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The reaction of [CpCr(CO)3]2 (1, Cp = °-CsHs) with 1 mol equiv of the tetraalkyldiphos-
phine disulfide R,P(S)P(S)R, (R = Me, Et) at 60 °C for 24 h led to the isolation of the
thiophosphinito complexes CpCr(CO),(SPRy) (2a, R = Me; 2b, R = Et) as dark red solids in
ca. 24% yield. Desulfurization of 2a by the organometallic radical CpCr(CO)s* (1A) gave the
hydrido—phosphido-bridged complex Cp,Cr,(CO)4(u-H)(u-PMe,) (3a), the bis(u-phosphido)
metal—metal doubly bonded complex Cp,Cr,(CO).(u-PMe,), (4a), and the triangulo trinuclear
complex CpsCr3(CO)s(S)(PMe,) (5a). The solid-state structures of all of the complexes have
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been determined by single-crystal X-ray diffraction analysis.

Introduction

The chemistry of organometallic radical species,
especially of the 17-electron type, is of continuing
current interest.! We have been investigating the
reactivity of the cyclopentadienylchromium tricarbonyl
17-electron radical species, CpCr(CO)s* (1A), toward
cleavage of the interchalcogen bonds in homo- and
heteropolynuclear inorganic compounds? and in organic
substrates, e.g. diphenyl dichalcogenides, Ph,E; (E =
S, Se, Te),% bis(diphenylthiophosphinyl)disulfane, Ph,P-
(S)SSP(S)Ph,,3b and tetraalkylthiuram disulfides.3¢

In the course of these studies, we have observed that
desulfurization or removal of Se had occurred under
thermal activation to give new complexes possessing
different nuclearities and varied structures.?® Desul-
furization processes, especially those involving carbon—
sulfur bond cleavage, have biological and industrial
relevance.*® Our recent encounter with this type of bond
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rupture involved thermal desulfurization of a dithio-
carbamate ligand to generate thiocarbenoid and di-
cubane compounds.3¢ Subsequently, we found that these
transformations were facilitated by the 17-electron
species 1A, which behaves as an avid thiophile, produc-
ing a variety of new compounds.® We were therefore
prompted to investigate the probable role of 1A in
desulfurization of thiophosphinito ligands, an occur-
rence not reported to date for ligated P,S-containing
organic moieties. We are particularly interested in
examining if this will provide a viable route to phos-
phido ligands, since these are of continuing current
interest,” on account of their stabilizing influence on di-
and polynuclear complexes.® The findings are described
in this paper.

Experimental Section

General Procedures. Standard procedures were as de-
scribed in a previous paper.3® [CpCr(CO)s], (1) and Et,P(S)P-
(S)Et, were prepared as described in the literature.®'° Me,P-
(S)P(S)Me: (99% purity) was obtained from Strem Chemical
Co. Details for the syntheses of 2a,b, 3b, and 5b are given in
the Supporting Information.

Thermolytic Reaction of CpCr(CO),(SPMe,) (2a) with
[CpCr(CO)s]2 (1) at 110 °C. A greenish brown mixture of
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CpCr(CO)z(SPMey) (2a; 90 mg, 0.34 mmol) and 1 (136 mg, 0.34
mmol) in toluene (10 mL) was stirred at 110 °C for 1.5 h. The
resultant dark brown product solution was concentrated to ca.
3 mL and filtered to remove a dark green solid of CpsCr,S, (8
mg, 8%). The filtrate was loaded onto a silica gel column (2 x
15 cm) prepared in n-hexane. Elution gave five fractions: (i)
a deep green eluate in n-hexane/toluene (4:1, 5 mL), from
which was obtained deep green crystals of [CpCr(CO)2]. (8 mg,
7% yield); (ii) a cherry red eluate in n-hexane/toluene (2:1, 5
mL), which on concentration gave deep red crystals of Cp,Cr,-
(CO)2(u-PMey), (4a; 16 mg, 12%); (iii) a dark red eluate in
n-hexane/toluene (1:2, 10 mL), which gave deep red crystals
of Cp2Cra(CO)a(u-H)(u-PMey) (3a; 32 mg, 23%); (iv) a dark
green eluate in toluene (5 mL), which yielded an additional
amount of CpsCrsSs (4 mg, 4%); (v) a red-brown eluate in
toluene (10 mL), which yielded a brown solid of CpsCrs(u-CO),-
(us-S)(u-PMey) (5a; 51 mg, 45%).

Thermolysis of Cp.Cr,(CO)4(u-H)(u-PMey) (3a). A red
solution of 3a (81 mg, 0.20 mmol) in toluene (5 mL) was
maintained at 90 °C for 6 h. The resultant dark red solution
was filtered to remove a dark green insoluble precipitate (21
mg) of an unidentified compound. The filtrate was concen-
trated to ca. 1 mL and loaded onto a silica gel column (1.5 x
8 cm) prepared in n-hexane. Two fractions were eluted: (i) a
purple red eluate in n-hexane/toluene (1:1, 8 mL), which gave
a red solid of 4a (12 mg, 15% vyield); (ii) a red eluate in
n-hexane/toluene (1:4, 10 mL), from which was obtained a dark
red crystalline solid of 3a (42 mg, 51% recovery).

Data for 3a. IR (toluene, cm™?): »(CO) 1925 s, 1886 s. 'H
NMR (C¢Dg): 6 4.15 (s, 10H, 2 x CsHs), 1.62 (d, 3 = 9 Hz, 6H,
2 x CH3), —12.88 (d, J = 70 Hz, 1H, CrHCr). 3C NMR (C¢Ds):
0 88.1 (CsHs), 26.2 (d, J = 18 Hz, CHj3). 3'P{*H} NMR (CsDs):
0 201.7 (s; H-coupled, d of unresolved multiplet, J = 70, ca. 9
Hz). Anal. Calcd for Ci6H17,Cr,04P: C, 47.1; H, 4.2; P, 7.6.
Found: C, 46.6; H, 4.1; P, 7.4. MS FAB™ (m/z): 408 [M], 379
[M — CO]*, 351, [M — 2CO]*, 324 [M — 3COQO]*, 296 [M —
4CQJ*, 117 [CpCr]*, 52 [Cr]*. HR-MS ESI* (m/z): for M*
407.968 (found), 407.967 (calcd).

Data for 4a. IR (toluene, cm™): »(CO) 1844 s. *H{3'P} NMR
(CeDe): 04.72 (S, lOH, 2 x C5H5), 1.85 (S, 12H, 4 x CH3) 13C
NMR (CgDg): 6 90.2 (CsHs), 23.3 (CHg). 3P NMR (CgDg): 0
131.3. Anal. Calcd for C16H2,Cr,0,P,: C, 46.6; H, 5.4; P, 15.0.
Found: C, 46.6; H, 5.4; P, 15.3. MS FAB" (m/z): 412 [M],
384 [M — CQO]J, 356 [M — 2CO]*. HR-MS ESI* (m/z): for M*
411.990 (found), 411.991(calcd).

Data for 5a. IR (toluene, cm™2): »(CO) 1799 s, 1750 s. 'H
NMR (CgDg): 0 14.0 (br, v12 = 140 Hz, 10H, 2 x CsHs), 13.6
(br, vi, = 120 Hz, 5H, CsHs), 0.31 (br, v, = 120 Hz, 3H, CH3),
—3.43 (br, v12 = 120 Hz, 3H, CHj3). Anal. Calcd for CioH2;-
Cr;0,PS: C, 45.6; H, 4.2; P, 6.2, S, 6.4. Found: C, 44.9; H,
4.2;P, 59, S, 6.7. MS EI* (m/z): 500 [M]*, 444 [M — 2CO]",
117 [CpCr]*, 52 [Cr]™.

Results and Discussion

Products and Reaction Pathways. The reaction
of [CpCr(C0O)s]2 (1) with 1 mol equiv of the tetraalkyl-
diphosphine disulfides R,P(S)P(S)R2 (R = Me, Et) in
toluene at 60 °C for 24 h led to the isolation of the n2-
thiophosphinito complex CpCr(CO)2(SPR>) (2a, R = Me,
25% vyield; 2b, R = Et, 22% yield), together with
recovered 1 (ca. 30%), [CpCr(CO),]2(Cr=Cr) (28%),
[CpCr(CO),]2S (12%), and recovered ligand (ca. 40%).
Since a substantial amount of 1 remained unreacted,
the reactions were repeated at 90 °C until 1 had
completely reacted (2 h). These altered conditions did
not cause any change to the yields of 2a/2b (both 24%
yield) but also gave additional products, viz. the hy-
drido—phosphido-bridged complexes Cp2Crz(CO)a(u-H)-
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(u-PR2) (3a, R = Me, 27% yield; 3b, R = Et, 17% yield)
and the trinuclear complexes CpsCr3(CO)2(S)(u-PRy) (5a,
R = Me, 11% yield; 5b, R = Et, 6% yield), together with
[CpCr(CO),]2(Cr=Cr) (14% yield) and Cp4Cr4S, (ca. 12%
yield).

The formation of the x2-thiophosphinito complexes
CpCr(C0O)2(SPR>) (2) (Scheme 1) is in agreement with
the established reaction mode of the 17-electron CpCr-
(CO)s* radical species in the cleavage of element—
element bonds of groups 15 and 16. The isolation of
additional products, 3 and 5, from a reaction at a higher
temperature, is suggestive of secondary reactions, which
may be subsequent thermolysis of 2 and/or its inter-
action with 1. An NMR tube reaction in dg-toluene
showed that the complex 2a underwent only 40%
decomposition after 2 h at 100—110 °C, producing Cps-
Cr4S4 (ca. 35% yield) and other insoluble noncharacter-
izable compounds, thus ruling out a direct thermolytic
degradation pathway. However, when cothermolyzed
with 1 mol equiv of 1 for 1.5 h at 110 °C, the complex
2a gave 3a (23%), 4a (12%), and 5a (45%), together with
[CpCr(CO)2]2(Cr=Cr) (7%) and Cp4CrsSs (12%), as il-
lustrated in Scheme 2. Additionally, a separate experi-
ment showed that 3a underwent ca. 50% conversion
after 6 h at 90 °C, yielding 4a as the only isolable
product in ca. 29% yield, based on reacted 3a (Scheme
3).

Phosphido complexes of the types 3 and 4 have mainly
been prepared from the reaction of metal carbonyls with
diphosphanes R,PPR!2 and phenylphosphines PPh,H
and PPhH,.11b< Recently, cyclopentadienyl complexes of
group 6 metals, CpaMy(CO)4(u,7%-P2), have been found
to be precursors to phosphanido (u-PHz) complexes, via
cleavage of the P—P bond with hydroxide followed by
acid treatment (M = Mo, W)'22 or with the LiBEtsH
superhydride (M = Cr).12b Our present results show that
desulfurization of a thiophosphinito ligand at a chro-
mium center provides an additional pathway to these
u-phosphido complexes. Surprisingly, we found that 1
did not react readily with R,PPR; (R = Ph) and after
24 h at 90 °C gave uncharacterizable products, consist-
ing of an oil (ca. 10% yield) and an insoluble dark red
solid (ca. 70% vyield), the FAB*-MS of which shows a
very high mass peak at m/z 1589. The origin of the
bridging hydride in 3 remains unclear; the hydride
signal of 3a is still detected in the NMR spectrum of
the product solution from a reaction of 2a with 1 in the
deuterio solvents CgDs and CgDsCDs. It is tempting to
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suggest that the hydride originates from the Cp ligand
via thermal C—H bond activation, similar to the pho-
tochemical process demonstrated by Riera and Jeannin
for [CpM(CO)s]> (M = Mo, W), in which case they
obtained crystal structure evidence for the presence of
a (u-ntn>-CsH,) ligand in the products.’® Though we
have not been able to detect this derived Cp ligand, we
have previously isolated CpCr(CO)sH from reactions of
1 with P4X3 (X =S, Se) even in deuterio solvents?’ and
have detected the hydride species in the proton NMR
spectra of product solutions from reactions of 1 with
ph282_3a,14

Properties and Spectral Characteristics. In the
solid state the Cr=Cr doubly bonded complex 4 is stable

Figure 1. Molecular structure of 2a. Thermal ellipsoids
are drawn at the 50% probability level.
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Table 1. Selected Bond Distances (A) and Angles
(deg) for 2

dist 2a 2b angle 2a 2b

Cr—S 2.5155(7) 2.5038(18) P—Cr—S 48.986(19) 49.13(6)
Cr—P 22704(6) 2.2738(18) Cr—P-S 71.92(2)  71.45(7)
P—S  1.9966(8) 1.997(2) Cr—S—P 50.09(2)  59.42(6)

in air over an extended period and 2 is fairly stable,
whereas the complexes 3 and 5 are extremely air-
sensitive; in solution under nitrogen, 4 is stable for an
extended period at ambient temperature, while 2, 3, and
5 are stable for several days at 0 °C. The 18-electron
complexes 2, 34-electron complexes 3, and 32-electron
complex 4a are diamagnetic and possess proton Cp
chemical shifts (0 4.15—4.72) in the normal range
observed for CpCr species, while that of the 43-electron
paramagnetic complex 5 is observed as very broad peaks
at unusually low field (6 14—15). The proton NMR
spectrum of 3a shows the presence of equivalent methyl
groups of the u-PMe; ligands; that of 3b shows that the
u-PEt; ligand possesses equivalent methyl protons and
two pairs of methylene protons. The proton resonance
of the u-PMe; ligand in 4a shows equivalent Me groups;
these groups, however, are nonequivalent in the para-
magnetic triangular trichromium complex 5a. In the 13C
NMR spectra, the diamagnetic complexes 2—4 possess
resonances for the Cp ring carbons in the expected
range. Detailed NMR and IR spectral data are given in
the Supporting Information.

Crystal Structures. The structure of the molecule
of 2a (Figure 1) contains a CpCr moiety bonded to two
CO ligands and a n?-thiophosphinito ligand. This side-
on mode of bonding has been structurally established
for only a few complexes.'> The P—S bond distances in
2a,b (see Table 1), slightly shorter than those in the
literature examples, are intermediate between those of
the typical P=S (range 1.926(1)—1.966(2) A) and the
P—S (2.122(1) A) single bond in such ligands.16

3a (Figure 2) and 3b belong to the u-hydrido u-phos-
phido subclass of homobimetallicl” and heterobimetal-
lic'® compounds, some of which resemble 3 in possessing
an additional metal—metal bond. Close analogues of 3

(13) Alvarez, M. A.; Garcia, M. E.; Riera, V.; Ruiz, M. A,; Bois, C,;
Jeannin, Y. J. Am. Chem. Soc. 1995, 117, 1324.
(14) Goh, L. Y.; Tay, M. S. Unpublished observations, 1992.
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Figure 2. Molecular structure of 3a. Thermal ellipsoids
are drawn at the 50% probability level.

Table 2. Selected Bond Lengths (A) and Angles
(deg) for 3 and 4

dist or angle 3a 3b 4a

Cr(1)—Cr(1A) 2.9515(10) 2.8985(11) 2.5776(7)
cr(1)—P(1) 2.2816(14) 2.2780(15)  2.2540(7)
Cr(1)—P(1A) 2.2555(7)

Cr(1)-P(1)—Cr(1A)  80.39(4) 78.85(5) 69.72(2)

P(1)-Cr(1)-Cr(1A)  49.95(4) 50.69(4) 55.167(19)
P(1)—Cr(1)—P(1A) 110.28(2)
P(1)-Cr(1A)-Cr(1)  49.66(4) 50.45(4)
P(1A)—Cr(1)—Cr(1A) 55.111(19)

include Cp2Moz(CO)4(u-H)(u-PPhy) and its phosphite
derivative Cp;Mo,(CO)3(u-H)(u-PPhy)(P(OMe)3z)!1P17 and
the wu-phosphanido M—M-bonded complexes Cp;M;-
(CO)4(u-H)(u-PHy) of Mn, Re, Mo, and W22 and of Cr;12b
the Cr—Cr distance of the latter was found to be 3.104-
(1) A, very much longer than the corresponding dis-
tances in 3a,b, which are 2.9515(10) and 2.8985(11) A,
respectively (Table 2), although all lie within the
observed range for Cr—Cr bonds, with the longest bond
being found in [CpCr(CO),P(OMe);3],.221% The Cr—P

(15) (a) Walther, B. Coord. Chem. Rev. 1984, 60. 67 and references
therein. (b) Walther, B.; Hartung, H.; Messbauer, B.; Baumeister, U.;
Maschmeier, M.; Dargatz, M.; Hetzke, 1. Inorg. Chim. Acta 1990, 171,
171. (c) Forniés, J.; Martinez, F.; Navarro, R.; Urriolabeitia, E. P.;
Welch, A. J. J. Chem. Soc., Dalton Trans. 1993, 2147. (d) Wagner, K.
P.; Hess, R. W.; Treichel, P. M.; Calabrese, J. C. Inorg. Chem. 1975,
14, 1121. (e) Alper, H.; Einstein, F. W. B.; Hartstock, F. W.; Jones, R.
H. Organometallics 1987, 6, 829. (f) Lindner, E.; Kéass, V.; Hiller, W_;
Fawzi, R. Angew. Chem., Int. Ed. Engl. 1989, 28, 448.
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C. J. Organomet. Chem. 1997, 547, 141 and references therein. (b)
Mays, M. J.; Owen, S. M.; Raithby, P. R.; Reinisch, P. F.; Shields, G.
P.; Solan, G. A. J. Organomet. Chem. 1997, 528, 123 and references
therein. (c) Caffyn, A. J. M.; Mays, M. J.; Raithby, P. R. J. Chem. Soc.,
Dalton Trans. 1992, 515. (d) Powell, J.; Fuchs, E.; Gregg, M. R;
Phillips, J.; Stainer, M. V. R. Organometallics 1990, 9, 387. (e) Jenkins,
H. A.; Loeb, S. J.; Dick, D. G.; Stephan, D. W. Can. J. Chem. 1990, 68,
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1557.

Figure 3. Molecular structure of 4a. Thermal ellipsoids
are drawn at the 50% probability level.

distances (2.2816(14), 2.2780(15) A) resemble closely
those in complexes 2 (range 2.2704(6)—2.2738(18) A).

The complex 4a (Figure 3) belongs to the class of bis-
(u-phosphido) complexes containing planar M,P; units,
which were first prepared in the 1960s,2° were exten-
sively studied by Vahrenkamp and Dahl,?! and continue
to attract interest to the present.” In these compounds
the M—M bond order varies from 0 to 2.72 The molecule
4a possesses a center of inversion at the middle of the
Cr—Cr bond, the length of which (2.5776(7) A) lies
between values observed for the single Cr—Cr bond
(2.905 A) in Cr,(CO)g(u-PMe,),?12 and that of a Cr=Cr
bond, e.g. 2.30 A as found in [CpCr(CO).];2? in fact, the
M—M distance in 4a is close to the Cr=Cr bond length
(2.590(2) A) in szcrz(SCMe3)(‘113-5)2C0(CO)3.23 The
Cr—P distances (2.2540(7), 2.2555(7) A) are slightly
shorter than those in 2 and 3. A close analogue of 4a is
the Mo=Mo-bonded complex Cp2Mo,(CO),(PPh,),, which
possesses a trans arrangement of the ligands.112

The structure of 5a contains two independent mol-
ecules in the unit cell. The ORTEP plot of one of the
molecules is shown in Figure 4. This trinuclear com-
pound belongs to the class of chromium—chromium-
bonded carbonyl clusters, examples of which are rare.2*
In fact, to date only a few instances of homometallic Cr3;
clusters have been structurally characterized, all con-
taining stabilizing ligands such as edge-bridging S or
CO ligands, face-capping us-S or us-Se atoms or a us-

(19) Goh, L. Y.; D’'Aniello, M. J., Jr.; Slater, S.; Muetterties, E. L.;
Tavanaiepour, I.; Chang, M. I.; Fredrich, M. F.; Day, V. W. Inorg.
Chem. 1979, 18, 192.

(20) (a) Chatt, J.; Thornton, D. A. J. Chem. Soc. 1964, 1005. (b)
Hayter, R. G. J. Am. Chem. Soc. 1964, 86, 823. (c) Hieber, W.; Winter,
E. Chem. Ber. 1964, 97, 1037.

(21) (a) Vahrenkamp, H. Chem. Ber. 1978, 111, 3472. (b) Vahren-
kamp, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 379 and references
therein. (c) Ginsberg, R. E.; Rothrock, R. K.; Finke, R. G.; Collman, J.
P.; Dahl, L. F. 3. Am. Chem. Soc. 1979, 101, 6550.

(22) Curtis, M. D.; Butler, W. M. J. Organomet. Chem. 1978, 155,
131.

(23) Pasynskii, A. A.; Eremenkao, I. L.; Orazszkhatov, B.; Gasanov,
G. Sh.; Novotortsev, V. M.; Ellert, O. G.; Seifulina, Z. M.; Shklover, V.
E.; Struchkov, Yu. T. J. Organomet. Chem. 1984, 270, 53.

(24) (a) Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M.
Advanced Inorganic Chemistry, 6th ed.; Wiley: Singapore, 1999. (b)
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Cluster Complexes; VCH: New York, 1990.
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Figure 4. Molecular structure of 5a. Thermal ellipsoids
are drawn at the 50% probability level.

PR group.?®> The molecule 5a possesses a trigonal-
pyramidal structure consisting of a Crs triangle, edge-
bridged by one u-PR; ligand and two ¢-CO ligands and
capped by a u3-S atom, with Cr—Cr distances of 2.7619-
(5)—2.8166(5) A (Table 3), the longest being for the edge
bridged by the PR, group. As far as we are aware, this
is the first example of a phosphido-bridged tri-homo-
metal cluster of a group 6 element, though butoxide-
bridged and nitrene-bridged complexes of CpCr have

(25) See for example: Shieh, M.; Ho, L.-F.; Jang, L.-F.; Ueng, C.-
H.; Peng, S.-M.; Liu, Y.-H. Chem. Commun. 2001, 1014 and references
therein.

(26) (a) Nefedov, S. E.; Pasynskii, A. A.; Eremenko, I. L.; Orazsz-
khatov, B.; Ellert, O. G.; Novotortsev, V. M.; Struchkov, Yu. T.;
Yanovsky, A. I. J. Organomet. Chem. 1990, 385, 277. (b) Eremenko, I.
L.; Pasynskii, A. A.; Vas'utinskaya, E. A.; Katugin, A. S.; Nefedov, S.
E.; Ellert, O. G.; Novotortsev, V. M.; Shestakov, A. F.; Yanovsky, A. |.;
Struchkov, Yu. T. J. Organomet. Chem. 1991, 411, 193.

(27) Chen, W.; Goh, L. Y.; Bryan, R. F.; Sinn, E. Acta Crystallogr.
1986, C42, 796.
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Table 3. Selected Bond Lengths (A) and Angles
(deg) for 5a

Bond Lengths (A)

Cr(1)—Cr(2) 2.7767(5) Cr(1)—Cr(3) 2.7619(5)
Cr(2)—Cr(3) 2.8166(5) Cr(1)-s(1) 2.2948(7)
Cr(2)-s(1) 2.2283(6) cr(3)-S(1) 2.2292(6)
Cr(2)—P(1) 2.3210(7) Cr(3)—-P(1) 2.3115(7)
Cr(1)-C() 1.841(2) Cr(1)—-C(2) 1.829(2)
Cr(2)-C(1) 2.364(2) Cr(3)-C(2) 2.362(2)

Bond Angles (deg)
Cr(2)—Cr(1)—Cr(3) 61.134(13) Cr(1)—Cr(2)—Cr(3) 59.173(13)
Cr(1)—-Cr(3)—Cr(2) 59.693(12) Cr(1)-S(1)-Cr(3) 75.23(2)
Cr(1)—S(1)—Cr(2) 75.73(2) Cr(2)—S(1)—Cr(3) 78.38(2)
Cr(2)—P(1)—Cr(3) 74.89(2) P(1)—Cr(2)—Cr(3) 52.400(18)
P(1)—Cr(3)—Cr(2) 52.707(19) Cr(1)—-C(1)—Cr(2) 81.63(9)
Cr(1)—C(2)—Cr(3) 81.39(9)

been characterized, possessing Cr—Cr distances in the
ranges 2.920(6)—2.956(6) and 2.544(1)—2.565(1) A, re-
spectively.26 All three Cr—S distances are in the range
of Cr—us-S single bonds found in CpsCrsSm(CO), (M =
4, n=0; m= 2, n = 2) cubanes (2.226(2)—2.267(5)
A);22.27 Cr(1), which is bonded to both x-CO ligands, is
further from S(1) (2.2948(7) A) than the other two Cr
atoms (2.2283(6), 2.2292(6) A).
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