Olefin Metatheses in Metal Coordination Spheres: A New Approach to Steric Shielding in Dirhenium sp Carbon Chain Complexes of the Formula $(\eta^5\text{-}C_5\text{Me}_5)$ $Re(NO)(PR_3)(C\equiv CC\equiv CC\equiv CC\equiv C)(R_3P)(ON)Re(\eta^5-C_5Me_5)$

Clemens R. Horn,[†] José Miguel Martín-Alvarez,[‡] and J. A. Gladysz^{*,†}

Institut fu¨ *r Organische Chemie, Friedrich-Alexander Universita*¨*t Erlangen-Nu*¨ *rnberg, Henkestrasse 42, 91054 Erlangen, Germany, and Department of Chemistry, University of Utah, Salt Lake City, Utah 84112*

Received August 19, 2002

Reaction of chiral racemic [($\eta^5\text{-}C_5\text{Me}_5$)Re(NO)(NCCH3)(CO)]⁺BF₄⁻ and the olefin-containing phosphine $Ph_2P(CH_2)_6CH=CH_2$ (2-butanone, reflux) gives $[(\eta^5 \text{-} C_5Me_5)Re(NO)(PPh_2(CH_2)_6$ - $\rm CH\equiv CH_2)(CO)$]+BF₄- (95%), which is reduced (LiAlH₄) to the phosphine methyl complex $(\eta^5$ -C₅Me₅)Re(NO)(PPh₂(CH₂)₆CH=CH₂)(CH₃) (92%). Reactions with HBF₄·OEt₂/chlorobenzene, HC=CC=CSiMe₃, and *t*-BuOK give (η ⁵-C₅Me₅)Re(NO)(PPh₂(CH₂)₆CH=CH₂)(C=CC= CSiMe₃) (two steps, 96%/81%). Desilylation (wet n -Bu₄N⁺F⁻) yields a butadiynyl complex (88%), which is coupled (Cu(OAc)₂/pyridine) to the *µ*-octatetraynediyl complex (η^5 -C₅Me₅)-Re(NO)(PPh₂(CH₂)₆CH=CH₂)(C≡CC≡CC≡CC≡C)(H₂C=CH(CH₂)₆PPh₂)(ON)Re($η$ ⁵-C₅Me₅) (**16**, 63%), believed to be a mixture of diastereomers. The reaction of **16** and Grubbs' catalyst, $Ru(=CHPh)(PCy₃)₂(Cl)₂$, gives $(\eta⁵-C₅Me₅)Re(NO)(PPh₂(CH₂)₆CH=CH)(C\equiv CC\equiv CC\equiv CC\equiv C)$ - $((CH₂)₆PPh₂)(ON)Re(η ⁵-C₅Me₅)$ (17, 77-84%) as a mixture of isomers. However, the hydrogenation of **17** to the target molecule $(\eta^5$ -C₅Me₅)Re(NO)(PPh₂(CH₂)₇)(C=CC=CC=CC= C)(($CH₂$)₇PPh₂)(ON)Re(η ⁵-C₅Me₅) (**18**), while sometimes successful, could not be scaled or

Introduction

effected in a reproducible manner.

Over the last four years, the olefin metathesis reac- χ tion¹ has been applied with increasing frequency in organometallic syntheses.²⁻⁸ These efforts have been both exploratory and focused upon specific types of targets. The first directed synthesis of a molecular species can be attributed to Sauvage, who reported the

sequence in Scheme 1, and several related efforts.^{4,5} He found that the copper complex **1** reacted with Grubbs' catalyst, $Ru(=CHPh)(PCy₃)₂(Cl)₂$, to yield ethylene and the catenane **2**. The $C=C$ linkage, which was obtained as a mixture of *E*/*Z* isomers, was then hydrogenated to give the saturated system **3**.

We have subsequently used olefin metathesis to access several other types of novel molecular architectures.6,8 Of particular relevance to the present study is the sequence shown in Scheme 2.8 In complex **4**, each terminus of a PtC $=CC=CC=CC=CPt$ moiety features two olefin-containing $Ph_2P(CH_2)_6CH=CH_2$ ligands. Metathesis can in theory deliver two types of products. One arises from cyclization between phosphines on opposite platinum atoms (**5**). The other arises from cyclization between phosphines on the same platinum atom (**6**). In

[†] Friedrich-Alexander Universität Erlangen-Nürnberg

[‡] University of Utah.

⁽¹⁾ Trnka, T. M.; Grubbs, R. H. *Acc. Chem. Res.* **2001**, *34*, 18.

^{(2) (}a) Alvarez Toledano, C.; Parlier, A.; Rudler, H.; Daran, J.-C.; Jeannin, Y. *J. Chem. Soc., Chem. Commun.* **1984**, 576. (b) Alvarez, C.; Pacreau, A.; Parlier, A.; Rudler, H.; Daran, J.-C. *Organometallics* **1987**, *6*, 1057.

⁽³⁾ Ferrocene-based examples: (a) Gamble, A. S.; Patton, J. T.; Boncella, J. M. *Makromol. Chem., Rapid Commun.* **1993**, *13*, 109. (b) Buretea, M. A.; Tilley, T. D. *Organometallics* **1997**, *16*, 1507. (c) Heo, R. W.; Somoza, F. B.; Lee, T. R. *J. Am. Chem. Soc.* **1998**, *120*, 1621. (d) Locke, A. J.; Jones, C.; Richards, C. J. *J. Organomet. Chem.* **2001**,

⁶³⁷-*639*, 669. (4) (a) Mohr, B.; Weck, M.; Sauvage, J.-P.; Grubbs, R. H. *Angew. Chem., Int. Ed. Engl.* **1997**, *36*, 1308; *Angew. Chem.* **1997**, *109*, 1365. (b) Weck, M.; Mohr, B.; Sauvage, J.-P.; Grubbs, R. H. *J. Org. Chem.* **1999**, *64*, 5463.

^{(5) (}a) Dietrich-Buchecker, C.; Rapenne, G.; Sauvage, J.-P. *J. Chem. Soc., Chem. Commun.* **1997**, 2053. (b) Rapenne, G.; Dietrich-Buchecker, C.; Sauvage, J.-P. *J. Am. Chem. Soc.* **1999**, *121*, 994. (c) Belfrekh, N.;
Dietrich-Buchecker, C.; Sauvage, J.-P. *Inorg. Chem.* **2000**, *39*, 5169.
(6) (a) Martín-Alvarez, J. M.; Hampel, F. A.; Arif, A. M.; Gladysz,

J. A. *Organometallics* **1999**, *18*, 955. (b) Bauer, E. B.; Ruwwe, J.; Martín-Alvarez, J. M.; Peters, T. B.; Bohling, J. C.; Hampel, F. A.; Xartín-Alvarez, J. M.; Peters, T. B.; Bohling, J. C.; Hampel, F. A.; Zarfert, S.
 Szafert, S.; Lis, T.; Hampel, F.; Cagle, P. C.; Gladysz, J. A. *Chem.*- *Eur. J.* **2001**, *7*, 3931.

^{(7) (}a) Ng, P. L.; Lambert, J. N. *Synlett* **1999**, 1749. (b) Seshadri,
H.; Lovely, C. J. *Org. Lett.* **2000**, *2*, 327. (c) Paley, R. S.; Estroff, L. A.;
Gauguet, J. M.; Hunt, D. K.; Newlin, R. C. *Org. Lett.* **2000**, *2* Sültemeyer, J.; Dötz, K. H.; Hupfer, H.; Nieger, M. *J. Organomet.
Chem.* **2000**, 606, 26. (e) Watson, K. J.; Nguyen, S. T.; Mirkin, C. A. *J.*
Organomet. Chem. **2000**, 606, 79. (f) Green, J. R. *Synlett* **2001**, 353. (g) Licandro, E.; Maiorana, S.; Vandoni, B.; Perdicchia, D.; Paravidino,
P.; Baldoli, C. *Synlett 2001, 757. (h) Maity, B. C.; S*wamy, V. M.;
Sarkar, A. *Tetrahedron Lett. 2001, 42,* 4373. (i) Burlison, J. A.; Gray,
J. M.; Weck, M. *Org. Lett.* **2002**, *4*, 753. (k) Dijkstra, H. P.; Chuchuryukin,
A.; Suijkerbuijk, B. M. J. M.; van Klink, G. P. M.; Mills, A. M.; Spek,

A. L.; van Koten, G. *Adv. Synth. Catal.* **2002**, *344*, 771. (8) Stahl, J.; Bohling, J. C.; Bauer, E. B.; Peters, T. B.; Mohr, W.; Martín-Alvarez, J. M.; Hampel, F.; Gladysz, J. A. *Angew. Chem., Int. Ed.* **2002**, *41*, 1871; *Angew. Chem.* **2002**, *114*, 1951.

(a) cat. $Ru(=CHPh)(PCy_3)_2(Cl)_2$; (b) H_2 , cat. $[Ir(PCy_3)-a]$ $(COD)(py)]^{+}PF_{6}^{-}.$

practice, the former dominates. Hydrogenation reduces the C=C linkages, but not the C \equiv C linkages, giving **7** and **8**.

Complex **7** and similar species prepared via olefin metathesis or alternative procedures adopt unprecedented double-helical structures in the solid state.⁸ The sp3 carbon chains coil about the sp carbon chain at van der Waals distance, giving at least a half-twist. Similar conformations are believed to dominate in solution. These afford the potentially reactive PtC=CC=CC= $CC=CPt$ moiety a considerable degree of steric protection. This may be a critical factor in the hydrogenation chemoselectivity in Scheme 2, as alkynes are normally more reactive than alkenes.

One of our original motivations for developing the chemistry in Scheme 2 was to facilitate access to additional redox states of M(C=C)_mM compounds, particularly at longer carbon chain lengths. Some key issues are illustrated with the dirhenium complexes

 $9^{n+}nX^-$ in Scheme 3.^{9,10} With $m = 2$ (C₄), three oxidation states were easily isolated: a neutral $ReC\equiv CC\equiv CRe$ species (**9a**), a radical cation $[ReC\equiv CC\equiv CRe]$ ⁺⁺ species $(9a^+X^-)$, and a dication $^+$ Re=C=C=C=C=Re⁺ species $(9a^{2+}2X^{-})$.⁹ However, with $m = 4$ (C₈), it was not possible to spectroscopically detect a radical cation or dication $(9b^{+}X^{-}, 9b^{2+}2X^{-})$, even at low temperature.¹⁰ The longer C_8 chains in $9b^n + nX^-$ are much more exposed, and various evidence suggests that the radical cations undergo rapid chain-chain coupling and/or atom abstraction reactions involving the solvent.

Analogues of **9b** with more electron-rich triarylphosphines or tricyclohexylphosphine gave similar results.^{10b} We therefore turned our attention to bulkier phosphines and/or systems that would in some way sterically protect the $ReC\equiv CC\equiv CC\equiv C\equiv CR$ e moiety. In this paper, we describe our attempts to extend the sequence applied in Scheme 2 with platinum diphosphine end groups to rhenium monophosphine end groups. This would give dirhenium complexes with more shielded sp carbon chains and in principle capable of adopting single-helical conformations.

Results

The readily available chiral racemic acetonitrile carbonyl complex [(η⁵-C₅Me₅)Re(NO)(NCCH₃)(CO)]⁺BF₄⁻ $(10^+BF_4^-)$ reacts with a variety of phosphines in refluxing 2-butanone to give the corresponding phosphine carbonyl complexes.11 As shown in Scheme 4, a similar reaction with the phosphine utilized in Scheme 2, $Ph_2P(CH_2)_6CH=CH_2^2$,^{6c} gave the target complex [(η^5 -C₅- $\rm{Me}_{5}\rm{)Re}(\rm{NO})(\rm{PPh}_{2}\rm{(CH}_{2})_{6}\rm{CH=CH}_{2}\rm{)(CO})\rm{]}^{+}\rm{BF}_{4}^{-}$ (13⁺BF₄⁻) in 95% yield after workup.

Complex **11**+BF4 - was elaborated to a butadiynyl complex as described for many related species. First, reduction with LiAlH₄ gave the methyl complex (η^5 -C₅- $Me_5)Re(NO)(PPh_2(CH_2)_6CH=CH_2)(CH_3)$ (**12**, 92%). Reactions with HBF_4 in C_6H_5Cl generated a substitutionlabile chlorobenzene complex, $\overline{12}$ which was treated with an excess of the diyne $\dot{HC} \equiv CC \equiv CSiMe_3$.^{13,14} Workup gave the π complex $[(\eta^5$ -C₅Me₅)Re(NO)(PPh₂(CH₂)₆CH= $\text{CH}_2\text{)}\text{(HC=CC=CSiMe}_3)]^+\text{BF}_4^-$ (13⁺BF₄⁻), with rhenium bound to the terminal alkyne moiety, in 96% yield. No intramolecular coordination of the $CH=CH₂$ moiety of the phosphine ligand was observed. The reaction of the chlorobenzene complex derived from (*η*5-C5H5)Re(NO)- $(PPh_3)(CH_3)$ and vinylacetylene also gives predominantly an alkyne complex.15

The preceding compounds and all new species below were characterized by IR, NMR $(^1H, ^{13}C, ^{31}P)$, mass

(12) Peng, T.-S.; Winter, C. H.; Gladysz, J. A. *Inorg. Chem.* **1994**, *33*, 2534.

(13) Weng, W.; Bartik, T.; Brady, M.; Bartik, B.; Ramsden, J. A.; Arif, A. M.; Gladysz, J. A. *J. Am. Chem. Soc.* **1995**, *117*, 11922. (14) Bruce, M. I.; Low, P. J.; Werth, A.; Skelton, B. W.; White, A.

H. *J. Chem. Soc., Dalton Trans.* **1996**, 1551.

(15) Peng, T.-S.; Wang, Y.; Arif, A. M.; Gladysz, J. A. *Organome-tallics* **1993**, *12*, 4535.

⁽⁹⁾ Brady, M.; Weng, W.; Zhou, Y.; Seyler, J. W.; Amoroso, A. J.; Arif, A. M.; Böhme, M.; Frenking, G.; Gladysz, J. A. *J. Am. Chem. Soc.* **1997**, *119*, 775.

^{(10) (}a) Dembinski, R.; Bartik, T.; Bartik, B.; Jaeger, M.; Gladysz, J. A. *J. Am. Chem. Soc.* **2000**, *122*, 810. (b) Meyer, W. E.; Amoroso, A. J.; Horn, C. R.; Jaeger, M.; Gladysz, J. A. *Organometallics* **2001**, *20*, 1115.

^{(11) (}a) Patton, A. T.; Strouse, C. E.; Knobler, C. B.; Gladysz, J. A. *J. Am. Chem. Soc.* **1983**, *105*, 5804. (b) Meyer, W. E.; Amoroso, A. J.; Jaeger, M.; Le Bras, J.; Wong W.-T.; Gladysz, J. A. *J. Organomet. Chem.* **2000**, *616*, 44.

Scheme 2. Synthesis of PtC₈Pt Complexes with Sterically Protected sp Carbon Chains via Olefin **Metathesis***^a*

a (a) cat. Ru(=CHPh)(PCy₃)₂(Cl)₂; (b) H₂ (1 bar), cat. 10% Pd/C.

spectrometry, and microanalysis. Most features were very similar to those of related compounds reported earlier.¹⁰ However, the PP h_2 phenyl groups are diastereotopic. Therefore, the aryl 13C NMR signals were more complex than with the corresponding triarylphosphine complexes. NMR spectra also showed **13**+BF4 - to be a $77-81:23-19$ mixture of Re-(C=C) rotamers, analogous to the PPh₃ analogue $(79-67:21-33).^{13,16}$

As shown in Scheme 5, reaction of **13**+BF4 - and *t-*BuOK gave the *σ* trimethylsilylbutadiynyl complex (*η*5- $C_5Me_5)Re(NO)(PPh_2(CH_2)_6CH=CH_2)(C\equiv CC\equiv CSiMe_3)$ (**14**) in 81% yield after workup. Desilylation with wet n -Bu₄N⁺F⁻ afforded the corresponding butadiynyl complex $(\eta^5$ -C₅Me₅)Re(NO)(PPh₂(CH₂)₆CH=CH₂)(C=CC= CH) (**15**) in 88% yield. In accord with past experience,10 **15** was much more labile than the precursor **14**, and it also appeared more labile than the $PPh₃$ analogue. A correct microanalysis could not be obtained.

The oxidative homocoupling of **15** was effected under Eglinton conditions $(Cu(OAc)_2,$ pyridine) that have previously proved very successful for this series of compounds. Column chromatography gave the target *µ*-octatetraynediyl complex (*η*5-C5Me5)Re(NO)(PPh2- $(CH_2)_6CH=CH_2(C=CC=CC=CC=C)(H_2C=CH(CH_2)_6$ PPh_2)(ON)Re(η^5 -C₅Me₅) (**16**) as a red powder in 63% yield. Alternatively, the desilylation and coupling could be carried out in a single flask from **14**, giving **16** in 53% overall yield.

Complex **16** contains two rhenium stereocenters, but NMR spectra showed only a single set of signals. Analogues with para-substituted triarylphosphines show two signals for some resonances, indicative of Re/Re configurational diastereomers (p-Me, 50:50; p-*t*-Bu, 75:25; p-Ph, 71:29).10b However, the diastereomers of the corresponding triphenylphosphine complex have never

^{(16) (}a) Kowalczyk, J. J.; Arif, A. M.; Gladysz, J. A. *Organometallics* **1991**, *10*, 1079. (b) Ramsden, J. A.; Weng, W.; Gladysz, J. A. *Organometallics* **1992**, *11*, 3635.

Scheme 3. Redox Chemistry of ReC*x***Re Complexes**

a, m = 2: **9.** 9^{+} X, 9^{2+} 2X⁻ isolable

b, m = 4: **9** isolable, 9^{+} X, 9^{2+} 2X⁻ observed via cyclic voltammetry

Scheme 4. Syntheses of Precursor Rhenium Complexes*^a*

a (a) reflux; (b) LiAlH₄; (c) HBF₄, C₆H₅Cl, -45 °C; (d) $HC=CC=CSiMe₃$.

been resolved by NMR, although when the stereocenters are brought closer together in the C_4 homologue, the diastereomers are easily distinguished.^{10a} We therefore presume that both diastereomers of **16** are similarly present. Importantly, most physical properties in this series of compounds (e.g., IR and UV-visible spectra, redox potentials) do not appear to depend on the relative end group configurations.

This set the stage for the title sequence. As shown in Scheme 6, **16** (0.0012-0.0007 M in CH_2Cl_2) and Grubbs' catalyst, $Ru(=CHPh)(PCy₃)₂(Cl)₂$ (6-7 mol %), were reacted under conditions similar to those used in Scheme 2. Workup gave the target 26-membered mac-

rocycle $(\eta^5$ -C₅Me₅)Re(NO)(PPh₂(CH₂)₆CH=CH)(C=CC=

 $CC=CC=C((CH₂)₆PPh₂)(ON)Re(η ⁵-C₅Me₅)$ (**17**), in 77-84% yield. The structure of **17** followed from various data. First, the 1H and 13C NMR spectra showed the characteristic C*H*=*CH*₂ signals of **16** to be absent. A ¹H NMR spectrum was expanded, and the region where the $CH=CH₂$ signals would have appeared carefully ana-

Scheme 5. Syntheses of ReC₄X and ReC₈Re Complexes*^a*

^a (a) *^t*-BuOK, -80 ˚C; (b) K2CO3; (c) Cu(OAc)2, 60 ˚C; (d) *n*-Bu4N+F-.

Scheme 6. Ring-Closing Olefin Metathesis Involving a ReC₈Re Complex^{*a***}**

a (a) cat. Ru(=CHPh)(PCy₃)₂(Cl)₂; (b) H₂, cat. Rh(PPh₃)₃Cl; see text.

lyzed. No trace could be detected, and the maximum amount that could be masked by the baseline noise was shown to be less than 1%.

The mass spectrum of **17** showed an intense molecular ion (*m*/*z* 1364, 100%). There were no significant monorhenium ions and no trace of residual **16** at 28 mass units higher. A small peak at *^m*/*^z* 2728 (>3%) was evident, corresponding to a dimer derived from intermolecular metathesis. However, HPLC analyses showed only a single band. Many NMR signals of **17** were broader or less well resolved than those of **16**, particularly the unsymmetrically shaped ³¹P resonance with a *^w*1/2 of ca. 84-90 Hz. This is consistent with a mixture of Re/Re configurational and C=C geometric isomers^{6,17}

⁽¹⁷⁾ For representative data on Z/E isomer ratios in organic macrocycles formed by ring-closing olefin metathesis, see: (a) Fürstner,
A.; Langemann, K. *J. Org. Chem.* **1996**, *61*, 3942. (b) Fürstner, A.;
Langemann, K. *Synthesis* **1997**, 792.

a (a) cat. Ru(=CHPh)(PCy₃)₂(Cl)₂; (b) H₂ (4 bar), cat. Rh(PPh₃)₃(Cl) or 10% Pd/C.

and might also reflect an increased level of steric communication between the chiral rhenium termini. To simplify analysis, we sought to hydrogenate the $C=C$ linkage to give the target molecule $(\eta^5$ -C₅Me₅)Re(NO)-

 $(PPh_2(CH_2)_7)(C=CC=CC=CC(C)((CH_2)_7PPh_2)(ON)Re(\eta^5-C).$ C5Me5) (**18**).

Both we $6,8$ and Sauvage⁵ have been able to hydrogenate a variety of metal-containing olefin metathesis products (Schemes 1, 2). On the other hand, the sp carbon chains in **17** and **18** are not as shielded as in **5** and **7** in Scheme 2. Thus, some model studies were undertaken. As shown in Scheme 7, the previously reported ring-closing metathesis of the related rhenium chloride complex, $(\eta^5$ -C₅Me₅)Re(NO)(PPh((CH₂)₆CH= $CH₂(Cl)$ (19), was repeated, giving the unsaturated macrocycle $(\eta^5\text{-}C_5\text{Me}_5)Re(\text{NO})(P(\text{Ph})(\text{CH}_2)_6\text{CH}=CH (CH₂)₆$ (CH₂)₆)(Cl) (20).^{6c} This compound reacts with hydrogen in the presence of $Rh(PPh₃)₃(Cl)$ (4 bar, 7 mol %) to give the saturated macrocycle ($η$ ⁵-C₅Me₅)Re(NO)(P_(Ph)-

 $(CH₂)₁₄$ (CI) (21). We attempted analogous reactions with two new catalysts, Pd/C (10%) and Crabtree's $[Ir(PCy_3)(COD)(py)]^+PF_6^-$ (see Scheme 1). The former afforded comparable results, but the latter gave decomposition.

Accordingly, the hydrogenation of **17** was attempted on small scales with $Rh(PPh₃)₃(Cl)$ and Pd/C under a variety of conditions as tabulated in the Experimental Section. Reactions were monitored by HPLC, and the retention time of **18** has been established by virtue of an independent synthesis that will be reported separately.18,19 The reaction of **17** and hydrogen (2 bar) in toluene/ethanol in the presence of $Rh(PPh₃)₃(Cl)$ gave >90% conversion to **¹⁸** after 24 min, as assayed by HPLC peak areas. However, after 40 min, considerable product decomposition was evident, indicating a very narrow time window for workup. The solvent, pressure, and temperature were varied, but the results were usually poorer. No **18** was detected on preparative scales or in reactions involving Pd/C. Thus, olefin metathesis efficiently assembles the carbon skeleton of the target molecules in Scheme 6, but the removal of the $C=C$ linkage is problematic.

The cyclic voltammogram of **17** was qualitatively similar to those of other compounds of the type **9b** (Scheme 3). Two one-electron oxidations were observed under our standard conditions in $\mathrm{CH}_2\mathrm{Cl}_2$.¹⁰ The potentials were slightly thermodynamically more favorable than those of the PPh₃ analogue and slightly less

(18) Horn, C.; Gladysz, J. A. Manuscript in preparation.
(19) Horn, C. Ph.D. Thesis, Universität Erlangen-Nürnberg, 2002.

favorable than those of the $P(p$ -tol)₃ analogue ($E^o(1)$, 0.20 vs 0.24 vs 0.16 V; E°(2), 0.47 vs 0.52 vs 0.45 V). Both steps were only partially reversible $(i_c/i_a \ 0.4 \text{ and } 0.4)$ 0.7; ∆*E* 80 and 70 mV), consistent with the generation of highly reactive radical cation and dication species (Scheme 3). Preparative reactions of **17** and the oneelectron oxidant ($η$ ⁵-C₅H₅)₂Fe^{*+}SbF₆⁻ in CH₂Cl₂ did not afford any tractable products.

Discussion

Scheme 6 shows that the rhenium end groups of a sp carbon chain complex can be further tethered via their phosphine ligands using ring-closing olefin metathesis. This constitutes yet another very useful application of olefin metathesis in metal coordination spheres. In preliminary work, an analogous reaction using a phosphine ligand with nine methylene groups, $Ph_2P(CH_2)_{9}$ - $CH=CH₂$, has been executed with comparable results.²⁰ The chemoselectivities of these transformations are noteworthy, as facile stoichiometric $C\equiv C$ additions to $(Cl)₂L₂Ru=CHPh$ linkages have been observed.²¹ This furthermore represents the key step in catalytic ene/ yne metathesis.²² Nonetheless, the sp carbon chains in Schemes 2 and 6 remain intact.

Unfortunately, our inability to develop a scalable protocol for the hydrogenation of the $C=C$ bond in **17** restricts the potential range of applications, particularly in view of the stereochemical inhomogeneity. Also, with regard to radical cations of the type $9b^+X^-$ (Scheme 3) the $C=C$ and allylic carbon-hydrogen bonds in **17** constitute potential reactive sites that could facilitate intramolecular decomposition. Accordingly, the cyclic voltammetry data suggest lowered stability with respect to triarylphosphine analogues. There is only one example to date of a $MC=CC=CC=CM$ system that can be oxidized to spectroscopically detectable species: Lapinte's very electron-rich diiron complex $(\eta^5$ -C₅Me₅)- $Fe(dppe)(C\equiv C)_4(dppe)Fe(η^5 -C₅Me₅).²³ Remarkably, the$ corresponding radical cation can be isolated in analytically pure form.

The 26-membered macrocyclic rings in **17** and **18** can adopt the two limiting conformations shown in Scheme 8. In **I**, the flexible 14-carbon sp3/sp2 (**17**) or sp3 (**18**) chain twists around the sp carbon chain in a singlehelical motif. In **II**, the flexible chain forms a small cavity or folded assembly, similar to those of aliphatic macrocycles.24 The former creates a three-dimensional protective sheath for the sp carbon chain, while the

⁽²⁰⁾ Martín-Alvarez, J. M. Final research report, University of Utah. (21) Trnka, T. M.; Day, M. W.; Grubbs, R. H. *Organometallics* **2001**, *20*, 3845.

⁽²²⁾ Mori, M. *Top. Organomet. Chem.* **1998**, *1*, 131. (23) Coat, F.; Lapinte, C. *Organometallics* **1996**, *15*, 478.

Scheme 8. Limiting Macrocycle Conformations for 17 and 18

latter shields one side. No data that bear on this issue are presently available. One complication is that all ReC_8 Re complexes are difficult to crystallize, a factor we attribute to the presence of diastereomers. However, the platinum complex **7** in Scheme 2 provides precedent for conformation **I**.

In conclusion, the preceding data establish that ringclosing olefin metathesis reactions can be effected in the presence of a variety of potentially sensitive $MC=CC=$ $CC=CC=CM$ linkages. This further expands the scope of this macrocyclization process for directed organometallic synthesis. The inability to develop a scalable hydrogenation of **17** illustrates a potential strategic limitation. However, such reactions are normally successful. With **18**, the problem is somewhat ameliorated by a successful but low-yield independent synthesis via an intramolecular oxidative coupling.18,19 Also, the recent catalysis of $C\equiv C$ metathesis reactions in metal coordination spheres allows carbon skeletons to be fixed without generating mixtures of geometric isomers.²⁵ Additional applications of olefin metathesis to complex organometallic target molecules will be reported soon.

Experimental Section

General procedures, solvent and reagent purifications, and instrumentation were identical with those listed in four recent full papers^{6c,10,11b} and are further detailed elsewhere.¹⁹ Grubbs' catalyst, $Ru(=CHPh)(PCy₃)₂(Cl)₂$ (Strem), was used as received. NMR spectra were referenced to TMS or the residual solvent signal $(^{1}H, ^{13}C)$ or external H_3PO_4 (^{31}P) . HPLC was conducted on a Thermoquest instrument package (pump/ autosampler/detector P4000/AS3000/UV6000LP).

 $[(\eta^5 \text{-} C_5 \text{Me}_5) \text{Re}(\text{NO})(\text{PPh}_2(\text{CH}_2)_6\text{CH}=\text{CH}_2)(\text{CO})]^+ \text{BF}_4^- (11^+$ **BF₄⁻).** A Schlenk flask was charged with solutions of [($η$ ⁵-C₅-Me5)Re(NO)(NCCH3)(CO)]+BF4 - (**10**+BF4 -; 4.543 g, 8.960 mmol)¹¹ in 2-butanone (50 mL) and $\text{PPh}_2(\text{CH}_2)_6\text{CH}=\text{CH}_2 (3.185)$ g, 10.75 mmol)^{6c} in 2-butanone (5 mL). The solution was refluxed (14 h) and cooled to room temperature. The solvent was removed by oil-pump vacuum. The oily residue was triturated with ether to give a yellow powder, which was collected by filtration and dissolved in acetone. The solution was layered with ether. After 48 h, yellow-tan prisms of **11**+BF4 - were collected by filtration and dried by oil-pump vacuum (6.494 g, 8.515 mmol, 95%).

Mp: 149 °C. 1H NMR (400 MHz, [D]CHCl3, 25 °C): *^δ* 7.60- 7.26 (m, 10 H; 2C₆H₅), 5.71 (m, 1 H; CH=), 4.94-4.86 (m, 2 H; $=CH_2$), 2.63 (m, 2 H; PC*H*₂), 1.96 (s, 15 H; C₅(C*H*₃)₅), 1.38-

1.10 (m, 10 H; 5C*H*2).26 13C{1H} NMR (100 MHz, [D]CHCl3, 25 °C): δ 202.0 (d, ² J(C,P) = 8 Hz, *C*O), 138.8 (s, CH₂ CH=), 132.6/132.5 (2 s, p-Ph/Ph'), 132.6/132.2 (2 d, ² $J(C, P) = 10/10$ Hz, *o*-Ph/Ph'), 130.0/128.7 (2 d, ¹ J(C,P) = 55/55 Hz, *i*-Ph/Ph'), 130.0/129.8 (2 d, ³ J(C,P) = 10/11 Hz, m-Ph/Ph'), 114.5 (s, $=$ *C*H₂), 106.2 (s, *C*₅(CH₃)₅), 33.6 (s, *C*H₂CH=), 32.8 (d, ¹*J*(C,P) $=$ 36 Hz, P*C*H₂),²⁷ 30.2 (d, *J*(C,P) = 15 Hz, *C*H₂), 28.6 (s, *C*H₂), 28.5 (s, *C*H2), 24.1 (s, *C*H2), 9.6 (s, C5(*C*H3)5). 31P{1H} NMR (161 MHz, [D]CHCl3, 25 °C): *δ* 9.4 (s). IR (solid film): *ν*˜ 1990 (s, CO), 1732 (s, NO) cm-1. MS (FAB, 3-NBA/CH2Cl2):28 *m*/*z* (%) 676 (100) [M⁺]. Anal. Calcd for $C_{31}H_{40}BF_{4}NO_{2}PRe$ (762.65): C 48.82, H 5.29, N 1.84. Found: C 49.05, H 5.34, N 1.75.

 $(\eta^5\text{-}C_5\text{Me}_5)\text{Re}(\text{NO})(\text{PPh}_2(\text{CH}_2)_6\text{CH}=\text{CH}_2)(\text{CH}_3)$ (12). A Schlenk flask was charged with $11^{+}BF_{4}^{-}$ (1.501 g, 1.968 mmol), THF (50 mL), and LiAlH₄ (0.224 g, 5.904 mmol; added in three portions). The mixture was stirred (2 h) and monitored by TLC (more LiAlH4 can be added if needed). Then water was added until gas evolution ceased. Solvent was removed by oil-pump vacuum. The residue was extracted with THF (2 mL). The extract was filtered through a pad of alumina, and solvent was removed by oil-pump vacuum to give **12** as a red gum (1.196 g, 1.804 mmol, 92%).

¹H NMR (400 MHz, [D]CHCl₃, 25 °C): δ 7.59-7.30 (m, 10 H; $2C_6H_5$), 5.76 (m, 1 H; C*H*=), 4.98-4.89 (m, 2 H; =C*H*₂), 2.63, 2.34 (2 m, 2 H; PC*H*₂), 1.97 (m, 2 H; C*H*₂CH=), 1.61 (s, 15 H; $C_5(CH_3)_5$, 1.39-1.19 (m, 8 H; $4CH_2$), 0.87 (d, $3J(H,P)$ = 6 Hz, 3 H; ReC*H*3). 13C{1H} NMR (100 MHz, [D]CHCl3, 25 °C): δ 139.1 (s, CH₂CH=), 135.8/135.2 (2 d, ¹J(C,P) = 40/39 Hz, *i*-Ph/Ph'), 133.7/132.3 (2 d, ² J(C,P) = 10/10 Hz, *o*-Ph/Ph'), 129.7/129.2 (2 s, p-Ph/Ph'), 128.1/127.9 (2 d, $3J(C,P) = 9/9$ Hz, *m*-Ph/Ph′), 114.1 (s, =*CH*₂), 97.6 (s, *C*₅(CH₃)₅), 33.7 (s, *CH*₂-CH=), 32.7 (d, ¹J(C,P) = 33 Hz, P*C*H₂),²⁷ 30.9 (d, J(C,P) = 15 Hz, *C*H2), 28.7 (s, *C*H2), 28.6 (s, *C*H2), 23.4 (s, *C*H2), 9.6 (s, C5- $(CH_3)_5$), -24.3 (d, ²*J*(C,P) = 6 Hz, *C*H₃). ³¹P{¹H} NMR (161) MHz, [D]CHCl₃, 25 °C): δ 11.0 (s). IR (solid film): \tilde{v} 1604 (s, NO) cm⁻¹. MS (FAB, 3-NBA/CH₂Cl₂):²⁸ m/*z* (%) 663 (100) [M⁺]. Anal. Calcd for C31H43NOPRe (662.86): C 56.17, H 6.54, N 2.11. Found: C 56.20, H 6.51, N 1.99.

 $[(\eta^5 \text{-} C_5 \text{Me}_5) \text{Re}(\text{NO}) (\text{PPh}_2(\text{CH}_2)_6 \text{CH}=\text{CH}_2)(\text{HC} \equiv \text{C} \cdot \text{H}^2)$ **C**t**CSiMe3)]**+**BF4** - **(13**+**BF4** -**).** A Schlenk flask was charged with **12** (1.722 g, 2.673 mmol) and C_6H_5Cl (10 mL) and cooled to -45 °C (acetone/CO₂ slurry). Then HBF_4 ·OEt₂ (54% in ether, 0.350 mL, 2.74 mmol) was added with stirring. After 10 min, $HC=CC=CSiMe₃$ (1.6 mL, 1.31 g (mass of loaded/discharged syringe), 10.7 mmol $13,14$ was added, and the cold bath removed. After 2 h, the solvent was removed by oil-pump vacuum and the residue extracted with CH_2Cl_2 . The resulting suspension was filtered through a short Celite pad. The filtrate was concentrated by rotary evaporation to ca. 2 mL. This solution was added dropwise into rapidly stirred hexane. The tan powder was collected by filtration and dried by oilpump vacuum to give **13**⁺BF₄[−] (2.188 g, 2.553 mmol, 96%; 77−
81·23−19 mixture of Re−(C≡C) rotamers^{13,16}) 81:23-19 mixture of Re-(C \equiv C) rotamers^{13,16}).

Mp: 59 °C (dec). 1H NMR (400 MHz, [D]CHCl3, 25 °C): *δ* 8.1 (br s, 1 H; $H\text{C} \equiv$), 7.59-7.30 (m, 10 H; $2C_6H_5$), 5.70 (m, 1 H; CH₂CH=), 4.98-4.89 (m, 2 H; =CH₂), 2.63 (m, 2 H; PCH₂), 1.94 (m, 2 H; CH₂CH=), 1.83/1.75²⁹ (2 s, 15 H; C₅(CH₃)₅), 1.39-1.19 (m, 8 H; 4C*H*2), 0.33/-0.1229 (2 s, 81:19, 9 H; Si(C*H*3)3).

⁽²⁴⁾ Gokel, G. W. *Crown Ethers and Cryptands*; Royal Society of Chemistry: Cambridge, England, 1991; Chapter 4.

^{(25) (}a) Sato, M.; Watanabe, M. *Chem. Commun.* **2002**, 1574. (b) Bauer, E. B.; Szafert, S.; Hampel, F.; Gladysz, J. A. Submitted for publication.

⁽²⁶⁾ The ¹H NMR spectra of the other complexes show a CH_2CH
signal at $\delta = 1.94-1.98$. This may coincide with the cyclopentadienyl signal at $\delta = 1.94-1.98$. This may coincide with the cyclopentadienyl
signal of $11^+BF_4^-$, but an assignment cannot unambiguously be made based upon the integration.

⁽²⁷⁾ \AA ¹H,¹³C COSY experiment established that the PC H_2 protons of **11**+BF4 - and **12** reside on the carbon with the largest *J*(C,P) value. These correlations were used to assign the P*C*H2 13C signals in all compounds.

 (28) The M⁺ ions represent the most intense peak in the isotope envelope. There were no other significant nonmatrix-derived peaks $(\geq 15\%$ of the M⁺ ion) above m/z 200.

⁽²⁹⁾ These signals are for the major and minor rotamers, respectively.

¹³C{¹H} NMR (100 MHz, [D]CHCl₃, 25 °C): *δ* 138.9 (s, *C*H=), 132.9-126.4 (unresolved Ph signals), 114.5 (s, =CH₂), 114.1 $(s, \text{ } C\equiv\text{CSi}), 107.8 \text{ (br, } s, \text{ } C_5(\text{CH}_3)_5), 95.1 \text{ (s, } C\equiv\text{ } CSi), 33.4 \text{ (s, } C_5(\text{CH}_3)_5), 95.1 \text{$ *C*H₂CH=), 32.4 (d, ¹J(C,P) = 34 Hz, P*C*H₂),²⁷ 30.2 (d, J(C,P)) 14 Hz, *^C*H2), 28.5 (s, *^C*H2), 28.3 (s, *^C*H2), 24.1 (s, *^C*H2), 9.6 (s, C5(*C*H3)5), -0.5/-0.829 (2 s, Si(*C*H3)3). 31P{1H} NMR (161 MHz, [D]CHCl₃, 25 °C): δ 7.3/13.4²⁹ (2 s, 77:23). IR (solid film): \tilde{v} 2139 (m, C=C), 1697 (s, NO) cm⁻¹. MS (FAB, 3-NBA/ CH₂Cl₂):²⁸ *m*/*z* (%) 770 (100) [M⁺]. Anal. Calcd for C₃₇H₅₀BF₄-NOPReSi (856.86): C 51.86, H 5.88, N 1.64. Found: C 52.02, H 6.08, N 1.64.

 $(\eta^5 \cdot C_5 M e_5)$ **Re(NO)(PPh₂(CH₂)₆CH=CH₂)(C=C-C**t**CSiMe3) (14).** A Schlenk flask was charged with **13**+BF4 - (0.112 g, 0.131 mmol) and *t-*BuOK (0.015 g, 0.136 mmol) and cooled to -75 °C (acetone/CO₂ slurry). Precooled THF (5 mL) was added via cannula. After 10 min, the cold bath was removed. After 2 h, the solution was concentrated to ca. 2 mL and passed through an alumina pad (3 cm). The solvent was evaporated from the filtrate by oil-pump vacuum to give **14** as a dark red solid (0.082 g, 0.106 mmol, 81%).

Mp: 103-106 °C. 1H NMR (400 MHz, [D]CHCl3, 25 °C): *^δ* 7.69-7.35 (m, 10 H; $2C_6H_5$), 5.76 (m, 1 H; CH=), 4.98-4.88 (m, 2 H; =C*H*₂), 3.15, 2.52 (2 m, 2 H; PC*H*₂), 1.98 (m, 2 H; $CH_2CH=$), 1.72 (s, 15 H; $C_5(CH_3)_5$), 1.39-1.19 (m, 8 H; $4CH_2$), 0.20 (s, 9 H; Si(C*H*3)3). 13C{1H} NMR (100 MHz, [D]CHCl3, 25 °C): δ 139.2 (s, CH₂CH=), 134.5/132.0 (2 d, ¹J(C,P) = 48/48 Hz, *i*-Ph/Ph'), 134.5/132.1 (2 d, ² J(C,P) = 10/10 Hz, *o*-Ph/Ph'), 130.5/129.6 (2 s, p-Ph/Ph'), 128.4/128.0 (2 d, ³J(C,P) = 10/9 Hz, *m*-Ph/Ph'), 114.0 (s, =*C*H₂), 110.1 (s, ReC=*C*),³⁰ 107.3 (d, 2 *J*(C,P) = 15 Hz, Re*C*=C),³⁰ 100.3 (s, *C*₅(CH₃)₅), 92.0 (s, *C*= CSi),³⁰ 80.5 (s, C=CSi),³⁰ 33.63 (s, CH₂CH=), 33.57 (d, ¹J(C,P) $= 36$ Hz, P*C*H₂),²⁷ 30.6 (d, *J*(C,P) = 16 Hz, *C*H₂), 28.7 (s, *C*H₂), 28.4 (s, *C*H2), 23.4 (s, *C*H2), 9.8 (s, C5(*C*H3)5), 0.7 (s, Si(*C*H3)3). 31P{1H} NMR (161 MHz, [D]CHCl3, 25 °C): *δ* 10.1 (s). IR (solid film): \tilde{v} 2114 (m, C=C), 2093 (m, C=C), 1645 (s, NO) cm⁻¹. MS (FAB, 2-NPOE/benzene):28 *m*/*z* (%) 769 (100) [M+]. Anal. Calcd for $C_{37}H_{49}NOPReSi$ (769.06): C 57.79, H 6.42, N 1.82. Found: C 56.95, H 6.15, N 1.81.

 $(\eta^5 \text{-} C_5 \text{Me}_5)$ **Re(NO)(PPh₂(CH₂)₆CH=CH₂)(C=CC=CH) (15).** A Schlenk flask was charged with **14** (1.373 g, 1.785 mmol) and THF (20 mL). Then *n*-Bu₄N⁺F⁻ (1.0 M in wet THF, 0.357 mL, 0.357 mmol) was added dropwise with stirring. The reaction was monitored by alumina TLC (the spot for **15** shows rapid decomposition). After 2 h, the solution was passed through a short pad of alumina. The solvent was removed by oil-pump vacuum to give **15** as a red oil (1.098 g, 1.576 mmol, 88%).

1H NMR (400 MHz, [D]CHCl3, 32 °C): *^δ* 7.70-7.06 (m, 10 H; $2C_6H_5$), 5.76 (m, 1 H; CH=), 4.98-4.89 (m, 2 H; =CH₂), 3.42, 2.49 (2 m, 2 H; PC*H*₂), 2.16 (s, 1 H; \equiv C*H*), 1.98 (m, 2 H; ^C*H*2CHd), 1.58 (s, 15 H; C5(C*H*3)5), 1.39-1.19 (m, 8 H; 4C*H*2). 31P{1H} NMR (161 MHz, [D]CHCl3, 32 °C): *^δ* 10.5 (s). IR (solid film): $\tilde{\nu}$ 3302 (w, ≡CH), 2114 (m, C≡C), 1973 (m, C≡C), 1645 (s, NO) cm-1. MS (FAB, 2-NPOE/benzene):28 *m*/*z* (%) 697 (100) [M+]. A correct microanalysis could not be obtained.

 $(\eta^5 \text{-} C_5\text{Me}_5)$ Re(NO)(PPh₂(CH₂)₆CH=CH₂)(C=CC=CC= **CC**=**C**)(**H**₂**C**=**CH**(**CH**₂)₆**PPh**₂)(**ON**)**Re**(η ⁵-**C**₅**Me**₅)(16). A. A Schlenk flask was charged with **15** (0.062 g, 0.089 mmol), Cu- $(OAc)_2$ $(0.016$ g, 0.089 mmol), and pyridine $(5$ mL) and heated to 60 °C. After 2 h, the solvent was removed by oil-pump vacuum. The residue was extracted with CH_2Cl_2 . Column chromatography (silica gel, CH_2Cl_2) gave a fast-moving band, which was concentrated to ca. 10 mL. Hexane was added, and the sample was further concentrated by rotary evaporation. The precipitate was collected by filtration and dried by oilpump vacuum to give **16** as a red powder (0.039 g, 0.028 mmol, 63%). **B**. A Schlenk flask was charged with **14** (0.204 g, 0.265 mmol), K₂CO₃ (0.117 g, 0.780 mmol), Cu(OAc)₂ (0.282 g, 1.560 mmol), MeOH (5 mL), and pyridine (5 mL). The green suspension was stirred at 60 °C for 2 h and worked up as in method A to give **16** (0.098 g, 0.141 mmol, 53%).

Mp: 102-106 °C. 1H NMR (400 MHz, [D]CHCl3, 32 °C): *^δ* 7.67-7.36 (m, 20 H; 4C₆H₅), 5.77 (m, 2 H; 2CH=), 4.98-4.89 (m, 4 H; 2=C*H*₂), 3.13, 2.49 (m, 4 H; 2PC*H*₂), 1.98 (m, 4 H; $2CH_2CH=$), 1.72 (s, 30 H; $2C_5(CH_3)_5$), 1.39-1.16 (m, 16 H; 8C*H*₂). ¹³C{¹H} NMR (75 MHz, [D]CHCl₃, 20 °C (Re*C*≡ not observed)): δ 139.0 (s, CH₂CH=), 134.2/131.9 (2 br s, *i*-Ph/ Ph′),³¹ 134.7/132.4 (2 d, ² J(C,P) = 9/9 Hz, o -Ph/Ph′), 130.8/130.0 $(2 s, p\text{-}Ph/\text{Ph}'), 128.7/128.3 (2 d, \sqrt[3]{10}C) = 10/9 Hz, m\text{-}Ph/\text{Ph}'),$ 114.0 (s, $=CH_2$), 113.7 (s, ReC $\equiv C_1^{30}$ 100.7 (s, C_5 (CH₃)₅), 69.9 (s, ReC=CC),³⁰ 67.0 (s, ReC=CC=C),³⁰ 33.9, 33.7, 33.5, 33.2 $(4 \text{ s or br s, } PCH_2, CH_2CH=)$, 30.6 (br s, 2CH₂), 29.0 (s, CH₂), 28.5 (s, *C*H2), 24.4 (s, *C*H2), 11.3 (s, C5(*C*H3)5). 31P{1H} NMR (161 MHz, [D]CHCl3, 32 °C): *δ* 9.9 (s). IR (solid film): *ν*˜ 2108 (m, C=C), 1956 (w, C=C), 1642 (s, NO) cm⁻¹. MS (FAB, 2-NPOE/benzene):28 *m*/*z* (%) 1392 (100) [M+]. Anal. Calcd for $C_{68}H_{80}N_2O_2P_2Re_2$ (1391.75): C 58.69, H 5.79, N 2.01. Found: C 58.01, H 5.32, N 1.78.

 $(\eta^5 \text{-} C_5\text{Me}_5)$ Re(NO)(PPh₂(CH₂)₆CH=CH)(C=CC=CC= **CC**t**C)((CH2)6PPh2)(ON)Re(***η***5-C5Me5) (17). A.** A Schlenk flask was charged with 16 (0.114 g, 0.082 mmol) and CH_2Cl_2 (70 mL). Another Schlenk flask was charged with $Ru(=CHPh)$ - $(PCy_3)_2$ (Cl)₂ (0.005 g, 0.006 mmol, 7 mol %) and CH₂Cl₂ (10 mL). This purple solution was added by cannula to the red solution of **16**. The mixture was refluxed (3 h). The brown solution was concentrated to ca. 3 mL and passed through a silica gel pad (with CH_2Cl_2 rinses). The filtrate was concentrated to ca. 10 mL. Hexane was added, and the sample was further concentrated by rotary evaporation. The red powder was collected by filtration and dried under oil-pump vacuum to give **17** (0.094 g, 0.069 mmol, 84%). **B**. A Schlenk flask was charged with **16** (0.098 g, 0.071 mmol), CH_2Cl_2 (100 mL), and $Ru(=CHPh)(PCy₃)₂(Cl)₂$ (0.002 g, 0.002 mmol, 3 mol %). The mixture was refluxed. After 1 h, more $Ru(=CHPh)(PC_{y3})_{2}(Cl)_{2}$ (0.002 g, 0.002 mmol, 3 mol %) was added. After an additional 2 h, the brown solution was concentrated to ca. 5 mL and passed through a silica gel pad (with CH_2Cl_2 rinses). The filtrate was concentrated to ca. 10 mL. Hexane was added, and the sample was further concentrated by rotary evaporation. The red powder was collected by filtration and dried under oil-pump vacuum to give **17** (0.074 g, 0.055 mmol, 77%).

Mp: 145-146 °C. ¹H NMR (400 MHz, [D]CHCl₃, 32 °C): *δ* 7.63-7.36 (m, 20 H; 4C₆H₅), 5.42, 5.10 (m, 2 H; 2CH=), 3.13, 2.49 (2 m, 4 H; 2PC*H*₂), 2.05 (m, 4 H; 2C*H*₂CH=), 1.72 (br s, 30 H; 2C5(C*H*3)5), 1.39-1.16 (m, 16 H; 8C*H*2). 13C{1H} NMR (75 MHz, [D]CHCl₃, 20 °C): δ 134.4/132.2 (2 br s, $w_{1/2} = 7/6$ Hz, *i*-Ph/Ph'), 134.8/132.4 (2 br s, $w_{1/2} = 6/5$ Hz, o -Ph/Ph'), 130.6/129.7 (2 br s, $w_{1/2} = 2/6$ Hz, *p*-Ph/Ph[']), 130.1 (s, CH= *C*H), 128.5/128.1 (2 br s, $w_{1/2} = 5/4$ Hz, *m*-Ph/Ph[']), 111.8 (s, ReC≡*C*), 109.3 (br s, Re*C*≡C), 99.2 (s, *C*₅(CH₃)₅), 66.0 (s, ReC≡ $C \subset \subset \subset$, 64.2 (s, ReC=CC=*C*), 33.1 (*C*H₂),³² 30.9 (*C*H₂CH=),³² 29.8 (*C*H2),32 28.8 (*C*H2),32 28.0 (*C*H2),32 22.6 (*C*H2),32 11.3 (s, C5(*C*H3)5). 13C{1H} NMR (100 MHz, [D]CHCl3, 20 °C): *δ* 134.5/ 132.3 (2 br s, *^w*1/2) 8/8 Hz, *ⁱ*-Ph/Ph′), 134.8/131.9 (2 br s, *^w*1/2 $= 17/15$ Hz, o -Ph/Ph'), 130.7/129.8 (2 br s, $w_{1/2} = 9/12$ Hz, p -Ph/ Ph[']), 130.2 (s, CH=CH), 128.5/128.1 (2 br s, $w_{1/2} = 8/8$ Hz, *m*-Ph/Ph′), 113.9 (s, ReC≡*C*), 111.2 (br s, Re*C*≡C), 99.2 (s, *C*₅. $(CH₃)₅$, 66.4 (s, ReC \equiv C \equiv C \equiv C), 63.8 (s, ReC \equiv C \equiv C \equiv C), 33.2 (*C*H₂),³² 30.5 (*C*H₂CH=),³² 29.8 (*C*H₂),³² 28.6 (*C*H₂),³² 27.8 (*C*H2),32 23.2 (*C*H2),32 10.9 (s, C5(*C*H3)5). 31P{1H} NMR (161 MHz, [D]CHCl₃, 32 °C): δ 10.4 (br s, $w_{1/2} = 90$ Hz). IR (solid film): $\tilde{\nu}$ 2108 (m, C=C), 1955 (w, C=C), 1645 (s, NO) cm⁻¹. MS (FAB, 3-NBA/CH2Cl2):28 *m*/*z* (%) 1364 (100) [M+], 2728 (3)

 (30) These assignments follow from coupling constant and chemical shift patterns rigorously established earlier.¹³

⁽³¹⁾ One line of the expected doublet is obscured.

⁽³²⁾ Consistent with the mixture of isomers (see text), the CH₂¹³C NMR signals did not exhibit good signal/noise, and some were doubled and/or broad.

[dimer⁺]. Anal. Calcd for $C_{66}H_{76}N_2O_2P_2Re_2$ (1363.69): C 58.13, H 5.62, N 2.05. Found: C 58.52, H 5.72, N 1.85.

Hydrogenation of 17. A. A Fischer-Porter bottle was charged with **17** (ca. 0.005 g, 0.004 mmol), toluene/ethanol (50 mL, 1:1 v/v), and $Rh(PPh₃)₃(Cl)$ (ca. 0.001 g, 0.001 mmol) and placed under H_2 (2 bar). After 24 min, an aliquot (1 mL) was filtered through alumina and taken to dryness, and *n-*hexane/ 2-propanol (0.5 mL, 98:2 v/v) was added. HPLC analysis (isocratic, Nucleosil 100-5 column) showed a ca. 91:09 ratio of

 $(\eta^5$ -C₅Me₅)Re(NO)(PPh₂(CH₂)₇)(C=CC=CC=CC=C)-

((CH2)7PPh2)(ON)Re(*η*5-C5Me5) (**18**)18,19 and **17** (relative absorbance, 254 nm). After 40 min, the peak for **18** had diminished, and decomposition products with shorter retention times were present. **B**. Many similar reactions were conducted using (a) 0.0059 g (0.003 mmol) of **17**, 0.004 g of Pd/C (10%; 0.0004 mmol), 1 bar H_2 , 3 mL of toluene; (b) as in a but 4 bar H_2 ; (c) 0.0048 g (0.003 mmol) of **17**, 0.005 g of Pd/C (10%; 0.0004 mmol), 1 bar H₂, 4 mL of 50:50 v/v ClCH₂CH₂Cl/EtOH; (d) 0.0053 g (0.003 mmol) of 17, 0.003 g (0.003 mmol) of Rh(PPh₃)₃-(Cl), 4 mL of 50:50 v/v toluene/EtOH, 4 bar H2; (e) 0.0056 g (0.003 mmol) of 17, 0.004 g (0.004 mmol) of Rh(PPh₃)₃(Cl), 3 mL of toluene, 1 bar H₂; (f) as in e but at 40 °C. In each of these experiments, HPLC analyses showed either unreacted **17** or decomposition products.

Acknowledgment. We thank the DFG (300/1-2) for support of this research, the Ministerio de Educación y Ciencia (Spain) and the Fulbright Commission for Fellowships (J.M.M.-A.), and Dr. J. Ruwwe for helpful assistance.

OM020676Y