Synthesis and Characterization of Bimetallic Ruthenium **Complexes with (CH)6 and Related Bridges**

Sheng Hua Liu,[†] Haiping Xia,[†] Ting Bin Wen,[†] Zhongyuan Zhou,[‡] and Guochen Jia*,†

Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

Received September 16, 2002

Treatment of RuHCl(CO)(PPh₃)₃ with (E)-HC \equiv CCH \equiv CHC \equiv CH produces [RuCl(CO)-(PPh₃)₂]₂(μ -(*E*,*E*,*E*)-CH=CHCH=CHCH=CH). The latter complex reacts with PMe₃, 4-phenylpyridine (PhPy), and 2,6-(Ph₂PCH₂)₂C₅H₃N (PMP) to give $[RuCl(CO)(PMe_3)_3]_2(\mu$ -CH= CHCH=CHCH=CH), [RuCl(CO)(PhPy)(PPh₃)₂]₂(μ -CH=CHCH=CHCH=CH), and [RuCl-(CO)(PMP)]₂(*u*-CH=CHCH=CHCH=CH), respectively. Treatment of [RuCl(CO)(PPh₃)₂]₂(*u*-(E,E,E)-CH=CHCH=CHCH=CH) with t-BuNC and NaBPh₄ gives {[Ru(t-BuNC)₃(PPh₃)₂]₂- $(\mu$ -COCH=CHCH=CHCH=CHCO)}(BPh_4)_2, the structure of which has been confirmed by X-ray diffraction. Treatment of RuHCl(CO)(PPh₃)₃ with excess (Z)-HC≡CCH=CHC≡CH followed by PMe₃ produces $RuCl((E,Z)-CH=CHCH=CHC=CH)(CO)(PMe_3)_3$. The mononuclear complex reacts with RuHCl(CO)(PPh₃)₃ to give (PMe₃)₃(CO)ClRu-CH=CHCH=CHC- $(=CH_2)-RuCl(CO)(PPh_3)_2$, which reacts with *t*-BuNC to give $[(PMe_3)_3(CO)ClRu-CH=$ $CHCH=CHC(=CH_2)CO-Ru(t-BuNC)_3(PPh_3)_2]CL$

Introduction

Bimetallic and polymetallic complexes with conjugated hydrocarbon ligands bridging metal centers are attracting considerable interest for their structural and material properties.^{1,2} Linear C_x and $(CH)_x$ are probably the simplest hydrocarbon bridging ligands. In the past decade, a variety of complexes of the type $L_n M(\mu - C_x)$ - $M'L'_n$ with x up to 20 and with M or M' = Re, Fe, Ru, Pt, Pd, Mn, W, and Rh have been synthesized.³⁻⁶ These complexes can behave like molecular wires and have luminescent properties. In contrast to bimetallic com-

M. P.; Humphrey, M. G. *Organometallics* **2002**, *21*, 2353. (b) Hurst, S. K.; Humphrey, M. K.; Isoshima, T.; Wostyn, K.; Asselberghs, I.; Clay, K.; Persoons, A.; Samoc, M.; Luther-Davies, B. *Organometallics* **2002**, *21*, 2024. (c) Enriquez, A. E.; Templeton, J. L. *Organometallics* **2002**, *21*, 852. (d) Yam, V. W. W.; Tao, C. H.; Zhang, L.; Wong, K. M. C.; Cheung, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, W. J. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 453. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **200**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *Organometallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *M. C.*; *Chubetallics* **2001**, *20*, 455. (e) Matsumi, N.; Chujo, K. K. *M. C.*; *Chubetallics* **2001**, *20*, 455. (e) Matsumi, N.; *Chubetallics* **2002**, *45*, 450. (e) Matsumi, M.; *Chubetallics* **2002**, *45*, 450. (f) Matsumi, M.; *Chubetallics* **2002**, *45*, 450. (f) Matsumi, M.; *Chubetallics* **2002**, *45*, 450. (f) Matsumi, M.; *Chubetallics* **45**, 450. (f) M Y.; Lavastre, O.; Dixneuf, P. H. Organometallics **2001**, *20*, 2425. (f) Altamura, P.; Giardina, G.; Lo Sterzo, C.; Russo, M. V. Organometallics Altamura, P.; Giardina, G.; Lo Sterzo, C.; Russo, M. V. Organometallics
2001, 20, 4360. (g) Wong, W. Y.; Choi, K. H.; Lu, G. L.; Shi, J. X.; Lai, P. Y.; Chan, S. M.; Lin, Z. Organometallics 2001, 20, 5446. (h) Le Stang, S.; Paul, F.; Lapinte, C. Organometallics 2000, 19, 1035. (i) Weyland, T.; Costuas, K.; Toupet, L.; Halet, J. F.; Lapinte, C. Organometallics 2000, 19, 4228. (j) Weyland, T.; Ledoux, I.; Brasselet, S.; Zyss, J.; Lapinte, C. Organometallics 2000, 19, 5235. (k) MacDonald, M. A.; Puddephatt, R. J.; Yap, G. P. A. Organometallics 2000, 19, 2194. (3) (a) Meyer, W. E.; Amoroso, A. J.; Horn, C. R.; Jaeger, M.; Gladysz, L. A. Organometallics P. Bartik, T.

plexes with C_x bridges, relatively few studies have been carried out on bimetallic complexes with linear $(CH)_x$ bridges. Bimetallic complexes with linear (CH)_x bridges are interesting, as many conjugated organic materials (e.g., polyacetylenes, push/pull stilbenes) have only sp²hybridized carbons in their backbones.⁷ Until now, only a few examples of (CH)_x-bridged bimetallic complexes where x = 2,8 4,⁹⁻¹¹ 5,¹² and 6^{13} have been reported.

(5) Lu, W.; Xiang, H. F.; Zhu, N.; Che, C. M. Organometallics 2002, 21, 2343.

(6) For additional examples of bimetallic complexes with C_x bridges, see for example: (a) Mohr, W.; Stahl, J.; Hampel, F.; Gladysz, J. A. Inorg. Chem. **2001**, 40, 3263. (b) Che, C. M.; Chao, H. Y.; Miskowski, M. B. Chem. 2001, 40, 52:03. (b) Che, C. M., Chan, H. T., MISHONSKI,
 V. M.; Li, Y.; Cheung, K. K. J. Am. Chem. Soc. 2001, 123, 4895. (c)
 Paul, F.; Meyer, W. E.; Toupet, L.; Jiao, H.; Gladysz, J. A.; Lapinte, C.
 J. Am. Chem. Soc. 2000, 122, 9405. (d) Bruce, M. I.; Low, P. J.; Costuas,
 K.; Halet, J. F.; Best, S. P.; Heath, G. A. J. Am. Chem. Soc. 2000, 122, 1949. (e) Gil-Rubio, J.; Laubender, M.; Werner, H. Organometallics **2000**, *19*, 1365. (f) Peters, T. B.; Bohling, J. C.; Arif, A. M.; Gladysz, J. A. Organometallics **1999**, *18*, 3261. (g) Sakurai, A.; Akita, M.; Morooka, Y. Organometallics **1999**, *18*, 3241. (h) Bruce, M. I.; Ke, M.; Low, P. J.; Skelton, B. W.; White, A. H. *Organometallics* **1998**, *17*, 3539. (i) Akita, M.; Chung, M. C.; Sakurai, A.; Sugimoto, S.; Terada, M.; Tanaka, M.; Moro-oka, Y. *Organometallics* **1997**, *16*, 4882. (j) Coat, F.; Lapinte, C. Organometallics 1996, 15, 477.

(7) See for example: (a) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195, and references therein. (b) Bredas, J. L.; Chem. Rev. 1994, 94, 195, and references therein. (b) Bredas, J. L.;
Adant, C.; Tackx, P.; Peraoons, A. Chem. Rev. 1994, 94, 243. (c)
Handbook of Conducting Polymers; Skotheim, T. A., Elsenbaumer, R. L., Reynolds, J. R., Eds.; Maecel Dekker: New York, 1998.
(8) (a) Rajapakse, N.; James, B. R.; Dolphin, D. Can. J. Chem. 1990, 68, 2274. (b) Bullock, R. M.; Lemke, F. R.; Szalda, D. J. J. Am. Chem. Soc. 1990, 112, 3244. (c) Lemke, F. R.; Szalda, D. J.; Bullock, R. M. J. Am. Chem. Soc. 1990, 112, 3244.

Am. Chem. Soc. **1991**, *113*, 8466. (9) (a) Sponsler, M. B. *Organometallics* **1995**, *14*, 1920, and references therein. (b) Etzenhouser, B. A.; Chen, Q.; Sponsler, M. B. Organometallics 1994, 13, 4176. (c) Etzenhouser, B. A.; Cavanaugh, M. D.; Spurgeon, H. N.; Sponsler, M. B. J. Am. Chem. Soc. 1994, 116, 2221

The Hong Kong University of Science and Technology

¹ The Hong Kong Polytechnic University. (1) (a) Long, N. J. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 21, and references therein. (b) Bunz, U. H. F. *Angew. Chem., Int. Ed. Engl.* **1996**, *35*, 969. (c) Lotz, S.; Van Rooyen, P. H.; Meyer, R. *Adv.* Organomet. Chem. 1995, 37, 219. (d) Ward, M. D. Chem. Soc. Rev. 1995, 121. (e) Lang, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 547. (f) Beck, W.; Niemer, B.; Wieser, M. Angew. Chem., Int. Ed. Engl. 1993, 32, 923. (g) Paul, F.; Lapinte, C. *Coord. Chem.* **1998**, *178*, 431. (2) For examples of recent work, see: (a) Hurst, S. K.; Cifuentes,

^{(4) (}a) Bruce, M. I.; Hall, B. C.; Kelly, B. D.; Low, P. J.; Skelton, B. W.; White, A. H. *J. Chem. Soc., Dalton Trans.* **1999**, 3719. (b) Bruce, M. I.; Kelly, B. D.; Skelton, B. W.; White, A. H. *J. Organomet. Chem.* **2000**, 604, 150.

Other reported bimetallic complexes with hydrocarbon bridges containing only sp²-hybridized carbons in the backbone include bimetallic complexes of the type $L_n M =$ $L_n, {}^{14}L_nM-Ar-ML_n, {}^{15}L_nMCH=CH-Ar-CH=CHML_n, {}^{16}$ and L_nM-C₄R₃-ML_n.¹⁷

In this report, the synthesis, characterization, and electrochemical properties of several (CH)₆-bridged bimetallic complexes will be described. Reported bimetallic complexes with a $(CH)_6$ bridge are limited to (S)(RO)₂(ArN)Mo=CH-(CH=CH)₂-CH=MoNAr)(OR)₂-(S) (RO = OCMe(CF₃)₂; Ar = 2,6-diisopropylphenyl; $S = MeOCH_2CH_2OMe$, ether, THF), which were derived from the reactions of Mo(CHR')(NAr)(OR)₂ ($\mathbf{R'} = \mathbf{CMe}_3$, CMe₂Ph) with cyclooctatetrene.¹³

Results and Discussion

Reactions of (E)-HC=CCH=CHC=CH with Ru-HCl(CO)(PPh₃)₃. Reactions of RuHCl(CO)(PPh₃)₃ with $HC \equiv CR$ are known to give RuCl((E)-CH=CHR)(CO)-(PPh₃)₂.^{18,19} Thus it is expected that reactions of RuHCl-(CO)(PPh₃)₃ with (E)-HC≡CCH=CHC≡CH will produce [RuCl(CO)(PPh₃)₂]₂(μ -(E,E,E)-CH=CHCH=CHCH= CH).

The starting material (*E*)-HC≡CCH=CHC≡CH (4a) was initially prepared from the reaction of *p*-toluenesulfonate of hexa-1,5-diyn-3-ol with diazabicyclo[4.3.0]non-5-ene.²⁰ The reaction produces a mixture of (E)- and (Z)-HC=CCH=CHC=CH, which are difficult to separate. We have generated the compound (*E*)-HC \equiv CCH=

1993. 12. 759.

(14) See for example: (a) Guillaume, V.; Mahias, V.; Mari, A.; Lapinte, C. Organometallics **2000**, *19*, 1422. (b) Fernández, I.; Sierra, M. A.; Mancheño, M. J.; Gómez-Gallego, M.; Ricart, S. *Organometallics* **2001**, *20*, 4304. (c) Ulrich, K.; Guerchais, V.; Dötz, K. H.; Toupet, L.; Le Bozec, H. Eur. J. Inorg. Chem. 2001, 725. (d) Rabier, A.; Lugan, N.; Mathieu, R. J. Organomet. Chem. 2001, 617, 681. (e) Briel, O.; Fehn, A.; Beck, W. J. Organomet. Chem. 1999, 578, 247.
(15) See for example: (a) Dijkstra, H. P.; Albrecht, M.; van Koten,

G. *Chem. Commun.* **2002**, 126. (b) Dijkstra, H. P.; Meijer, M. D.; Patal, J.; Kreiter, R.; van Klink, G. P. M.; Lutz, M.; Spek, A. L.; Canty, A. J.; van Koten, G. Organometallics 2001, 20, 3159. (c) Lagunas, M. C.; Gossage, R. A.; Spek, A. L.; van Koten, G. *Organometallics* **1998**, *17*, 731. (d) Manna, J.; Kuehl, C. J.; Whiteford, J. A.; Stang, P. J. *Organometallics* **1997**, *16*, 1897.

(16) (a) Gómez-Lor, B.; Santos, A.; Ruiz, M.; Echavarren, A. M. *Eur.* J. Inorg. Chem. 2001, 2305. (b) Jia, G.; Wu, W. F.; Yeung, R. C. Y.; Xia, H. P. J. Organomet. Chem. 1997, 539, 53. (c) Santos, A.; López, J.; Montoya, J.; Noheda, P.; Romero, A.; Echavarren A. M. Organometallics 1994, 13, 3605.

(17) See for example: (a) Weng, W.; Bartik, T.; Johnson, M. T.; Arif, A. M.; Gladysz, J. A. Organometallics 1995, 14, 889. (b) Fischer, H.; Leroux, F.; Roth, G.; Stumpf, R. Organometallics 1996, 15, 3723, and references therein

(18) Torres, M. R.; Vegas, A.; Santos, A.; Ros, J. J. Organomet. Chem. 1986, 309, 169.

(19) For recent work, see for example: (a) Maruyama, Y.; Yamamura, K.; Sagawa, T.; Katayama, H.; Ozawa, F. Organometallics 2000, 19, 1308. (b) Maruyama, Y.; Yamamura, K.; Nakayama, I.; Yoshiuchi, K.; Ozawa, F. *J. Am. Chem. Soc.* **1998**, *120*, 1421. (c) Harlow, K. J.; Hill, A. F.; Welton, T. *J. Chem. Soc. Jost. Tors.* **1999**, 1911. (d) Hill, A. F.; Welton, T. *J. Chem. Soc., Dalton Trans.* **1999**, 1911. (d) Hill, A. F.; Ho, C. T.; Wilton-Ely, J. D. E. T. *Chem. Commun.* **1997**, 2207. (e) Harlow, K. J.; Hill, A. F.; Welton, T.; White, A. J. P.; Williams, D. J. *Organometallics* **1998**, *17*, 1916. (f) Jia, G.; Wu, W. F.; Yeung, R. C. Y.; Xia, H. J. Organomet. Chem. 1997, 538, 31.

CHC=CH (4a) by desilvlation of (*E*)-Me₃SiC=CCH= CHC=CSiMe₃ (**3a**), a method reported by Wudl et al.²¹ (E)-Me₃SiC=CCH=CHC=CSiMe₃ (**3a**) was in turn synthesized from Pd-catalyzed coupling reaction of (E)-ClCH=CHC=CSiMe₃ (1)²² and HC=CSiMe₃ (2) (Scheme 1). The one-pot reaction of (*E*)-ClCH=CHCl and HC= CSiMe₃ could also generate **3a**. However, significant amounts of side-products such as (Z)-Me₃SiC=CCH= CHC≡CSiMe₃ (3b) and Me₃SiC≡CCH=CHC(=CHSi- Me_3)C=CSiMe₃ were also produced in the reaction.²³

Addition of 4a to a suspension of RuHCl(CO)(PPh₃)₃ (5) in dichloromethane produced the insertion product $[RuCl(CO)(PPh_3)_2]_2(\mu - (E, E, E) - CH = CHCH = C$ CH) (6), which can be isolated as a purple solid in 81% yield (Scheme 1). The compound has been characterized by NMR and elemental analysis. The ${}^{31}P{}^{1}H$ NMR spectrum in CD₂Cl₂ showed a singlet at 29.5 ppm, which is typical for RuCl((*E*)-CH=CHR)(CO)(PPh₃)₂. The ¹H NMR spectrum in CD₂Cl₂ displayed the Ru-CH signal at 7.94 ppm, the β -CH signal at 5.39 ppm, and the δ -CH signal at 5.21 ppm. Monomeric complexes RuCl(RC= $CHR')(CO)(PPh_3)_2$ are known to adopt a distorted trigonal bipyramidal geometry around ruthenium with the two PPh₃ ligands in the apical positions.¹⁸ Thus it is reasonable to assume that complex 6 has a similar geometry around ruthenium. Reported bimetallic complexes closely related to **6** are $[RuCl(CO)(PPh_3)_2]_2(\mu$ -CH=CH-Ar-CH=CH)^{16a,b} and [RuCl(CO)(PPh₃)₂]₂(u-CH=CH-CH=CH).11

Reactions of 6 with PMe₃, 4-Phenylpyridine, PMP, and *t*-BuNC. Several bimetallic complexes were prepared from complex **6**. Treatment of **6** with PMe_3 produced the six-coordinated complex [RuCl(CO)(P- $Me_3)_3]_2(\mu$ -CH=CHCH=CHCH=CH) (7) (Scheme 2). The PMe₃ ligands in 7 are meridionally coordinated to ruthenium as indicated by the AM_2 pattern ${}^{31}P{}^{1}H$ NMR spectrum. The presence of the $(CH)_6$ chain is indicated by the ¹H NMR spectrum (in CD₂Cl₂), which showed the vinyl proton signals at 7.75 (Ru-CH), 6.88

⁽¹⁰⁾ Niu, X.; Gopal, L.; Masingale, M. P.; Braden, D. A.; Hudson, B. S.; Sponsler, M. B. Organometallics 2000, 19, 649.

⁽¹¹⁾ Xia, H. P.; Yeung, R. C. Y.; Jia, G. Organometallics 1998, 17, 4762

^{(12) (}a) Xia, H. P.; Jia, G. Organometallics 1997, 16, 1. (b) Xia, H.
P.; Yeung, R. C. Y.; Jia, G. Organometallics 1997, 16, 3557.
(13) Fox, H. H.; Lee, J. K.; Park, L. Y.; Schrock, R. R. Organometallics

^{(20) (}a) Okamura, W. H.; Sondheimer, F. J. Am. Chem. Soc. 1967, 89, 5991. (b) Jones, R. R.; Bergman, R. G. J. Am. Chem. Soc. 1972, 94, 660.

⁽²¹⁾ Walker, J. A.; Bitler, S. P.; Wudl, F. J. Org. Chem. 1984, 49, 4733.

⁽²²⁾ Chemin, D.; Linstrumelle, G. Tetrahedron 1994, 50, 5335. (23) Vollhardt, K. P. C.; Win, L. S. Tetrahedron Lett. 1985, 709, 712.

Scheme 2

(β -CH), and 6.52 (γ -CH) ppm. In the ${}^{13}C{}^{1}H$ NMR spectrum (in CD₂Cl₂), the CH signals were observed at 166.6 (Ru-CH), 138.4 (β -CH), and 129.4 (γ -CH) ppm. The vinyl group is trans to the unique PMe₃, as indicated by the large ${}^{2}J$ (PC) coupling constant (75.5 Hz).

Reactions of **6** with 4-phenylpyridine and 2,6-(Ph₂-PCH₂)₂C₅H₃N (PMP) give the corresponding six-coordinated complexes [RuCl(PhPy)(CO)(PPh₃)₂]₂(μ -CH=CHCH=CHCH=CH) (**8**) and [RuCl(CO)(PMP)]₂(μ -CH=CHCH=CHCH=CH) (**9**), respectively. These complexes have been characterized by NMR spectroscopy and elemental analysis. Related mononuclear complexes RuCl(CH=CHR)(L)(CO)(PPh₃)₂ (L = 2e nitrogen donor ligands) have been previously prepared from the reaction of HC=CR with RuHCl(L)(CO)(PPh₃)₂.²⁴ Ruthenium PMP complexes, for example, RuCl₂(PPh₃)(PMP) and RuHX(PPh₃)(PMP) (X = Cl, OAc), have been reported recently.²⁵

Complex 6 reacted with t-BuCN to give the bimetallic complex {[Ru(BuCN)₃(PPh₃)₂]₂(µ-COCH=CHCH=CH-CH=CHCO)}²⁺, which was isolated as the BPh₄ salt **10** by treatment of the crude product with NaBPh₄ (Scheme 2). The compound has been characterized by NMR spectroscopy and elemental analysis. The presence of the COCH=CHCH=CHCH=CHCO bridging ligand is supported by the ¹H and ¹³C{¹H} NMR spectroscopy. In the ¹H NMR spectrum (in CD₂Cl₂), the three olefinic signals were observed at 5.28, 5.56, and 5.69 ppm. In the ${}^{13}C{}^{1}H$ NMR spectrum, the Ru-acyl signal was observed at 260.2 ppm and the COCH signal was observed at 142.2 ppm. The other two CH signals were observed at 126.1 (δ -CH) and 137.6 (γ -CH) ppm. For comparison, the ¹³C signal for the acyl carbon was observed at 260.5 ppm for [Ru(COPh)(t-BuNC)₂(CO)-

Figure 1. Molecuclar structure of the complex ion { $[Ru-(t-BuNC)_3(PPh_3)_2]_2(\mu-COCH=CHCH=CHCH=CHCO)$ }²⁺. The counteranion and the hydrogen atoms of PPh₃ and *t*-BuNC are omitted for clarity.

 $(PMe_2Ph)_2]^{+\ 26}$ and at 258.1 ppm for $[Ru(COCH=CHCMe_3)(t-BuNC)_3(PPh_3)_2]^{+.27}$

The structure of 10 has been confirmed by X-ray diffraction. The molecular structure of the complex ion of 10 is depicted in Figure 1. The crystallographic details and selected bond distances and angles are given in Tables 1 and 2, respectively. As shown in Figure 1, the compound contains two ruthenium centers linked by a COCH=CHCH=CHCH=CHCO bridge. The two ruthenium centers are related to each other by an inversion center at the midpoint of the C4-C4A bond. The geometry around ruthenium can be described as a distorted octahedron with three meridionally bound t-BuCN ligands, two trans-disposed PPh₃ ligands, and an acyl ligand trans to the unique t-BuCN ligand, as suggested by the solution NMR data. The unique Ru-C(31) bond (2.038(4) Å) is slightly longer than those of the mutually trans Ru-C (isonitrile) bonds (1.980(3) and 1.996(3) Å), probably due to the strong trans influence of the acyl ligand.

The most interesting features of the structure are those related to the COCH=CHCH=CHCH=CHCO

^{(24) (}a) Santos, A.; López, J.; Galán, A.; González, J. J.; Tinoco, P.; Echavarren, A. M. *Organometallics* **1997**, *16*, 3482. (b) Romereo, A.; Santos, A.; López, J.; Echavarren, A. M. *J. Organomet. Chem.* **1990**, *391*, 219.

^{(25) (}a) Jia, G.; Lee, H. M.; Williams, I. D.; Lau, C. P.; Chen, Y. *Organometallics* **1997**, *16*, 3941. (b) Rahmouni, N.; Osborn, J. A.; De Cian, A.; Fischer, J.; Ezzamarty, A. *Organometallics* **1998**, *17*, 2470, and references therein.

⁽²⁶⁾ Dauter, Z.; Mawby, R.; Reynolds, C. D.; Saunders, D. R. J. Chem. Soc., Dalton Trans. 1987, 27.

⁽²⁷⁾ Montoya, J.; Santos, A.; López, J.; Echavarren, A. M.; Ros, J.; Romero, A. *J. Organomet. Chem.* **1992**, *426*, 383.

Table 1. Crystal Data and Structure Refinement for {[Ru(*t*·BuNC)₃(PPh₃)₂]₂-(*u*-COCH=CHCH=CHCH=CHCO)}(BPh₄)₂·6CH₂Cl₂

<i>y.</i>	01100))(2114)200112012
formula fw	$\begin{array}{c} C_{158}H_{160}B_2N_6O_2P_4Ru_2{\boldsymbol{\cdot}}6CH_2Cl_2\\ 3032.12 \end{array}$
cryst syst	monoclinic
space group	P2(1)/c
a. Å	12.2869(16)
b. Å	17.200(2) Å
c. Å	38.490(5) Å
B. deg	99.158(3)
$V Å^3$	8030.7(18) Å ³
Z	2
$D_{\text{calc.}} \text{ g cm}^{-3}$	1.254
abs coeff, mm ⁻¹	0.479
<i>F</i> (000)	3152
θ range, deg	1.84 to 27.56
index ranges	$-15 \le h \le 15, -19 \le k \le 22,$
0	$-50 \leq l \leq 43$
no. of reflns collected	54 071
no. of ind reflns	18450 [R(int) = 0.0659]
completeness to $\theta = 27.56^{\circ}$	99.5%
no. of obsd reflns $[I > 2\sigma(I)]$	9177
max. and min. transmn	1.0000 and 0.8265
no. of data/restraints/params	18450/0/865
goodness-of-fit on F^2	0.877
final R indices $[I > 2\sigma(I)]$	R1 = 0.0500, $wR2 = 0.1054$
R indices (all data)	R1 = 0.1173, $wR2 = 0.1240$
largest diff peak and hole	0.742 and $-0.582 \text{ e} \cdot \text{Å}^{-3}$
0	

Table 2. Selected Bond Distances (Å) and Angles (deg) for {[Ru(*t*-BuNC)₃(PPh₃)₂]₂-(µ-COCH=CHCH=CHCH=CHCO)}(BPh₄)₂·6CH₂Cl₂

•		,,,,		
Bond Distances				
Ru(1) - P(1)	2.3799(9)	Ru(1) - P(2)	2.3682(9)	
Ru(1) - C(1)	2.118(3)	Ru(1) - C(11)	1.980(3)	
Ru(1) - C(21)	1.996(3)	Ru(1) - C(31)	2.038(4)	
O(1) - C(1)	1.224(4)	C(1) - C(2)	1.494(4)	
C(2) - C(3)	1.322(4)	C(3)-C(4)	1.433(4)	
C(4) - C(4) # 1	1.334(6)	C(11) - N(1)	1.156(4)	
N(1) - C(13)	1.454(4)	C(21)-N(2)	1.151(4)	
N(2)-C(23)	1.460(4)	C(31)-N(3)	1.155(4)	
N(3)-C(33)	1.462(5)			
	D 1			
Bond Angles				
P(2)-Ru(1)-P(1)	175.43(3)	C(31)-Ru(1)-C(1)	171.72(13)	
C(11) - Ru(1) - C(21)	171.55(12)	C(11) - Ru(1) - C(1)	89.81(13)	
C(21) - Ru(1) - C(1)	81.76(13)	C(11)-Ru(1)-C(31)	98.41(13)	
C(21)-Ru(1)-C(31)	90.00(13)	C(1)-Ru(1)-P(1)	91.45(9)	
C(1) - Ru(1) - P(2)	91.34(9)	C(11)-Ru(1)-P(1)	86.53(9)	
C(11) - Ru(1) - P(2)	89.86(9)	C(21) - Ru(1) - P(1)	92.97(9)	
C(21) - Ru(1) - P(2)	91.01(9)	C(31)-Ru(1)-P(1)	88.02(9)	
C(31) - Ru(1) - P(2)	89.73(9)	O(1) - C(1) - Ru(1)	122.7(2)	
O(1) - C(1) - C(2)	115.2(3)	C(2) - C(1) - Ru(1)	122.0(2)	
C(3) - C(2) - C(1)	122.2(3)	C(2) - C(3) - C(4)	126.6(3)	
C(4)#1-C(4)-C(3)	125.0(4)	N(1)-C(11)-Ru(1)	177.0(3)	
N(2) - C(21) - Ru(1)	173 0(3)	N(3) - C(31) - Ru(1)	173 7(3)	

bridge. The Ru–C(1) bond distance of 2.118(3) Å is close to those found in η^{1} -acyl complexes such as Ru(Cp)-(COCH=CPh₂)(CO)(P(*i*-Pr)₃) (2.060(2) Å),²⁸ [Ru(COPh)-(CO)(*t*-BuCN)₂(PMe₂Ph)₂]⁺ (2.128(10) Å),²⁶ and [Ru-(COMe)(cym)(phen)]BAr₄ (2.084(11) Å, cym = 4-methylisopropylbenzene, phen = phenanthroline, Ar = 3,5-bis-(trifluoromethyl)phenyl)²⁹ and is slightly longer than that found in the η^{2} -acyl complex RuCl(η^{2} -COC₆H₄NH₂)-(CO)(PPh₃)₂ (1.958(3) Å).³⁰ The atoms Ru, C(11), C(21), C(31), C(1), and O(1) are essentially coplanar with maximum deviation from the least-squares plane of 0.022 Å for O(1). The carbon atoms of the COCH= CHCH=CHCH=CHCO chain and the ruthenium atoms are also essentially coplanar with maximum deviation from the least-squares plane of 0.026 Å for C(3). The two planes have a dihedronal angle of 30.6°, indicating that the π -conjugation in the chain is not very effective. The coplanarity of the acyl group (C(1)O(1)) and the isonitrile ligands is probably due to the fact that these ligands are both good π -acceptors and stabilization due to π -interaction of isonitrile and acyl group with the metal centers can be maximized in such a conformation. A similar argument has been proposed for the conformational preferences of vinyl groups in CO-containing vinyl complexes M(CR=CR'R')(CO)L_n.³¹

The $(CH)_6$ ligand shows a single/double carbon– carbon bond alternation. All the olefinic double bonds are in trans geometry. The formal C=C double bonds have an average bond distance of 1.328 Å, and the formal single bond (C(3)–C(4) has a bond distance of 1.433(4) Å, which is slightly shorter than that (1.494(4) Å) between C(2) and C(1) (the acyl carbon). The difference between the single and the average double bond distances of the (CH)₆ chain is 0.105 Å. The structural parameters of the (CH)₆ chain are similar to those of PhCH=CH(CH=CH)₂CH=CHPh,³² where the difference between the average single and double bond distances is 0.092 Å.

As mentioned previously, reported $(CH)_6$ -bridged bimetallic complexes are limited to $(S)(RO)_2(ArN)MO =$ $CH-(CH=CH)_2-CH=MoNAr)(OR)_2(S)$ (RO = OCMe- $(CF_3)_2$; Ar = 2,6-diisopropylphenyl; S = MeOCH_2CH_2-OMe, ether, THF), which were derived from the reactions of Mo(CHR')(NAr)(OR)_2 (R' = CMe_3, CMe_2Ph) with cyclooctatetrene.¹³ Several C₆-bridged bimetallic complexes have been reported, including, Cp*(dppe)Fe-(C= $C)_3$ -Fe(dppe)Cp*,^{1g} Cp*(NO)(PR_3)Re-(C=C)_3-Re(NO)-(PR_3)Cp* (PR_3 = PPh_3, P(tolyl)_3),³ Cp(PPh_3)_2Ru-(C= $C)_3$ -Ru(PPh_3)_2Cp,⁴ and Cy₃PAu-(C=C)_3-AuPCy₃.⁵

Surprisingly, the expected bimetallic complex could not be produced in the reaction of RuHCl(CO)(PPh₃)₃ with 0.5 equiv of **4b**. As indicated by the ¹H and ³¹P-{¹H} NMR spectra, the reaction produced a complicated mixture, which was difficult to purify and identify. To better understand the reaction, the reaction of RuHCl-(CO)(PPh₃)₃ with excess **4b** was carried out. An in situ ³¹P{¹H} NMR experiment suggests that the mononuclear complex RuCl((*E*,*Z*)-CH=CHCH=CHC=CH)-(CO)(PPh₃)₂ was generated in the reaction. However, the compound is unstable and could be isolated in pure state. On the other hand, reaction of RuHCl(CO)(PPh₃)₃ with excess **4b** followed by treatment of the reaction mixture with PMe₃ produced the six-coordinated com-

⁽²⁸⁾ Esteruelas, M. A.; Gómez, A. V.; Lahoz, F. J.; López, A. M.; Oñate, E.; Oro, L. A. Organometallics **1996**, *15*, 3423.

⁽²⁹⁾ Menéndez, C.; Morales, D.; Pérez, J.; Riera, V.; Miguel, D. Organometallics **2001**, 20, 2775.

⁽³⁰⁾ Clark, G. R.; Roper, W. R.; Wright, L. J.; Yap, V. P. Organometallics **1997**, *16*, 5135.

⁽³¹⁾ Choi, S. H.; Bytheway, I.; Lin, Z.; Jia, G. Organometallics **1998**, *17*, 3974.

⁽³²⁾ Drenth, W.; Wiebenga, E. H. Acta Crystallogr. 1955, 8, 755.

⁽³³⁾ McMahon, R. J.; Halter, R. J.; Fimmen, R. L.; Wilson, R. J.; Peebles, S. A.; Kuczkowski, R. L.; Stanton, J. F. *J. Am. Chem. Soc.* 2000, *122*, 939.

plex Ru((E,Z)-CH=CHCH=CHC=CH)Cl(CO)(PMe₃)₃ (11, see Scheme 3). Compound 11 has been characterized by multinuclear NMR and elemental analysis. The ³¹P-{¹H} NMR spectrum in CD₂Cl₂ showed a doublet at -9.3 ppm and a triplet at -20.6 ppm, indicating that the three PMe₃ ligands are meridionally coordinated to ruthenium. In the ¹H NMR spectrum (in CD₂Cl₂), the signals of the CH=CHCH=CHC=CH group are observed at 8.16 (Ru-CH), 6.99 (β-CH), 6.48 (γ-CH), 4.89 (δ -CH), and 3.20 (=CH) ppm. In the ¹³C{¹H} NMR spectrum (in CD₂Cl₂), the signals of the CH=CHCH= CHC≡CH group were observed at 185.1 (Ru-CH), 147.0 $(\beta$ -CH), 134.9 (γ -CH), and 94.1 (δ -CH), 82.8 (=C), and 78.9 (\equiv CH) ppm. The vinyl group is trans to the unique PMe₃, as indicated by the large ${}^{2}J(PC)$ coupling constant (77.5 Hz).

Preparation of Bimetallic Complexes from Ru- $Cl((E,Z)-CH=CHCH=CHC=CH)(CO)(PMe_3)_3$ (11). We have tried to use compound **11** as the starting material to prepare bimetallic complexes. It is expected that reaction of 11 with RuHCl(CO)(PPh₃)₃ would produce the bimetallic complex (PMe₃)₃(CO)ClRu-(E,Z,E)-CH=CHCH=CHCH=CH-RuCl(CO)(PPh₃)₂. Treatment of compound **11** with 1 equiv of RuHCl(CO)(PPh₃)₃ produced, unexpectly, the bimetallic complex (PMe₃)₃-(CO)ClRu-(E,Z)-CH=CHCH=CHC(=CH₂)-RuCl(CO)- $(PPh_3)_2$ (12), rather than $(PMe_3)_3(CO)ClRu-(E,Z,E)$ -CH=CHCH=CHCH=CHRuCl(CO)(PPh₃)₂ (Scheme 3). The reaction is unusual because reactions of RuHCl- $(CO)(PPh_3)_3$ with RC=CH normally give RuCl(CH= $CHR)(CO)(PPh_3)_2$, rather than $RuCl(CR=CH_2)(CO)$ - $(PPh_3)_2$. It is not clear to us why ruthenium is not attached to the terminal carbon in the insertion reaction

The formation of the bimetallic complex is confirmed by elemental analysis and NMR spectroscopy. The ³¹P-{¹H} NMR spectrum in CD₂Cl₂ showed a singlet for the PPh₃ ligand at 30.5 ppm and AM2 pattern PMe₃ signals at -20.7 (t, *J*(PP) = 23.1 Hz) and -9.0 ppm (d, *J*(PP) =

Figure 2. Cyclic voltammogram of [RuCl(CO)(PMe₃)₃]₂-(μ-CH=CHCH=CH-CH=CH).

23.1 Hz). The presence of the CH=CHCH=CHC(=CH₂) group is supported by the ¹H NMR spectrum (in CD₂-Cl₂), which showed a characteristic doublet signal at 5.96 ppm for =CHC=CH₂.

Further support for the structural assignment is from its reaction with *t*-BuNC. Reaction of complex **12** with *t*-BuNC produced [(PMe₃)₃(CO)ClRuCH=CHCH=CHC-(=CH₂)CORu(*t*-BuNC)₃(PPh₃)₂]Cl (**13**). The presence of the CH=CHCH=CHC(=CH₂)CO bridging ligand is clearly indicated by ¹H and ¹³C{¹H} NMR spectroscopy. In the ¹³C{¹H} NMR spectrum, the Ru-acyl signal was observed at 257.2 ppm. In the ¹H NMR spectrum, the =CH₂ signals was observed at 4.90(s) and 5.30(s) ppm, and the other four ¹H signals of the bridging ligand were observed at 5.06 (d, *J*(HH) = 11.8 Hz, δ -CH), 5.90 (t, *J*(HH) = 11.8 Hz, γ -CH), 6.67 (m, β -CH), and 7.85 (m, Ru-CH) ppm. It is interesting to note that only one side of the metal center undergoes CO insertion reaction.

Electrochemical Study. Electrochemistry can often be used to probe metal—metal interactions in bimetallic complexes with σ , σ -bridging hydrocarbon chains.^{1g} Electrochemical properties of bimetallic complexes with C_x bridges have been extensively studied by cyclic voltammetry. In contrast, electrochemical properties of bimetallic complexes with (CH)_x bridges have rarely been exploited. In this work, we have collected cyclic voltammograms of complexes **6**–**9** in dichloromethane containing 0.10 M *n*-Bu₄NClO₄ as the supporting electrolyte.

The five-coordinated complex **6** exhibited two partially reversible oxidation waves at 0.15 and -0.15 V vs Ag/AgCl. These two waves can be attributed to the formation of [(PPh₃)₂(CO)ClRu–(CH=CH)₃–RuCl(CO)-(PPh₃)₂]⁺ and [(PPh₃)₂(CO)ClRu=CH–(CH=CH)₂–CH=RuCl(CO)(PPh₃)₂]²⁺, respectively. The peak separation of the two oxidation waves is at 0.30 V.

The cyclic voltammograms of the six-coordinated complexes 7-9 have features very similar to those of **6**. As an example, the cyclic voltammogram of 7 is presented in Figure 2. As shown in Figure 2, the PMe₃containing complex 7 showed two partially reversible oxidation waves at -0.07 and 0.31 V vs Ag/AgCl. The pyridine-containing complexes 8 and 9 can be oxidized more easily compared to the PMe₃-containing complex 7. Complex 8 showed two partially reversible oxidation waves at -0.22 and 0.16 V vs Ag/AgCl. Complex 9 showed two partially reversible oxidation waves at -0.26 and 0.09 V vs Ag/AgCl. The two waves observed for 7-9 can be attributed to the formation of [L₅Ru-(CH=CH)₃-RuL₅]⁺ and [L₅Ru=CH-(CH=CH)₂-CH= RuL_5]²⁺, respectively. The peak separations of the two oxidation waves for complexes 7, 8, and 9 are at 0.38, 0.38, and 0.35 V, respectively. Observation of two oxidation waves for complexes 6-9 may imply that the

two metal centers can interact with each other. For comparison, the peak separation for the $(CH)_4$ -bridged complex Cp(dppm)Fe- $(CH=CH)_2$ -Fe(dppm)Cp is at 0.44 V.^{14b}

The electrochemical properties of C₆-bridged bimetallic complexes such as $Cp^*(dppe)Fe^{-(C \equiv C)_3 - Fe(dppe)}$ -Cp^{*1g} and Cp^{*}(NO)(PR₃)Re−(C≡C)₃−Re(NO)(PR₃)Cp^{*3} have been reported. The complex $Cp^*(dppe)Fe^{-}(C \equiv$ C_{3} -Fe(dppe)Cp* exhibits two oxidation waves at -0.42and 0.11 V vs SCE with a peak separation of 0.53 V; the complex Cp*(NO)(PPh₃)Re−(C≡C)₃−Re(NO)(PPh₃)-Cp* exhibits two oxidation waves at 0.10 and 0.48 V vs SCE with a peak separation of 0.38 V; the complex Cp*- $(NO)(P(tolyl)_3)Re-(C \equiv C)_3-Re(NO)(P(tolyl)_3)Cp^*$ exhibited two oxidation waves at 0.02 and 0.41 V vs SCE with a peak separation of 0.39 V. It appears that both C_6 and (CH)₆ bridges can mediate electronic communication between the two metal centers. However, the relative effectiveness of $(CH)_6$ and C_6 in the mediation of electronic communication between metal centers could not be evaluated just based the CV data of our (CH)₆bridged complexes and those of reported C₆-bridged complexes, because the peak separations in cyclic voltammograms are also dependent on metals as well as other ligands.

Experimental Section

All manipulations were carried out at room temperature under a nitrogen atmosphere using standard Schlenk techniques, unless otherwise stated. Solvents were distilled under nitrogen from sodium-benzophenone (hexane, diethyl ether, THF, benzene) or calcium hydride (dichloromethane, CHCl₃). The starting materials RuHCl(CO)(PPh₃)₃,³⁴ (1*E*)-1-chloro-4-(trimethylsilyl)but-1-en-3-yne,²² and 2,6-(Ph₂PCH₂)₂C₅H₃N (PMP)³⁵ were prepared according to literature methods. (*E*)-Me₃SiC=CCH=CHC=CSiMe₃²¹ and (*Z*)-Me₃SiC=CCH=CHC= CSiMe₃³³ were prepared by modified literature methods. Microanalyses were performed by M-H-W Laboratories (Phoenix, AZ). ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were collected on a Bruker ARX-300 spectrometer (300 MHz). ¹H and ¹³C NMR chemical shifts are relative to TMS, and ³¹P NMR chemical shifts are relative to 85% H₃PO₄.

The electrochemical measurements were performed with a PAR model 273 potentiostat. A three-component electrochemical cell was used with a glassy-carbon electrode as the working electrode, a platinum wire as the counter electrode, and a Ag/AgCl electrode as the reference electrode. The cyclic voltammograms were collected with a scan rate of 100 mV/s in CH_2Cl_2 containing 0.10 M *n*-Bu₄NClO₄ as the supporting electrolyte. The peak potentials reported are referenced to Ag/AgCl. The ferrocene/ferrocenium redox couple was located at 0.26 V under our experimental conditions.

(*E*)-1,6-Bis(trimethylsilyl)hex-3-ene-1,5-diyne (3a). A solution of trimethylsilylacetene (4.0 g, 41 mmol) in benzene (15 mL) was slowly added to a mixture of (1*E*)-1-chloro-4-(trimethylsilyl)but-1-en-3-yne (1) (6.5 g, 41 mmol), Pd(PPh₃)₄ (3.0 g, 2.6 mmol), and CuI (0.92 g, 4.8 mmol) in piperidine (12 mL). The reaction mixture was stirred for 3 h. The reaction was then quenched with a saturated aqueous solution of NH₄-Cl (80 mL) and extracted with Et₂O (3 × 50 mL). The combined organic layers were washed with brine (2 × 50 mL), dried over MgSO₄, and filtered. The solvents were removed by rotary evaporation to yield a brown oil. A pentane/ether solution (1: 1; 100 mL) was added, and the precipitate formed was removed

by filtration. The solvents of the filtrate were removed by rotary evaporation, and the resulting brown oil was further purified by flash column chromatography (silica gel, hexane) to give a yellow solid. Yield: 5.5 g, 61%. The compound is pure as judged by its NMR data. The moderate yield is due to loss in purification. ¹H NMR (CDCl₃, 300.13 MHz): δ 0.26 (s, 18 H, SiMe₃), 6.19 (s, 2 H, HC=CH). ¹³C{¹H} NMR (CDCl₃, 75.5 MHz): δ –0.62 (s, SiMe₃), 100.5 (s, C=C), 103.1 (s, C=C), 121.7 (s, =CH).

[RuCl(CO)(PPh₃)₂]₂(µ-(E,E,E)-CH=CHCH=CHCH=C-H) (6). Compound 3a (0.500 g, 2.27 mmol) in THF (5 mL) was slowly added to a mixture of tetra-n-butylammonium fluoride (5 mL, 1.0 M in THF) and ethylene glycol (4 mL). The solution was stirred for 3 h at room temperature. Most of the THF was removed by rotary evaporation. The enediyne 4a was collected from the reaction mixture by vacuum distillation into a liquid nitrogen cooled flask. The collected 4a was then diluted with CH₂Cl₂ (15 mL). The solution was then slowly added to a suspension of RuHCl(CO)(PPh₃)₃ (1.50 g, 1.57 mmol) in CH₂-Cl₂ (30 mL). The reaction mixture was stirred for 30 min to give a red solution. The mixture was filtered through a column of Celite. The volume of the filtrate was reduced to ca. 3 mL under vacuum. Addition of hexane (50 mL) to the residue produced a purple solid, which was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.92 g, 81%. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): δ 29.5 (s). ¹H NMR (CD₂Cl₂, 300.13 MHz): δ 5.21 (br, 2 H, γ -CH), 5.39 (br, 2 H, β-CH), 7.41–7.73 (m, 60 H, PPh₃), 7.94 (br, 2 H, Ru-CH). Anal. Calcd for C₈₀H₆₆Cl₂O₂P₄Ru₂·0.5CH₂Cl₂: C, 64.51; H, 4.51. Found: C, 64.71; H, 5.00.

[RuCl(CO)(PMe₃)₃]₂(µ-CH=CHCH=CHCH=CH) (7). To a solution of complex 6 (0.50 g, 0.34 mmol) in CH₂Cl₂ (20 mL) was added 5 mL of a THF solution of PMe₃ (1.0 M, 5.00 mmol). The reaction mixture was stirred for 15 h. The volatile materials were removed under vacuum. The solid was redissolved in benzene (3 mL). Addition of hexane (40 mL) to the residue produced a pale yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.23 g, 78%. ${}^{31}P{}^{1}H$ NMR (C₆D₆, 121.5 MHz): δ -20.6 (t, J(PP) = 22.1 Hz), -8.6 (d, J(PP) = 22.1 Hz).¹H NMR (C₆D₆, 300.13 MHz): δ 1.12 (d, J(PH) = 6.6 Hz, 18 H, PMe₃), 1.22 (t, J(PH) = 3.4 Hz, 36 H, PMe₃), 6.52 (m, 2 H, γ -CH), 6.88 (m, 2 H, β -CH), 7.75 (m, 2 H, Ru-CH). ¹³C{¹H} NMR (C₆D₆, 75.5 MHz): δ 16.1 (t, J(PC) = 15.3 Hz, PMe₃), 19.6 (d, J(PC) =19.9 Hz, PMe₃), 129.4 (s, γ -CH), 138.4 (s, β -CH), 166.6 (dt, J(PC) = 75.5, 16.2 Hz, Ru-CH), 202.5 (q, J(PC) = 12.9 Hz, CO). Anal. Calcd for C₂₆H₆₀Cl₂O₂P₆Ru₂: C, 36.16; H, 7.00. Found: C, 36.11; H, 7.10.

[RuCl(CO)(PhPy)(CO)(PPh₃)₂]₂(μ-CH=CHCH=CHCH= CH) (8). A mixture of complex **6** (0.5 g, 0.34 mmol) and 4-phenylpyridine (0.21 g, 1.4 mmol) in CH₂Cl₂ (30 mL) was stirred for 30 min. The mixture was then filtered through a column of Celite. The volume of the filtrate was reduced to ca. 5 mL under vacuum. Addition of hexane (30 mL) to the residue produced a yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.47 g, 86%. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): δ 25.2 (s). ¹H NMR (CD₂Cl₂, 300.13 MHz): δ 5.43 (br, 2 H, γ-CH), 6.88 (br, 4 H, C₅H₂H₂N), 7.21–7.64 (m, 72 H, Ph, β-CH), 7.90 (br, 2 H, Ru-H), 8.55 (br, 4 H, C₅H₂H₂N). Anal. Calcd for C₁₀₂H₈₄Cl₂N₂O₂P₄Ru₂: C, 69.34; H, 4.79; N, 1.57. Found: C, 68.63; H, 5.06; N, 2.02.

[RuCl(CO)(PMP)]₂(μ -CH=CHCH=CHCH=CH) (9). A mixture of complex **6** (0.50 g, 0.34 mmol) and PMP (0.32 g, 0.70 mmol) in CH₂Cl₂ (30 mL) was stirred for 15 h. The solution was filtered through a column of Celite. The volume of the filtrate was reduced to ca. 5 mL under vacuum. Addition of hexane (30 mL) to the residue produced a pale green-yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum. Yield: 0.41 g, 89%. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): δ 49.3 (s). ¹H NMR (CD₂Cl₂, 300.13

⁽³⁴⁾ Ahmad, N.; Levison, J. J.; Robinson, S. D.; Uttley, M. F.;
Wonchoba, E. R.; Parshall, G. W. *Inorg. Synth.* **1974**, *15*, 45.
(35) Dahlhoff, W. V.; Nelson, S. M. *J. Chem. Soc. (A)* **1971**, 2184.

MHz): δ 4.24 (dt, J(PH) = 17.1 Hz, J(HH) = 4.8, 4 H, CH $H(C_5H_3N)$ CHH), 4.63 (dt, J(PH) = 17.1 Hz, J(HH) = 4.8Hz, 4 H, CHH(C₅H₃N)CHH), 4.93 (br, 2 H, γ -CH), 5.61 (dt, J(HH) = 15.8 Hz, 3.3 Hz, 2 H, β -CH), 7.15–7.99 (m, 48 H, PPh₂, C₆H₃N, Ru-CH). Anal. Calcd for C₇₀H₆₀Cl₂N₂O₂P₄Ru₂: C, 61.90; H, 4.45; N, 2.06. Found: C, 61.72; H, 4.68; N, 2.27.

{[Ru(*t*-BuNC)₃(PPh₃)₂]₂(µ-COCH=CHCH=CHCH=CH-CO)}(BPh₄)₂ (10). To a solution of complex 6 (0.50 g, 0.34 mmol) in CH₂Cl₂ (40 mL) was added tert-butyl isocyanide (0.40 mL, 3.5 mmol). The reaction mixture was stirred for 30 min. The solvent was removed completely under vacuum. To the residual was added a solution of NaBPh₄ (0.50 g, 1.5 mmol) in methanol (40 mL). The mixture was stirred for 1 h to give an orange-yellow solid, which was collected by filtration, washed with methanol and diethyl ether, and dried under vacuum overnight. Yield: 0.76 g, 89%. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): δ 37.2 (s). ¹H NMR (CD₂Cl₂, 300.13 MHz): δ 1.18 (s, 36 H, t-Bu), 1.22 (s, 18 H, t-Bu), 5.28 (ddd, J(HH) = 14.7, 7.5, 3.0 Hz, 2 H, γ -CH), 5.56 (dd, J(HH) = 7.5, 3.0 Hz, 2 H, δ -CH), 5.69 (d, J(HH) = 14.7 Hz, 2 H, β -CH), 6.99 (t, J(HH) = 7.2 Hz, 8 H, BPh₄), 7.15 (t, *J*(HH) = 7.2 Hz, 16 H, BPh₄), 7.45-7.64 (m, 76 H, PPh₃, BPh₄). ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): δ 30.1 (s, t-Bu), 30.3 (s, t-Bu), 58.5 (s, t-Bu), 58.7 (s, t-Bu), 122.4 (s, BPh₄), 126.1 (s, δ-CH), 126.3 (s, BPh₄), 129.0 $(t, J(PC) = 4.9 \text{ Hz}, m-PPh_3), 131.2 (s, p-Ph), 134.6 (t, J(PC) =$ 4.9 Hz, o-Ph), 134.8 (t, J(PC) = 22.3 Hz, ipso-Ph), 136.7 (s, BPh₄), 137.6 (s, γ -CH), 142.2 (s, β -CH), 148.0 (br, Ru-CN), 149.7 (br, Ru-CN), 164.8(q, J(BC) = 49.3 Hz, BPh₄), 260.2 (t, J(PC) = 9.8 Hz, Ru-CO). Anal. Calcd for $C_{158}H_{160}B_2N_6O_2P_4$ -Ru2: C, 75.23; H, 6.39; N, 3.33. Found: C, 75.24; H, 6.48; N, 3.39.

RuCl(CH=CHCH=CHC=CH)(CO)(PMe₃)₃ (11). To a mixture of tetra-n-butylammonium fluoride (5 mL, 1 M in THF) and ethylene glycol (4 mL) was slowly added (Z)-Me₃-SiC=CHCH=CHC=CSiMe₃ (**3b**) (1.00 g, 4.54 mmol). The reaction mixture was stirred for 3 h at room temperature to generate (Z)-HC=CHCH=CHC=CH (4b). Most of the THF was removed by rotoary evaporation, and then (Z)-HC= CHCH=CHC=CH (4b) was collected from the reaction mixture by vacuum distillation into a liquid nitrogen cooled flask. The collected **4b** was then diluted with CH_2Cl_2 (15 mL). To the solution of **4b** was added a solution of RuHCl(CO)(PPh₃)₃ (1.00 g, 1.05 mmol) in CH₂Cl₂ (80 mL). After the mixture was stirred for 5 min, 10 mL of a THF solution of PMe₃ (1.0 M, 10.0 mmol) was added. The mixture was stirred for 20 h. The volume of the reaction mixture was reduced to 5 mL, and then diethyl ether (20 mL) was added. The solution was filtered through a column of Celite, and the filtrate was concentrated to 5 mL. Addition of hexane (30 mL) to the residue produced a pale yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum overnight. Yield: 0.27 g, 55%. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): δ -20.6 (t, J(PP) = 23.8 Hz), -9.3 (d, J(PP) = 23.8 Hz). ¹H NMR (CD₂-Cl₂, 300.13 MHz): δ 1.45 (t, J(PH) = 3.5 Hz, 18 H, PMe₃), 1.52 (d, J(PH) = 6.8 Hz, 9 H, PMe₃), 3.20 (s, 1 H, \equiv CH), 4.89 (d, J(HH) = 10.6 Hz, 1 H, δ -CH), 6.48 (t, J(HH) = 10.6 Hz, 1 H, γ -CH), 6.99 (m, 1 H, β -CH), 8.16 (m, 1 H, Ru-CH). ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): δ 16.2 (t, J(PC) = 15.4 Hz, PMe₃), 19.4 (d, J(PC) = 21.2 Hz, PMe₃), 78.9 (s, ≡CH), 82.8 (s, C≡), 94.1 (s, δ -CH), 134.9 (t, J(PC) = 4.5 Hz, γ -CH), 147.0 (dt, $J(PC) = 8.8, 2.9 \text{ Hz}, \beta$ -CH), 185.1 (dt, $J(PC) = 77.5, 16.3 \text{ Hz}, \beta$ -CH) Ru-CH), 201.8 (q, J(PC) = 12.8 Hz, CO). Anal. Calcd for C₁₆H₃₂ClOP₃Ru: C, 40.90; H, 6.87. Found: C, 40.76; H, 6.91.

(PMe₃)₃(CO)ClRuCH=CHCH=CHC(=CH₂)RuCl(CO)-(PPh₃)₂ (12). A mixture of complex 11 (0.20 g, 0.43 mmol) and RuHCl(CO)(PPh₃)₃ (0.41 g, 0.43 mmol) in CH₂Cl₂ (20 mL) was stirred for 30 min. The volume of the reaction mixture was reduced to ca. 3 mL. Addition of hexane (50 mL) to the residue produced an orange-yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum overnight. Yield: 0.45 g, 90%. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): δ -20.7 (t, J(PP) = 23.1 Hz), -9.0 (d, J(PP) = 23.1 Hz), 30.5 (s). ¹H NMR (CD₂Cl₂, 300.13 MHz): δ 1.27 (t, J(PH) = 3.4 Hz, 18 H, PMe₃), 1.49 (d, J(PH) = 6.8 Hz, 9 H, PMe₃), 5.68 (t, J(HH) = 11.0 Hz, 1 H, CH), 5.96 (d, J(HH) = 11.0 Hz, 1 H, CH), 6.91 (m, 1 H, CH), 7.30-7.76 (m, 33 H, Ru-CH, =CH₂, PPh₃). Anal. Calcd for C₅₃H₆₃Cl₂O₂P₅Ru₂: C, 54.88; H, 5.47. Found: C, 55.02; H, 5.58.

[(PMe₃)₃(CO)ClRuCH=CHCH=CHC(=CH₂)CORu(t-BuNC)₃(PPh₃)₂]Cl (13). To a solution of complex 12 (0.2 g, 0.17 mmol) in CH₂Cl₂ (20 mL) was added a solution of tertbutyl isocyanide (0.1 mL, 0.88 mmol) in CH₂Cl₂ (10 mL). The reaction mixture was stirred for 20 min. The volume of the reaction mixture was reduced to ca. 3 mL. Addition of hexane (30 mL) to the residue produced a yellow solid, which was collected by filtration, washed with hexane, and dried under vacuum overnight. Yield: 0.21 g, 88%. ³¹P{¹H} NMR (CD₂Cl₂, 121.5 MHz): δ -20.8 (t, J(PP) = 23.1 Hz), -8.6 (d, J(PP) = 23.1 Hz), 34.7 (s). ¹H NMR (CD₂Cl₂, 300.13 MHz): δ 0.99 (s, 9 H, t-Bu), 1.10 (s, 18 H, t-Bu), 1.41 (t, J(PH) = 3.4 Hz, 18 H, PMe₃), 1.57 (d, *J*(PH) = 6.8 Hz, 9 H, PMe₃), 4.90 (s, 1 H, =CH₂), 5.06 (d, J(HH) = 11.8 Hz, 1 H, δ -CH), 5.30 (s, 1 H, =CH₂), 5.90 (t, J(HH) = 11.8 Hz, 1 H, γ -CH), 6.67 (m, 1 H, β -CH) 7.39-7.68 (m, 30 H, PPh₃), 7.85 (m, 1 H, RuCH). ¹³C{¹H} NMR (CD₂Cl₂, 75.5 MHz): δ 17.15 (t, J(PC) = 15.3 Hz, PMe₃), 20.39 (d, J(PC) = 21.1 Hz, PMe₃), 29.91 (s, t-Bu), 30.05 (s, t-Bu), 58.34 (s, t-Bu), 58.44 (s, t-Bu), 115.4 (s, δ-CH), 118.7 (s, CH₂), 128.8 (t, J(PC) = 4.6 Hz, *m*-Ph), 130.9 (s, *p*-Ph), 133.4 (s, β -CH), 134.6 (t, J(PC) = 5.5 Hz, o-Ph), 135.3 (t, J(PC) = 22.1 Hz, ipso-Ph), 137.9 (s, y-CH), 146.5 (br, Ru-CN), 147.2 (s, C-CO), 148.5 (br, Ru-CN), 178.7 (dt, J (PC) = 78.1, 16.5 Hz, Ru-CH), 202.6 (q, J(PC) = 11.6 Hz, CO), 257.2 (t, J(PC) = 9.2 Hz, CO). Anal. Calcd for C₆₈H₉₀Cl₂N₃O₂P₅Ru₂·2CH₂Cl₂: C, 53.24; H, 6.00; N, 2.66. Found: C, 53.22; H, 6.41; N, 2.83.

Crystallographic Analysis for 10. The orange-red single crystals of 10 were grown by layering of diethyl ether on top of a CH₂Cl₂ solution of complex 10. During the process, dichromethane cocrystallized with 10. A yellow single crystal with approximate dimensions of $0.25 \times 0.20 \times 0.12$ mm was mounted in a glass capillary for diffraction experiment. Intensity data were collected on a Bruker SMART CCD area detector and corrected for SADABS (Siemens Area Detector Absorption)³⁶ (from 0.8265 to 1.0000 on I). The structure was solved by Patterson methods, expanded by difference Fourier syntheses, and refined by full matrix least-squares on F^2 using the Bruker SHELXTL (Version 5.10)³⁷ program package. The molecule is centro-symmetric with the inversion center at the midpoint of C4 and C4A; thus the crystallographic asymmetric unit contains half of one molecule and three CH₂Cl₂ solvent molecules in general positions. All non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogens were introduced at their geometric positions and refined as riding atoms. Further crystal data and details of the data collection are summarized in Table 1, and selected bond distances and angles are given in Table 2.

Acknowledgment. The authors acknowledge financial support from the Hong Kong Research Grants Council.

Supporting Information Available: Tables of bond distances and angles, atomic coordinates and equivalent isotropic displacement coefficients, and anisotropic displacement coefficients for $\{[Ru(t-BuNC)_3(PPh_3)_2]_2(\mu$ -COCH=CHCH=CHCH=CHCO) $\}(BPh_4)_2 \cdot 6CH_2Cl_2$. The materials are available free of charge via the Internet at http://pubs.acs.org.

OM0207663

⁽³⁶⁾ Sheldrick, G. M. SADABS, Empiracal Absorption Correction Program; University of Göttingen: Germany, 1996.

⁽³⁷⁾ Bruker. SHELXTL Reference Manual (Version 5.1); Bruker Analytical X-ray Systems Inc.: Madison, WI, 1997.