other at high field, 0.76 ppm), as well as three C-H resonances at low field (6.53, 5.37, and 5.04 ppm) and only one C-H at high field (1.92 ppm). The fact that in the ¹H NMR spectrum there are three low-field resonances (C2-H and C3-H adjacent to the metal) and only one high-field resonance (C4-H) suggests that a methyl group has migrated from the C2 to the C4 position on one of the two cages.¹⁶

As shown in Figures 4, 5, and 6, the structures of compounds 4, 6, and 5 were confirmed by crystallographic determinations and are in agreement with the spectroscopic data discussed above. The complexes can be considered analogues of ruthenocene and osmocene in which the Ru²⁺ and Os²⁺ ions are sandwiched between the two Me- $\!C_3B_7H_9^-$ monoanions. From a cluster point of view, 17 a (Me-C₃B₇H₉)M (M = Ru or Os)

Figure 4. ORTEP drawing of the structure of *commo-Ru-* $(2-Me-closo-1,2,3,4-RuC_3B_7H_9)_2$ (4).

fragment, like the $(\eta^5-C_5Me_5)M$ and $(\eta^5-C_5H_5)M$ (M = Fe, Ru) groups in complexes 7 and 8, can donate one skeletal electron to the second MeC₃B₇H₉ cage. Therefore, each (MeC₃B₇H₉)M unit would be an 11-vertex, 24skeletal-electron system that should adopt the observed closo-octadecahedral geometry in which the metal is shared between the two cages.

As discussed^{3b} previously, due to the fact that the 6-Me-nido-5,6,9-C₃B₇H₉ anion exists as a racemic mixture, when a bis-cage complex is formed, it may contain two anion cages of the same enantiomeric type or contain two different enantiomeric forms of the anion. As can be seen in Figures 4 and 5, both complexes 4 and 6 contain a single enantiomeric form of the 6-Menido-5,6,9-C₃B₇H₉⁻ anion, and thus the two cages are related by a C_2 -axis passing through the metal center. The symmetry equivalence of the two cages thus results in the simple NMR spectra observed for 4 and 6. As can be seen in Figure 6, the structure of compound 5 is more complex since the two cages are not symmetry equivalent. Thus, the complex, unlike in 4 and 6, contains two different enantiomeric forms of the anion. Furthermore, in one of the cages (the top cage in Figure 6) the methyl group that had originally been present at the C2' carbon has rearranged to the C4' carbon position. The inequivalence of the two cages, as well as the observed methyl rearrangement, is thus in complete accord with the NMR data.

Selected bond distances for 4, 6, and 5 are presented in Table 4. The metal ions are approximately centered over the six-membered, puckered open faces of the two cages. As was the case for complexes 7, 8, and 12, the shortest metal-cage distances are between the metals and the two carbons, C2 and C3, puckered out of the six-membered face. While, as in the recently reported bis-cage vanadatricarbaboranyl complexes, ^{3g} the planes containing the three boron and one carbon (B5-B6-B7-C4) atom on the six-membered open faces of each

^{(18) (}a) Hawthorne, M. F.; Young, D. C.; Andrews, T. D.; Howe, D. V.; Pilling, R. L.; Pitts, A. D.; Reintjes, M.; Warren, Jr., L. F.; Wegner, P. A. *J. Am. Chem. Soc.* **1968**, *90*, 879–896. (b) Calhorda, M. J.; Mingos, D. M. P.; Welch, A. *J. Organomet. Chem.* **1982**, *228*, 309–320. (c) Mingos, D. M. P. *J. Chem. Soc., Chem. Commun.* **1977**, 602–610.

Figure 5. ORTEP drawing of the structure of commo-Os- $(2-Me-closo-1,2,3,4-OsC_3B_7H_9)_2$ (6).

Figure 6. ORTEP drawing of the structure of *commo-Os-*(4'-Me-closo-1',2',3',4'-OsC₃B₇H₉)(2-Me-closo-1,2,3,4- $OsC_3B_7H_9$) (5).

of the two cages of complex 5 are reasonably parallel (dihedral angle 6(3)°), those in 4 (dihedral angle 17.1-(2)°) and 6 (dihedral angle 15.8(8)°) are not and are tilted away from each other on the C2-Me side of the cages. Unlike in the vanadatricarbaborane complexes, the two cages in **4**, **6**, and **5** are not aligned \sim 90° to one another: 4, 50.48(7)°; 6, 49.8(2)°; and 5, 57.6(5)° (as measured by the dihedral angle between the C2-C3-B8-B9 and C2'-C3'-B8'-B9' planes).

As noted earlier, the use of the 6-Ph-nido-5,6,9-C₃B₇H₉⁻ anion has a number of advantages over the 6-Me-*nido*-5,6,9-C₃B₇H₉⁻ anion in terms of both higher selectivity and yield of metallatricarbadecaboranyl products. The introduction of the phenyl substituent also provides a new reactive site for further modification of a complex. Indeed, as shown in eq 8, it was found that the phenyl-coordinated complex $1-(\eta^5-C_5H_5)-2-[(\eta^6-C_6H_5) Cr(CO)_3$ -closo-1,2,3,4-FeC₃B₇H₉ (9) was readily ob-

Table 4. Intramolecular Distances (Å) in Compounds 4, 5, and 6 (M = Ru for 4 and Os for 5 and 6)

		,	
bond	4	5	6
M-C2	2.120(2)	2.14(2)	2.121(7)
M-C2'	2.116(2)	2.06(2)	2.114(7)
M-C3	2.053(2)	2.12(2)	2.078(8)
M-C3'	2.060(2)	2.09(2)	2.075(8)
M-C4	2.499(2)	2.45(2)	2.479(8)
M-C4'	2.494(2)	2.43(2)	2.478(9)
M-B5	2.349(2)	2.33(2)	2.333(11)
M-B5'	2.354(2)	2.24(3)	2.332(10)
M-B6	2.307(2)	2.37(3)	2.287(9)
M-B6'	2.296(2)	2.35(2)	2.313(10)
M-B7	2.458(2)	2.43(3)	2.459(11)
M-B7'	2.467(2)	2.42(3)	2.469(11)
C2-C4	1.491(3)	1.51(3)	1.517(13)
C2'-C4'	1.494(3)	1.46(3)	1.501(12)
C4-B7	1.747(3)	1.74(3)	1.724(14)
C4'-B7'	1.747(3)	1.67(4)	1.738(14)
B7-C3	1.589(3)	1.66(3)	1.60(2)
B7'-C3'	1.588(3)	1.64(4)	1.593(14)
C3-B6	1.603(3)	1.57(3)	1.600(14)
C3'-B6'	1.610(3)	1.63(3)	1.628(14)
B6-B5	1.863(3)	1.72(4)	1.85(2)
B6'-B5'	1.867(3)	1.72(4)	1.83(2)
B5-C2	1.604(3)	1.60(4)	1.613(13)
B5'-C2'	1.605(3)	1.65(3)	1.623(14)

tained by refluxing a mixture of 7 and Cr(CO)6 in the mixed 10:1 dibutyl ether/THF solvent system which has been employed in the synthesis of $(\eta^6-C_6H_6)Cr(CO)_3$. ^{19,20}

$$\begin{array}{c} 1\text{-}(\eta^5\text{-}\mathrm{C_5H_5})\text{-}2\text{-}\mathrm{Ph}\text{-}closo\text{-}1,2,3,4\text{-}\mathrm{FeC_3B_7H_9} +\\ & \textbf{7}\\ & \mathrm{Cr(CO)_6} \rightarrow\\ \\ 1\text{-}(\eta^5\text{-}\mathrm{C_5H_5})\text{-}2\text{-}[(\eta^6\text{-}\mathrm{C_6H_5})\mathrm{Cr(CO)_3}]\text{-}\\ & closo\text{-}1,2,3,4\text{-}\mathrm{FeC_3B_7H_9}\\ & \textbf{9} \end{array}$$

Consistent with the withdrawing nature of the Cr-(CO)₃ group coordinated to the cage phenyl substituent, the ¹¹B NMR spectrum of **9** is nearly identical to that of 7, but with the peak positions shifted slightly downfield relative to those in 7. In the ¹H NMR spectrum, the arene protons of 9 resonate at higher field than those in 7 and fall into the normal range observed in other (η^6 -arene)Cr(CO)₃ complexes.²¹

As shown in Figure 7, a crystallographic determination of 9 showed that there are two independent molecules in the unit cell, with the two molecules differing in their relative orientations of the Cr(CO)₃ group with respect to the phenyl ring. Unsubstituted $(\eta^6$ -arene)Cr(CO)₃ complexes have been found to exhibit two different arene/carbonyl conformations, where the carbonyl groups are oriented in the eclipsed or staggered forms. 21a,22 In the case of monosubstituted arene complexes $(\eta^6\text{-RC}_6\text{H}_5)\text{Cr}(\text{CO})_3$, the eclipsed conformation can occur in either the syn or anti orientations. The conformations of the $(-\eta^6-C_6H_5)Cr(CO)_3$ fragments found in the

A. Chem. Rev. 1982, 82, 499-525.

⁽¹⁹⁾ Top, S.; Jaouen, G. J. Organomet. Chem. 1979, 182, 381-392. (20) Mahaffy, C. A. L.; Pauson, P. L. *Inorg. Synth.* **1979**, *19*, 154–

^{(21) (}a) Solladie-Cavallo, A. *Polyhedron* **1985**, *6*, 901–927. (b) Price, J. T.; Sorensen, T. S. *Can. J. Chem.* **1968**, *46*, 515–522. (c) Emanuel, R. V.; Randall, E. W. *J. Chem. Soc.* (A) **1969**, 3002–3006. (22) Muetterties, E. L.; Bleeke, J. R.; Wucherer, E. J.; Albright, T.

Figure 7. ORTEP drawings of the structures of the two independent molecules in the crystal structure of $1-(\eta^5-C_5H_5)-2-[(\eta^6-C_6H_5)Cr(CO)_3]-closo-1,2,3,4-FeC_3B_7H_9$ (9).

two molecules of complex **9** are shown in Figure 8, where it can be seen that molecule **A** has the *anti* conformation, in which the Cr–CO bonds overlap with the phenyl-carbons at the *ortho* and *para* positions, while in molecule **B**, the unit has adopted a staggered conformation. The staggered structure adopted by molecule **B** is relatively uncommon for monosubstituted arenes, but has, in fact, been observed in another polyborane complex, nido-2,3-[(CO)₃Cr(η ⁶-C₆H₅)CH₂]₂-2,3-C₂B₄H₆.²³

The intracage distances in **9** (Table 3) are quite similar to those found in **7**. Likewise, the bond lengths and angles observed in the $(-\eta^6\text{-}C_6H_5)\text{Cr}(\text{CO})_3$ fragments (Figure 8 caption), as well as the observed $C\equiv O$ stretching frequencies (1965, 1894, 1872 cm⁻¹), are consistent with the values found in other $(\eta^6\text{-RC}_6H_5)\text{Cr}(\text{CO})_3$ complexes.^{21a,22}

Reversible Cage-Slippage Reactions. As shown in eqs 9 and 10, addition of excess *tert*-butyl isocyanide to glyme solutions of either $1-(\eta^5-C_5Me_5)-2-Me-closo-1,2,3,4-RuC_3B_7H_9$ (3) (reddish-orange) or $1-(\eta^5-C_5H_5)-2-Ph-closo-1,2,3,4-FeC_3B_7H_9$ (7) (blue) resulted in an immediate color change characteristic of the formation of the $8-(\eta^5-C_5Me_5)-8-(CNBu^6)-9-Me-nido-8,7,9,10-RuC_3B_7H_9$ (10) (yellow) and $8-(\eta^5-C_5H_5)-8-(CNBu^6)-9-Ph-nido-8,7,9,10-FeC_3B_7H_9$ (11) (brownish-red) products, respectively. Crystallization from the reaction solutions gave 97% and 62% isolated yields, respectively, of pure materials. Elemental analyses are consistent with the indicated

C16'

Figure 8. Expanded views of the anti-eclipsed and staggered conformations of the $(-\eta^6-C_6H_5)Cr(CO)_3$ fragments of the two independent molecules in the crystal structure of $1-(\eta^5-C_5H_5)-2-[(\eta^6-C_6H_5)Cr(CO)_3]-closo-1,2,3,4-FeC_3B_7H_9$ (9). Selected distances (Å) and angles (deg) for $(-\eta^6-C_6H_5)$ Cr-(CO)₃ fragments, structure **A** (anti-eclipsed): Cr-C18 1.830(6); Cr-C20 1.838(6); Cr-C22 1.830(6); C18-O19 1.162(6); C20-O21 1.158(7); C22-O23 1.166(6); C12-C13 1.415(7); C13-C14 1.415(7); C14-C15 1.397(11); C15-C16 1.389(11); C16-C17 1.415(8); C17-C12 1.412(7); Cr-ring centroid 1.7074(7); C18-Cr-C22 88.5(2); C18-Cr-C20 88.3(3); C20-Cr-C22 88.3(2); structure **B** (staggered): Cr'-C18' 1.840(5); Cr'-C20' 1.827(5); Cr'-C22' 1.834(5); C18'-O19' 1.167(6); C20'-O21' 1.166(6); C22'-O23' 1.166-(6); C12'-C13' 1.436(6); C13'-C14' 1.406(6); C14'-C15' 1.412(7); C15'-C16' 1.386(7); C16'-C17' 1.415(7); C17'-C12' 1.405(6); Cr'-ring centroid 1.7169(7); C18'-Cr'-C22' 90.8(2); C18'-Cr'-C20' 88.4(2); C20'-Cr'-C22' 86.6(2).

'C22'

compositions resulting from the association of 1 equiv of the *tert*-butyl isocyanide.

$$\begin{aligned} 1 - (\eta^5 - C_5 Me_5) - 2 - Me - closo - 1, 2, 3, 4 - RuC_3 B_7 H_9 + \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$$

$$\begin{aligned} 1\text{-}(\eta^{5}\text{-}\mathrm{C}_{5}\mathrm{H}_{5})\text{-}2\text{-}\mathrm{Ph}\text{-}closo\text{-}1,2,3,4\text{-}\mathrm{FeC}_{3}\mathrm{B}_{7}\mathrm{H}_{9} +\\ & \mathbf{7}\\ & \mathrm{CNBu}^{t} \rightleftharpoons\\ 8\text{-}(\eta^{5}\text{-}\mathrm{C}_{5}\mathrm{H}_{5})\text{-}8\text{-}(\mathrm{CNBu}^{t})\text{-}9\text{-}\mathrm{Ph}\text{-}nido\text{-}8,7,9,10\text{-}\mathrm{FeC}_{3}\mathrm{B}_{7}\mathrm{H}_{9}\\ & \mathbf{11} \end{aligned}$$

These reactions are reversible. Heating a toluene solution of ${\bf 10}$ at reflux under flowing N_2 for 20 min resulted in the quantitative formation of ${\bf 3}$, while simply dissolving pure ${\bf 11}$ in glyme resulted in the formation of an equilibrium mixture of ${\bf 7}$ and ${\bf 11}$. Heating the solution to reflux under flowing N_2 resulted in complete conversion to ${\bf 7}$.

^{62%} isolated yields, respectively, of pure materials. Elemental analyses are consistent with the indicated

(23) Spencer, J. T.; Pourian, M. R.; Butcher, R. Y.; Sinn, E.; Grimes, R. N. *Organometallics* **1987**, *6*, 335–343.

Figure 9. ORTEP drawing of the structure of 8- $(\eta^5-C_5-C_5)$ Me₅)-8-(CNBu^t)-9-Me-*nido*-8,7,9,10-RuC₃B₇H₉ (**10**).

Figure 10. ORTEP drawing of the structure of 8- $(\eta^5$ - C_5H_5)-8-(CNBu¹)-9-Ph-*nido*-8,7,9,10-FeC₃B₇H₉ (**11**).

The metals in 3, 7, and 8, as in ruthenocene and ferrocene, have formal 18-electron counts. Thus, unless there is a change in the donor properties of either the cyclopentadienyl or tricarbadecaboranyl ligands, the metal coordination of a two-electron isocyanide ligand would result in the formation of a 20-electron complex. As shown in the ORTEP drawings in Figures 9 and 10, crystallographic studies of 10 and 11 demonstrated that upon isocyanide addition, the cyclopentadienyl rings remain symmetrically bonded to the metals with only a slight increase in the metal to ring-centroid distances in **10** (1.871(3) Å) and **11** (1.736(1) Å) relative to their values in 3 (1.829(2) Å) and 7 (1.695(3) Å), respectively (Table 5). However, the coordination mode of the tricarbadecaboranyl ligand in 10 and 11 has changed from η^6 to η^4 . Thus, in **10** and **11**, the ruthenium and iron atoms are no longer centered over the six-membered face, but instead, the metals have slipped to one side of the cage. The metals are now centered above the C7-B3-B4-C9 face with the bond lengths between the metal and the four facial atoms being similar. Nonbonding distances (>3.0 Å) are found between the metals and the C10 and B11 cage atoms. In 7 and 8, the M-C2-

Table 5. Intramolecular Distances (Å) in Compounds 10 and 11 (M = Ru for 10 and Fe for

	•	
bond	10	11
M-C9	2.204(6)	2.102(8)
M-C7	2.218(5)	2.114(8)
M-B4	2.246(5)	2.175(9)
M-B3	2.273(6)	2.191(9)
M-C10	3.117(6)	3.020(8)
M-B11	3.152(7)	3.051(10)
$M-Cp/Cp^*$	1.871(3)	1.736(1)
C9-B4	1.632(8)	1.575(12)
B4-B3	1.875(10)	1.861(13)
B3-C7	1.605(9)	1.585(12)
C7-B11	1.588(9)	1.606(12)
B11-C10	1.639(10)	1.656(12)
C10-C9	1.541(8)	1.537(11)
	, ,	, ,

Figure 11. Comparison of structures and bonding modes of the tricarbadecaborane and cyclopentadienide monoanions.

B8-B9-C3 atoms were coplanar, but in **10** and **11** the metals lie significantly out of the plane of the other four atoms, so that the dihedral angles between the C7-M-C9 and C7-B2-B5-C9 planes in **10** and **11** are 36.8-(1)° and 36.3(3)°, respectively.

As we have previously discussed, 3e,24 the change from the η^6 - to η^4 -coordination mode corresponds to a conversion of the tricarbadecaboranyl ligand from a six- to a four-electron donor. As illustrated in Figure 11, an η^4 tricarbadecaboranyl ligand could therefore be considered the electronic analogue of a metal-coordinated η^3 -C₃H₅¹⁻ allyl or a "slipped" η^3 -C₅H₅¹⁻ ligand. Thus, the net result of the addition of the two-electron isocyanide ligand to complexes 3 and 7 is to convert the tricarbadecaboranyl ligands to their η^4 -coordination modes, reducing their electron donation to the metals to only four electrons and thereby preserving the metal's favorable 18-electron count.²⁵ From a skeletal-electron counting point of view,17 this process simply corresponds to a cageopening of the metallatricarbadecaboranyl fragment brought about by the addition of two electrons to the

⁽²⁴⁾ Weinmann, W.; Pritzkow, H.; Siebert, W.; Sneddon, L. G. Chem. Ber./Recl. 1997, 130, 329-333.

⁽²⁵⁾ Siebert has also shown that the diborolyl rings in the formal 16-electron complexes $(\eta^5-C_5Me_5)Ru(R_3'C_3B_2\tilde{R}_2)$ and $(\eta^5-C_5H_5)Fe_5$ (R₃'C₃B₂R₂) reversibly change their degree of folding upon the association/dissociation reactions of the complexes with tert-butyl isocyanide to form the 18-electron (η^5 -C₅Me₅)Ru(CNBu')(R₃′C₃B₂R₂) and (η^5 -C₅H₅)-TeiCNBu¹)(R₃′C₃B₂R₂) complexes. See: (a) Hettrich, R.; Kaschke, M.; Wadepohl, H.; Weinmann, W.; Stephan, M.; Pritzkow, H.; Siebert, W.; Hyla-Kryspin, I.; Gleiter, R. Chem. Eur. J. **1996**, 2, 487–494. (b) Müller, T.; Kaschke, M.; Strauch, M.; Ginsberg, A.; Pritzkow, H.; Siebert, W. Eur. J. Inorg. Chem. 1999, 1685–1692.

Table 6. Reversible Redox Potentials (V vs $Cp_2Fe^{0/+}$) of Relevant Metallatricarbadecaboranyl and Cyclopentadienyl Complexes in Nonaqueous Solutions Containing 0.1 M [NBu₄][B(C₆F₅)₄]

compound	solvent	$E_{1/2}(0/1+)$	$E_{1/2}(0/1-)$	$E_{1/2}(1-/2-)$	source
CpFe(MeC ₃ B ₇ H ₉), 12	$\mathrm{CH_2Cl_2}^a$	0.39			ref 3g
$CpFe(MeC_3B_7H_9)$, 12	THF		-1.74		ref 3g
$CpFe(PhC_3B_7H_9)$, 7	CH_2Cl_2	0.43			this work
$CpFe(PhC_3B_7H_9)$, 7	THF		-1.64	-2.79	this work
$Cp^*Ru(MeC_3B_7H_9)$, 3	CH_2Cl_2	0.52			this work
$Cp^*Ru(MeC_3B_7H_9)$, 3	THF		-2.32	-2.7 (irrev) ^b	this work
$Cp^*Ru(PhC_3B_7H_9)$, 8	CH_2Cl_2	0.57			this work
$Cp^*Ru(PhC_3B_7H_9)$, 8	THF		-2.18	-2.56	this work
$Ru(MeC_3B_7H_9)_2$, 4	CH_2Cl_2	1.28	-1.33	-1.5	this work
$Os(MeC_3B_7H_9)_2$, 6	THF	1.2_5 (irrev) ^b	-1.37	-1.52	this work
Cp_2Fe	THF	0	-3.4		$\operatorname{ref} 32^c$
Cp₂Ru	CH_2Cl_2	0.41			this work, ref 33^e
Cp_2Ru	THF^a		-3.9^{d}		ref 34
Cp_2Os	$\mathrm{CH_2Cl_2}^e$	0.36			$\mathrm{ref}33^c$
Cp_2Os	THF^a		-3.9^{d}		ref 34

^a Supporting electrolyte was 0.1 M [NBu₄][PF₆]. ^b For chemically irreversible systems, $E_{1/2}$ is estimated from E_p at CV scan rate of 0.1 V/s. c Reduction of ferrocene at T=228 K. d Value estimated from reduced temperature data in ref 32. e In experiments involving [NBu₄][B(C₆H₃(CF₃)₂)₄] as supporting electrolyte, ref 33 reports Cp₂Ru^{0/+} as 0.56 V and Cp₂Os^{0/+} as 0.36 V vs ferrocene.

closo-M(R)C₃B₇H₉ cage (24 skeletal electrons) frameworks of **3** and **7** to form the *nido*-M(R)C₃B₇H₉ cage (26 skeletal electrons) structures of 10 and 11.

No reaction was observed between tert-butylisocyanide and the commo-complex 4 (eq 11). Lack of reaction probably results from the fact that, as can be seen in the structure in Figure 4, the two tricarbadecaborane ligands in 4 are oriented in such a fashion that they wrap around the ruthenium and protect it from attack by the *tert*-butylisocyanide.

Although not observed for ferrocene and ruthenocene, reversible ring-slippage from η^5 to η^3 has been proposed, as shown in the well-studied example 6d,e in eq 12, to be a key step in the substitution reactions of numerous cyclopentadienyl complexes⁶ and some dicarbaboranyl complexes.²⁶

As discussed above for the tricarbadecaboranyl complexes, cyclopentadienyl η^5 to η^3 ring-slippage both provides an open coordination site for the incoming ligand and avoids the formation of an unfavorable 20electron intermediate, thus providing a low-energy pathway for the substitution reaction. Similar cyclopentadienyl ring-slippages are thought to be critical steps in many other important stoichiometric and catalytic organometallic reactions.⁶ The η^6 to η^4 cageslippage reaction reported herein not only further illustrates the similarities of the cyclopentadienyl and tricarbadecaboranyl ligands but also demonstrates that tricarbadecaboranyl cage-slippage is preferred over η^5 to η^3 cyclopentadienyl ring-slippage in these complexes. The facile nature of the tricarbadecaboranyl rearrangement further suggests that metallatricarbadecaboranyl complexes may exhibit even greater reactivities than their cyclopentadienyl counterparts for many transformations requiring the generation of a coordinatively unsaturated metal center.

Electrochemical Studies. When compared with measured or estimated redox potentials of metallocene analogues, the redox reactions of compounds 3, 4, 6, 7, and 8 clearly show a tendency toward the thermodynamic stabilization of metals in lower oxidation states. Although this property has been noted previously, 3g the present data allow quantification of the tricarbadecaboranyl electronic effect relative to that of the Cp ligand. Before discussing that however, we first summarize aspects of the chemical and electrochemical reversibilities of the redox reactions.

All five of the electrochemically investigated compounds give rise to three diffusion-controlled redox processes comprised of one oxidation and two reductions (Table 6). Each process has one-electron stoichiometry, as determined indirectly by comparison of their CV peak heights and $\Delta E_{\rm p}$ values, and directly by coulometry (*vide* infra). These electron-transfer reactions generally approach Nernstian behavior,27 implying relatively rapid heterogeneous electron-transfer reactions and allowing us to write eq 13 as a description of 4 and its analogues. Exceptions to completely reversible behavior will be discussed.

$$\mathbf{4}^{+} \stackrel{-e^{-}}{\rightleftharpoons} \mathbf{4} \stackrel{+e^{-}}{\rightleftharpoons} \mathbf{4}^{-} \stackrel{+e^{-}}{\rightleftharpoons} \mathbf{4}^{2-}$$
 (13)

Bulk electrolyses carried out on the oxidation of 3 at room temperature and on the first reduction of 4 at 233 K confirmed the one-electron stoichiometries and showed that the products (3+ and 4-, respectively) are reasonably persistent under these conditions. Regenerative electrolyses (e.g., "back"-oxidation of electrochemically generated **4**⁻) gave back the starting materials in 90% yield for 4 and 65% yield for 3.

Variations in reversibility were primarily found in the cathodic reactions of these compounds. As demonstrated in Figure 12A, the CV response for the mixed-sandwich compound 8 reveals that the dianion 82- undergoes a

⁽²⁶⁾ See for example: Shen, J. K.; Zhang, S.; Basolo, F.; Johnson, S. E.; Hawthorne, M. F. *Inorg. Chim. Acta* **1995**, *235*, 89–97.

⁽²⁷⁾ Except where noted, values of $|E_{pa}-E_{pc}|$ were very similar to those observed for the $Cp_2Fe^{+/0}$ couple under similar conditions.

Figure 12. (A) Cyclic voltammogram of 2 mM 1- $(\eta^5$ -C₅-Me₅)-2-Ph-closo-1,2,3,4-RuC₃B₇H₉ (**8**) in CH₂Cl₂/0.1 M [NBu₄]- $[B(C_6F_5)_4]$ at d=2 mm glassy carbon electrode. Room temperature, 0.2 V/s. (B) Cyclic voltammogram of 1 mM commo-Ru-(2-Me-closo-1,2,3,4-RuC₃B₇H₉)₂ (4) in CH₂Cl₂/ 0.1M [NBu₄][B(C₆F₅)₄] at d=2 mm glassy carbon electrode. Room temperature, 0.2 V/s.

follow-up reaction to produce a product with an oxidation wave at ca. -0.65 V. A similar result was found for the second reduction of 3. The only indication of electrochemical quasi-reversibility (i.e., a slow heterogeneous charge transfer) was observed in the second reduction of the Ru bis-caged system $4^{1-/2-}$ (see second cathodic wave in Figure 12B). The $4^{1-/2-}$ process exhibits effects from changes in solvent, temperature, and scan rate, details of which are under investigation. Perusal of the $E_{1/2}$ values in Table 6 confirms that each electron-transfer process of a mono- or bis-cage compound is shifted positive compared to the equivalent process of its metallocene analogue.²⁸ It is readily apparent, however, that the positive shifts for the first reduction of the neutral compounds (i.e., the 0/1couple) are much greater than those seen for the *oxidation* of the same compound (i.e., the 0/1+ couple). This shows that the potential shifts of the *cathodic* reactions cannot be ascribed to an electronic effect analogous, for example, to the inductive effect observed in the replacement of a C₅H₅ ligand by a C₅Me₅ ligand. A measure of the comparative inductive effect upon

Table 7. $E_{1/2}(0/1+)$ and $E_{1/2}(0/1-)$ Shifts (V) for **Tricarbadecaboranyl Complexes Compared to Identical Couples of Metallocene Analogues**

compound	$\Delta E_{1/2}$ (ox) ^a	shift per lig^b	$\Delta E_{1/2} \text{ (red)}^c$	excess shift^d
12	0.39	0.39	1.66	1.22
7	0.43	0.43	1.76	1.32
3	0.41	0.41	1.88	1.44
8	0.46	0.46	2.02	1.58
4	0.87	0.43_{5}	2.57	1.69
6	\sim 1 e	$\sim\!\!0.5^e$	2.53	1.65

^a $E_{1/2}(0/1+)$ for compound minus $E_{1/2}(0/1+)$ for analogous Cp₂M. b lig = RC₃B₇H₉. c $E_{1/2}(0/1-)$ for compound minus $E_{1/2}(0/1-)$ for analogous Cp₂M. d $\Delta E_{1/2}$ (red) minus $[m \times (0.044 \text{ V})]$, where m is number of RC₃B₇H₉ ligands. ^e Estimated from peak potential of irreversible oxidation of 6 in THF.

replacement of a Cp by RC₃B₇H₉ is obtained by comparison of the $\Delta E_{1/2}(0/1+)$ values in Table 6, where $\Delta E_{1/2}(0/1+) = [E_{1/2}(0/1+) \text{ of } (RC_3B_7H_9)_mCp_{2-m}M) - E_{1/2}$ (0/1+) of (Cp_2M)], m=1, 2. In each case, the neutral compound is an 18-electron system which is not expected to undergo significant structural changes upon one-electron oxidation. As shown in Table 7, the $\Delta E_{1/2}$ -(0/1+) value for six RC₃B₇H₉-containing compounds is 0.44 ± 0.04 V for each substitution of a Cp group by an RC₃B₇H₉ group.²⁹ We therefore use the value of 0.44 V as the comparative inductive effect of the RC₃B₇H₉ group in the iron-group complexes.

For comparison, a comparative electronic effect of ca. −0.25 V was obtained for the dicarbollide ligand, [C₂B₉H₁₁]²⁻, when compared to Cp⁻, ^{18a,30} the negative sign being consistent in that case with the stabilization of higher oxidation states by the more negatively charged $[C_2B_9H_{11}]^{2-}$ ligand. Significantly, the -0.25V dicarbollide comparative inductive effect successfully accounted for trends in both the oxidations and reductions of neutral compounds,30 in contrast to the present findings for tricarbadecaboranyl complexes. The additional stabilization for the first reductions of the tricarbadecaboranyl complexes is quantified by subtracting the amount $(0.44 \times m)$ volt from the measured shifts in $E_{1/2}(0/1-)$, where m is the number of RC₃B₇H₉ ligands in the compound (see Table 7). For example, compared to the reduction of ruthenocene (Cp₂Ru^{0/1-}), the $E_{1/2}$ of $[(MeC_3B_7H_9)_2Ru]^{0/1-}$, $\mathbf{4}^{0/1-}$, is more positive by 2.57 V. About 0.88 V of this value is accounted for by the replacement of two Cp rings in Cp2Ru by RC₃B₇H₉ ligands in 4. This leaves an additional stabilization (excess shift) of about 1.69 V, which must arise from factors other than the comparative inductive effect. Using this approach, one finds an additional stabilization of 1.2-1.3 V for the two Fe compounds and 1.4-1.7 V for the Ru and Os compounds (Table 7). Furthermore, these data suggest that the great bulk of the additional stabilization is found in substitution of the first Cp ligand by a RC₃B₇H₉ group.

Among the chemical factors that might be considered as contributing to the additional stabilization are (i) medium effects such as solvation and ion-pairing; (ii) changes in metal configurations or spin states, and (iii) structural changes that are coupled to the electrontransfer reactions. Given the results discussed above

⁽²⁸⁾ See Experimental Section for summary of metallocene potentials.

⁽²⁹⁾ This value was adjusted by 0.3 V for compounds 3 and 8, which

contain Cp* groups.
(30) Geiger, W. E. In *Metal Interactions with Boron Clusters*; Grimes, R. N., Ed.; Plenum Press: New York, 1982; p 239.

demonstrating that the $RC_3B_7H_9$ ligand can change from a six-electron, η^6 - to a four-electron, η^4 -coordination mode upon the addition of a two-electron donor (see compounds $\bf 10$ and $\bf 11$), a redox-induced structural change (i.e., possibility iii, specifically a slippage to lower than η^6 -coordination) must be considered to be likely in the reduced tricarbadecaboranyl-containing complexes.

Much of the literature in which electrochemistry has been used to probe η^6/η^4 and η^5/η^3 bonding changes has been recently summarized.³¹ These papers emphasize that heterogeneous electron-transfer rates are likely to be less intricate probes of structural reorganizations than are $E_{1/2}$ effects. More detailed mechanistic studies,

including measurement of k_s values, are therefore planned for these and related η^n -RC₃B₇H₉ compounds. It should also be noted that the overall ligand-induced stabilization of reduced forms of metal-tricarbadecaboranyl complexes allows detection of formal metal oxidation states which seem to have no precedent in their metallocene analogues, namely, formal M⁰ complexes, M = Fe, Ru, Os, in the dianions of compounds 3, 4, 6, 7, and 8.

Acknowledgment. The National Science Foundation supported the research carried out at the Universities of Pennsylvania (CHE 98-14252) and Vermont (CHE 97-05763).

Supporting Information Available: X-ray crystallographic data for structure determinations of **4**, **5**, **6**, **7**, **8**, **9**, **10**, and **11** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

OM020757U

^{(31) (}a) Stoll, M. E.; Baelanzoni, P.; Calhorda, M. J.; Drew, M. G. B.; Felix, V.; Geiger, W. E.; Gamelas, C. A.; Gonzalves, I. S.; Romão, C. C.; Veiros, L. F. *J. Am. Chem. Soc.* **2001**, *123*, 10595–10606. (b) Geiger, W. E. *Acc. Chem. Res.* **1995**, *28*, 351–357.

⁽a) Ito, N.; Saji, T.; Aoyagui, S. *J. Organomet. Chem.* **1983**, 247, 301–305.

⁽³³⁾ Hill, M. G.; Lamanna, W. G.; Mann, K. R. *Inorg. Chem.* **1991**, *30*, 4687–4690.

⁽³⁴⁾ Strelets, V. V. Coord, Chem. Rev. 1992, 114, 1-60.