Stability of Methyl Platinum Complexes in Water: The **Role of pH and Geometry**

Derrick W. Lucey, Derrik S. Helfer, and Jim D. Atwood*

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260

Received August 27, 2002

Several water-soluble platinum(II) complexes containing methyl ligands have been prepared, $PtMe_2L_2$ and $Pt(Cl)(Me)L_2$ ($L_2 = two P(m-C_6H_4SO_3Na)_3$, TPPTS; ($m-C_6H_4SO_3-$ Na)₂PCH₂CH₂P(*m*-C₆H₄SO₃Na₂), DPPETS; (*m*-C₆H₄SO₃Na)₂PCH₂CH₂CH₂CH₂P(*m*-C₆H₄SO₃Na)₂, DPPPTS; or $(m-C_6H_4SO_3Na)_2PCH_2CH_2CH_2CH_2P(m-C_6H_4SO_3Na)_2$, DPPBTS), to establish the stability of the platinum methyl bond in aqueous solution. From pH = 3 to 14 there is no reaction other than ligand substitution of H_2O or OH^- for Cl^- ; there is no CH_3OH elimination. At lower pH's protonolysis of the Pt–Me bond occurs, producing CH₄. Dissolving PtMe₂L₂ into a solution of HCl at pH = 1 rapidly produces $PtCl_2L_2$ for the bidentate ligands, but trans-Pt(Cl)(Me)L₂ is observed for the monodentate ligands. trans-PtClMe(TPPTS)₂ undergoes protonolysis very slowly, indicating an important role for geometry in protonolysis reactions. The protonolysis reactions occur stereospecifically but are sometimes accompanied by *cistrans* isomerization. The *cis* or *trans* thermodynamic preferences, *cis*-PtCl₂L₂, *cis*-PtMe₂L₂, *cis*-Pt(OH)(Me)L₂, *trans*-Pt(Cl)(Me)L₂, and *trans*-Pt(H₂O)(Me)L₂⁺, are not easily explained.

Platinum and palladium complexes are catalysts for many reactions.¹⁻⁴ In a number of cases, the product formation involves β -hydride elimination; relatively few involve reductive elimination. A number of reactions such as hydrogenation, hydration, hydroamination, and methane to methanol could involve reductive elimination. Goldberg has shown that reductive elimination can occur from Pt(IV) complexes, with formation of carboncarbon or carbon-oxygen bonds.⁵ Protonolysis reactions of Pt(II) alkyl complexes in CH₃OH have been the subject of a few studies. Reactions of trans-Pt(Me)(X)- $(PEt_3)_2$ with triflic acid produced methane, possibly through a Pt(IV) hydride. Deuterium labeling showed extensive incorporation into the CH4.6 A study of HBF4 or HCl reaction with cis-PtR₂(PEt₃)₂ in CH₃OH showed cleavage of one Pt-R (R = Me, Et, etc.) and a slow *cis* to *trans* isomerization.⁷ In this protonolysis a 10^4 increase was shown for C₂H₆ elimination over CH₄.⁷ Protonolysis studies on platinum(II) alkyls and aryls showed that acid strength was very important, halide sometimes had an effect, steric hindrance occurred, and aryl cleavage was slower than alkyl, but could not distinguish the site of protonolysis.8 Florinated bidentate phosphines examined by Roddick and co-workers were much less prone to methyl protonolysis.⁹ The dimethyl complexes required neat acids and the monomethyl complexes required neat acids at elevated temperatures.9

The recent interest in water-soluble organometallic complexes as potential "green" approaches to catalysis raises questions regarding the stability of metal alkyl bonds in aqueous solutions. In this article, we use *cis*-PtMe₂(TPPTS)₂, trans-Pt(Cl)(Me)(TPPTS)₂, PtMe₂(LL), and Pt(Cl)(Me)(LL) (TPPTS = $P(m-C_6H_4SO_3Na)_3$, LL = (m-C₆H₄SO₃Na)₂PCH₂CH₂P(m-C₆H₄SO₃Na)₂, DPPETS; $(m-C_6H_4SO_3Na)_2PCH_2CH_2CH_2P(m-C_6H_4SO_3Na)_2$, DP-PPTS; (m-C₆H₄SO₃Na)PCH₂CH₂CH₂CH₂P(m-C₆H₄SO₃-Na)₂, DPPBTS) (throughout this article LL is generic for one of the three bidentate ligands and L₂ is generic for two TPPTS ligands or one of the bidentate ligands) to examine the stability of Pt(II)-methyl bonds at pH's from 1 to 14. The geometry also has a significant effect.

Results and Discussion

Synthesis. $Pt(Me)_2L_2$ complexes were prepared by dissolving 1.0 equiv of the selected water-soluble bidentate phosphine or 2 equiv of TPPTS with Pt(1,5-COD)-Me₂ in DMSO at room temperature. The NMR characterizations of these complexes are in good agreement

⁽¹⁾ Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.; John Wiley and Sons: New York, 1992; and references therein.

⁽²⁾ Atwood, J. D. Inorganic and Organometallic Reaction Mecha-

⁽³⁾ Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Mill Valley, CA, especially pp 409–416, and references therein.

⁽⁴⁾ Tsuji, J. Synthesis **1984**, 369. (5) Williams, B. S.; Goldberg, K. I. J. Am. Chem. Soc. **2001**, *123*, (6) (a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.
(6) (a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc.

¹⁹⁹⁶, *118*, 5961. (b) Holtcarp, M. W.; Labinger, J. A.; Bercaw, J. E. Inorg. Chim. Acta **1997**, *265*, 117.

⁽⁷⁾ Romeo, R.; Plutino, M. R.; Elding, L. I. Inorg. Chem. 1997, 36, 5909

Belluco, U.; Crociani, B. *Inorg. Chim. Acta* **1985**, *100*, 107. (9) (a) Bennett, B. L.; Hoerter, J. M.; Houlis, J. F.; Roddick, D. M. *Organometallics* **2000**, *19*, 615. (b) Bennett, B. L.; Birnbaum, J.; Roddick, D. M. Polyhedron 1995, 14, 187.

Table 1. Selected ¹H, ³¹P{¹H}, and ¹⁹⁵Pt NMR Characterization of PtMe₂L₂ and Organic Analogues

	³¹ P NM	$(D_2O)^a$	¹⁹⁵ Pt NM	$(D_2O)^a$	³¹ P NMR	$(d_6$ -DMSO) ^a	¹ H NM	$(D_2O)^a$
complex	$\delta(\mathbf{P})$	$^{1}J_{(\mathrm{Pt}-\mathrm{P})}$	$\delta(\mathrm{Pt})^b$	$^{1}J_{(\mathrm{Pt-P})}$	δ(P)	$^{1}J_{(\mathrm{Pt-P})}$	$\delta(CH_3)$	$^{2}J_{(\mathrm{Pt-H})}$
PtMe ₂ (DPPETS)	56.0	1740	-4578	1740			0.22	69.2
PtMe ₂ (DPPE) ¹³	45.4	1794					1.08	71.0
PtMe ₂ (DPPPTS)	4.7	1730	-4580	1730	7	1810	0.18	68.4
PtMe ₂ (DPPP) ¹⁰	3.2^{c}	1767					0.57	69
$PtEt_2(DPPP)^{11}$	3.0 ^c	1592			3.2^{c}	1790		
PtMe ₂ (DPPBTS)	20.2	1880	-4667	1880	20.7	1880	0.06	67.2
PtMe ₂ (DPPB) ¹⁰	18.8	1847						
cis-PtMe ₂ (TPPTS) ₂	30.3	1875	-4676	1875	29.8	1875	0.32	68
cis-PtMe ₂ (PPh ₃) ₂ ^{12,d}	28	1910					0.29	69.9
cis-PtMe ₂ (TPPTS) ₂ ^{6b}	29.4	1880					0.41	68.7

^a Chemical shifts (δ) are recorded in ppm, and coupling constants (J) are recorded in Hz. ^b Referenced to 0.2 M K₂PtCl₄ in D₂O. ^c NMR spectrum taken in CDCl₃. ^{d 31}P and ¹H NMR taken in 3:1 (v:v) CD₂Cl₂/CD₃OD, 253 K.

	³¹ P NM	$(D_2O)^a$	³¹ P NMR (d_6 -DMSO) ^a		
complex	δ(P)	${}^{1}J_{(\mathrm{Pt}-\mathrm{P})}{}^{b}$	$\delta(\mathbf{P})$	${}^1J_{(\mathrm{Pt}-\mathrm{P})}{}^b$	
PtClMe(DPPETS)	49.4 (br)	1738	46.6 (br)	1739	
	44.9 (br)	4361	44.9 (br)	4144	
PtClMe(DPPE) ¹³	43.4^{e} (br)	1737	39.0^{f} (br)	1765	
	42.0 (br)	4224	38.1 (br)	4263	
PtClEt(DPPE) ¹¹	42.9^{e} (d)	4478 (<2)	43.4^{f} (br)	1737	
. ,	42.0 (d)	1558	42.0 (br)	4224	
PtClMe(DPPPTS)	7.2 (d)	1630 (22.9)	8.03 (d)	4080 (22.1)	
	6.7 (d)	4270	7.47 (d)	1680	
PtClMe(DPPP) ^{15,16}	5.1^{e} (d)	4116 (21)	6.02^{f} (d)	4187 (22.2)	
	3.0 (d)	1644	3.55 (d)	1678	
PtClEt(DPPP) ¹¹	6.8^{e} (d)	4418 (18)	5.1^{f} (br)	4116	
	2.2 (d)	1483	3.0 (br)	1644	
PtClMe(DPPBTS)	23.05 (br)	1750	22.3 (d)	4270 (13.5)	
	20.53 (br)	4460	20.8 (d)	1750	
trans-Pt(Cl)(Me)(TPPTS) ₂	31.9 (s)	3176	33.3 (s)	3176	
cis-Pt(Cl)(Me)(TPPTS) ₂ ^g	22.3 (br)	4635			
	28.8 (br)	1766			
trans-Pt(Cl)(Me)(TPPTS)26b	33.3	3200			
cis-Pt(Cl)(Me)(PPh ₃) ₂ ^{17,h}	22.3	4500			
	27.1	1727			
trans-Pt(Cl)(Me)(PPh ₃) ₂ ^{17,h}	29.6	3147			

^{*a*} Chemical shifts (δ) are recorded in ppm, and coupling constants (*J*) are recorded in Hz. ^{*b*} Coupling constants refer to platinum satellites; numbers in parentheses refer to ${}^{2}J_{(P-P)}$ when given. ${}^{c}NMR$ taken in $D_{2}O$. ${}^{d}NMR$ taken in d_{6} -DMSO. ${}^{e}NMR$ taken in CDCl₃. ${}^{f}NMR$ taken in CD₂Cl₂. ^g NMR taken in H₂O with a d₆-DMSO insert. ^h Spectra recorded at 36.2 or 162 MHz in CDCl₃ at ambient temperature.

with their organic analogues, as shown in Table 1. The PtMe₂L₂ complexes have very small ${}^{1}J_{Pt-P}$, as previously discussed.^{10,13,14}

PtClMeL₂ complexes were successfully synthesized in an analogous manner as above, starting with PtCl(1,5-COD)Me. The NMR characterizations of these complexes are also in good agreement with their corresponding organic analogues, as shown in Tables 2 and 3.

The ³¹P NMR spectrum of PtClMe(DPPBTS) in D₂O resulted in the formation of a minor resonance (30%) along with the resonance for PtClMe(DPPBTS). Upon dissolution into d_6 -DMSO, only PtClMe(DPPBTS) is present. This indicates that the minor product present in the D₂O spectrum was Pt(D₂O)(Me)(DPPBTS)⁺. The formation of an aquo species is also seen in the ³¹P NMR spectrum of trans-Pt(Cl)(Me)(TPPTS)2. Since the minor resonance, in this case, is a singlet, the species present is trans- $[Pt(D_2O)(Me)(TPPTS)_2]^+$. The cis isomers of these TPPTS complexes are seen in the protonation reactions. The ³¹P NMR characterization of all these species is located in Table 4.

Reactions. In buffered solutions at pH = 4, 7, and 10 and in 5% NaOH, one of two reactions is observed for $Pt(Cl)(Me)L_2$ ($L_2 = 2TPPTS$, DPPETS, DPPPTS, or **DPPBTS**):

$$Pt(Cl)(Me)L_2 + H_2O \rightarrow Pt(Me)(H_2O)L_2^+ + Cl^- (1)$$

$$Pt(Cl)(Me)L_2 + OH^- \rightarrow Pt(OH)(Me)L_2 + Cl^- (2)$$

The exact amounts depend on L₂; the reactions are illustrated by the ³¹P NMR spectra for $L_2 = DPPETS$ in Figure 1. Figure 1 consists of the ³¹P NMR spectra of PtClMe(DPPETS) in D₂O, pH 7, pH 10, and 5% NaOH, showing the presence of the different species that exist under the various pH conditions. The species that resonates at 38.0 ppm with ${}^{1}J_{(Pt-P)}$ of 3806 Hz in 5 wt % NaOH (4 in Figure 1) has been determined to be Pt(OH)Me(DPPETS) by comparison to its organic analogue Pt(OH)Me(DPPE)¹³ (refer to Table 4). The ¹H NMR spectrum of PtClMe(DPPETS) in 5% NaOH solution (so only Pt(OH)Me(DPPETS) is present) at 60 °C led to full characterization of the Pt-Me resonance and

⁽¹⁰⁾ Garrow, P. E. Chem. Rev. 1981, 81, 229.

⁽¹⁰⁾ Garrow, F. E. Chent. Rev. 1961, 01, 225.
(11) Slack, D. A.; Baird, M. C. Inorg. Chim. Acta 1977, 24, 277.
(12) Romeo, R.; Alibrandi, G. Inorg. Chem. 1997, 36, 4822.
(13) Appleton, T. G.; Bennett, M. A. Inorg. Chem. 1978, 17, 738.
(14) (a) Allen, F. H.; Pidcock, A.; Waterhouse, C. R. J. Chem. Soc.
(A) 1970, 2087, (b) Pidcock, A.; Richards, R. E.; Venanzi, L. M. J. Chem. Soc. (A) 1966, 1707. (c) Allen, F. H.; Pidcock, A. J. Chem. Soc. (A) 1968, 2700.

Table 3.	Selected	¹ H NMR	Characterization	of Pt(X)(Me)L	and Similar	Organic A	Analogues
						A	

				0	0
	1 H NMR (D ₂ O) ^a			¹ H NMR (d_6 -DMSO) ^a	
complex	$\delta(CH_3)$	$^{2}J_{\mathrm{(Pt-H)}}$	${}^{3}J_{(\text{P}\text{cis}-\text{H})}$	${}^{3}J_{(\mathrm{P}trans-\mathrm{H})}$	$\delta(CH_3)$
PtClMe(DPPETS)	0.24 (br)				0.37 (br)
PtClMe(DPPE) ¹³	0.51^{b} (dd)	53.5	3.5	8.0	
PtClMe(DPPPTS)	0.25 (br)				0.13 (br)
PtClMe(DPPP)	0.79^{b} (dd)	59	5.0	7.5	$0.44^{c,d}$ (dd)
PtClMe(DPPBTS)	0.26 (br)				0.15 (br)
trans-Pt(Cl)(Me)(TPPTS)2	-0.11 (t)	76			-0.33 (t)
trans-Pt(Cl)(Me)(TPPTS)26b	0.05 (t)	68.7			
trans-Pt(Cl)(Me)(PPh ₃) ₂ ^{18,c}	-0.11	80			
cis-Pt(Cl)(Me)(TPPTS)2 ^e	0.46	48	4.4	6.8	
Pt(OH)Me(DPPETS)	0.31 (dd)	50.4	2.6	7.4	
Pt(OH)Me(DPPE) ¹³	0.51 (dd)	60.5	3.0	7.1	
Pt(OH)Me(DPPBTS)	0.75 (dd)	55.6	2.8	7.2	
<i>trans</i> -Pt(OH)(Me)(TPPTS) ₂ ^f	-0.61 (br)				
cis-Pt(OH)(Me)(TPPTS)2 ^f	0.21 (br)				
cis-Pt(OH)(Me)(PPh ₃) ₂ ^{19,g}	1.10 (dd)	64.6	4.4	7.1	

^{*a*} Chemical shifts (δ) are recorded in ppm, and coupling constants (*J*) are recorded in Hz. ^{*b*} NMR spectrum taken in CDCl₃. ^{*c*} NMR spectrum taken in CD₂Cl₂. ^{*d*} ^{*2*} *J*_(Pt-H) = 54, ^{*3*} *J*_(Pcis-H) = 4.5, and ^{*3*} *J*_(Ptrans-H) = 7.8. ^{*e*} NMR taken in water with *d*₆-DMSO insert. ^{*f*} NMR taken in 5% NaOH with *d*₆-DMSO insert. ^{*g*} NMR taken in C₆D₆.

Table 4.	Selected ³¹ P{ ¹ H}	and ¹⁹⁵ Pt NM	R Characterization	for	Pt(OH)MeL ₂ ,	$Pt(OH_2)MeL_2^+$,	and Related
			Complexes				

	³¹ P NMR (<i>d</i> e	¹⁹⁵ Pt NMR ^a	
complex	$\delta(\mathbf{P})$	${}^{1}J_{(\mathrm{Pt-P})}{}^{b}$	$\delta(\mathbf{Pt})^c$
Pt(OH)Me(DPPETS) ^d	47.9 (d)	1756 (3.4)	-4405 (dd)
	38.0 (d)	3806	
Pt(OH)Me(DPPE) ^{13,e}	40.5 (br)	1804	
	34.9 (br)	3546	
Pt(OH ₂)Me(DPPETS) ^{+ f}	49.2 (br)	1816	
	44.6 (br)	4355	
$Pt(OH)Me(DPPPTS)^d$	8.5 (d)	1590 (22.3)	-4377 (dd)
	0.54 (d)	3740	
Pt(OH)(Me)(DPPP) ^{20,e}	2.1 (d)	1688 (21)	
	-1.1 (d)	3403	
Pt(OH)(Me)(DPPP) ^{20,g}	3.4 (d)	1636 (19.6)	
	-0.91 (d)	3511	
Pt(OH)(Me)(DPPP) ^{20,h}	-3.6 (d)	1727 (21)	
	-0.86 (d)	3324	
Pt(OH)(Me)(DPPP) ^{21,h}	4.9 (d)	1672	
	-0.5 (d)	3468	
$Pt(OH)Me(DPPBTS)^d$	27.6 (d)	1710 (12.6)	-4450 (dd)
	10.6 (d)	3890	
trans-Pt(OH)(Me)(TPPTS) ₂	32.5 (s)	3245	
cis-Pt(OH)(Me)(TPPTS) ₂	17.4 (d)	4045 (10.2)	
	31.5 (d)	1750	
cis-Pt(OH)(Me)(PPh ₃) ₂ ^{19,h}	18.7 (d)	3608 (10.7)	
	26.9 (d)	1745	
<i>trans</i> -Pt(OH ₂)(Me)(TPPTS) ₂ ⁺	32.9 (s)	3226	
cis-Pt(OH ₂)(Me)(TPPTS) ₂ ⁺	34.6	1822 (12)	
	15.9	4907	

^{*a*} Chemical shifts (δ) are recorded in ppm, and coupling constants (J) are recorded in Hz. ^{*b*} Coupling constants refer to platinum satellites; numbers in parentheses refer to ² $J_{(P-P)}$ when given. ^{*c*} Referenced to 0.2 M K₂PtCl₄ in D₂O. ^{*d*} NMR spectra taken in 5% NaOH. ^{*e*} NMR spectra taken in CD₂Cl₂. ^{*f*} NMR spectrum taken in pH 10 buffered H₂O. ^{*g*} NMR spectrum taken in CDCl₃. ^{*h*} NMR spectrum taken in C₆D₆.

all of its splitting. Also the ¹H NMR spectrum of PtClMe(DPPBTS) in 5% NaOH solution (so only Pt(OH)Me(DPPBTS) is present) at 70 °C led to the same detailed characterization of the methyl ligand. In 5% NaOH solution there was no evidence of phosphine oxidation. At pH = 10, the presence of both PtClMe-(DPPETS) and Pt(OH)Me(DPPETS) (3 in Figure 1) is evident.

Similar studies for Pt(Cl)(Me)(DPPPTS) show no reaction except for pH = 10 and 5% NaOH, where Pt(OH)(Me)(DPPTS) is observed, in good spectroscopic agreement with the organic analogue, Pt(OH)(Me)-(DPPP).^{20,21} The DPPBTS complex, Pt(Cl)(Me)(DP-

PBTS), undergoes aquation more readily such that $Pt(Me)(H_2O)(DPPBTS)^+$ is observed at pH = 4 and 7. In 5% NaOH only the hydroxy complex is observed.

Dissolution of *trans*-Pt(Cl)(Me)(TPPTS)₂ into 5% NaOH at room temperature immediately gives *trans*-Pt(OH)-(Me)(TPPTS)₂. Over time the *trans* complex isomerizes

- (16) Kégl, T.; Kollár, L.; Radies, L. Inorg. Chim. Acta 1997, 265, 249.
- (17) Cobley, C. J.; Pringle, P. G. *Inorg. Chim. Acta* 1997, *265*, 107.
 (18) Otto, S.; Roodt, A.; Leipoldt, J. G. *S. Afr. J. Chem.* 1995, *48*, 114.

⁽¹⁵⁾ Sanger, A. R. J. Chem. Soc., Dalton Trans. 1977, 1971.

⁽¹⁹⁾ Bennett, M. A.; Jin, H.; Li, S.; Rendina, L. M.; Willis, A. C. J. Am. Chem. Soc. **1995**, 117, 8335.

⁽²⁰⁾ Bennett, M. A.; Rokicki, A.; Puddephatt, R. J. Inorg. Synth. 1989, 25, 100.

⁽²¹⁾ Arnold, D. P.; Bennett, M. A. J. Organomet. Chem. 1980, 199, 119.

Figure 1. ³¹P NMR spectra of PtClMe(DPPETS) in D_2O (1), pH 7 (2), pH 10 (3), and 5 wt % NaOH (4). (A) Resonances corresponding to PtClMe(DPPETS). (B) Resonances corresponding to Pt(OH)Me(DPPETS). In all cases, lowercase letters correspond to the distinguishable ¹⁹⁵Pt satellites.

Figure 2. ³¹P NMR spectra for isomerization of *trans*-Pt(OH)(Me)(TPPTS)₂ to the *cis* isomer. The *trans* is a singlet at 32 ppm, and the *cis* has two doublets of 31 and 17 ppm.

to *cis*-Pt(OH)(Me)(TPPTS)₂, as shown in Figure 2. At room temperature the isomerization is 50% complete in 60 min and can be accelerated by heat. The characterization of *cis*-Pt(OH)(Me)(TPPTS)₂ is in agreement with the characterization of *cis*-Pt(OH)(Me)(PPh₃)₂,¹⁹ as shown in Table 4.

The geometrical preferences for these complexes with TPPTS and other monodentate ligands are not readily interpreted. The complexes with two chlorides, two methyls, or a methyl and hydroxide, *cis*-PtCl₂L₂, *cis*-PtMe₂L₂, and *cis*-Pt(OH)(Me)L₂, are stable as the *cis* isomer, while the *trans* geometry is preferred by *trans*-PtCl(Me)L₂, *trans*-Pt(H₂O)(Me)L₂⁺, and from other work *trans*-Pt(Me)(MeOH)L₂⁺.¹² The rather subtle differences that lead Pt(H₂O)(Me)L₂⁺ and Pt(Cl)(Me)L₂ to be thermodynamically stable *trans* while Pt(OH)(Me)L₂ is thermodynamically stable *cis* would benefit from theoretical study.

When $PtMe_2L_2$ is dissolved in triply distilled water, the only complex present as determined by ${}^{31}P\{{}^{1}H\}$ NMR spectroscopy was $PtMe_2L_2$. The pH's of these solutions were observed to be 8.19-8.29. Under conditions ranging from pH = 4-12 only $PtMe_2L_2$ was observed. In no case do we observe MeOH formation from $Pt(OH)(Me)L_2$, which would be the last step in a platinum(II) system for CH₄ conversion to CH₃OH.^{6,22,23} Such an alcohol elimination could also be important in hydration of an alkene.

Protonolysis of the Platinum–Methyl Bond. In contrast to the stability of the Pt–Me bond under basic conditions, methane elimination occurs in acidic condi-

^{(22) (}a) Mylvaganam, K.; Bacskay, G. B.; Hush, N. S. J. Am. Chem. Soc. **1999**, 121, 4633. (b) Periana, R. A.; Taube, D. J.; Gamble, S.; Taube, H.; Satoh, T.; Fuji, H. Science **1998**, 280, 250. (c) Heiberg, H.; Johansson, L.; Gopen, O.; Ryan, O. B.; Swang, O.; Tilset, M. J. Am. Chem. Soc. **2000**, 122, 10831.

Figure 3. Graph of the amounts of *cis*-Pt(Cl)(Me)(TPPTS)₂, *trans*-Pt(Cl)(Me)(TPPTS)₂, and *cis*-Pt(Cl)₂(TPPTS)₂²⁸ over time based on ³¹P NMR integration.

tions. Reactions of the bidentate complexes are straightforward and complete in 30 min. When these complexes are reacted with approximately 0.1 M HCl, CH₄ is eliminated and the only species observed by ${}^{31}P{}^{1}H$ NMR spectroscopy are PtCl₂(LL) complexes. These complexes have been independently synthesized and have identical characterization. The final pH of these solutions was between 0.96 and 1.06. When PtMe₂(LL) complexes were reacted with 10⁻² M HCl, the species that were observed by ³¹P{¹H} NMR spectroscopy were $PtMe(H_2O)(LL)^+$ and PtClMe(LL). Finally, when the complexes PtMe₂(LL) were reacted with approximately 10^{-3} and 10^{-4} M HCl, the only species present as determined by ${}^{31}P{}^{1}H$ NMR was the starting material (with the broadening of the signals and splitting, products of less than 5% would not be observed). The pH's of the 10⁻³ M HCl solutions with PtMe₂L₂ were 7.62–7.92. The pH's of the 10^{-4} M HCl solutions were 7.95-8.26.

In the reactions of 1×10^{-2} M PtMe₂(LL) with 0.1, 10^{-2} , and 10^{-3} M HCl, the presence of CH₄(g) was determined from the individual ¹H NMR spectra. The

CH₄ elimination accounts for the change of pH in the pH = 2, 3, and 4 reactions. These reactions seem to be stoichiometric in nature. For example, in the 10^{-2} M HCl solution the [H⁺] and PtMe₂L₂ concentrations are 1:1 and resulted in formation of only 1 equiv of CH₄(g) and 1 equiv of PtMe(S)L₂. With L₂ = DPPPTS, the temperature was increased to see if elimination of a second equivalent of CH₄ would occur. Up to 80 °C, no formation of PtCl₂(DPPPTS) was apparent from the ³¹P-{¹H} NMR spectra. At the elevated temperature, the exchange process between PtClMe(DPPPTS) and PtMe-(H₂O)(DPPPTS)⁺ was accelerated, leading to broadening of the respective ³¹P resonances, but cooling to room temperature gave the same sharp signals.

Protonolysis of the TPPTS complexes provides further information on the elimination of CH₄. When *cis*-PtMe₂-(TPPTS)₂ is reacted with 0.10 M HCl, after 30 min *cis*-Pt(Cl)(Me)(TPPTS)₂ is dominant with 5% *trans*-Pt(Cl)-(Me)(TPPTS)₂.

After 19 h *cis*-PtCl₂(TPPTS)₂ (70%) and *trans*-Pt(Cl)-(Me)(TPPTS)₂ (20%) are present; *trans*-Pt(Cl)(Me)(T-PPTS)₂ is still observable (4%) after 48 h. The pH is 1.03. Similar *cis* to *trans* isomerization of *cis*-Pt(Me)(MeOH)- L_2^+ was observed by Romeo and Alibrandi upon protonolysis of *cis*-PtMe₂L₂ in MeOH.¹² Using 10⁻² M HCl produces, primarily, *cis*-Pt(H₂O)(Me)(TPPTS)₂⁺ (55%) and Pt(Cl)(Me)(TPPTS)₂ (25%), along with 20% of the *trans* isomers of the two species. Amounts of products at different times are shown in Figure 3.

The observations on *cis*-PtMe₂(TPPTS)₂ suggest that *trans*-Pt(Cl)(Me)(TPPTS)₂ is very slow to undergo protonolysis, so we have examined the direct reaction.

^{(23) (}a) Kushch, L. A.; Lavrushko, V. V.; Misharin, Y. S.; Moravsky, A. P.; Shilov, A. E. Nouv. J. Chim. 1983, 7, 729. (b) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem., Int. Ed. 1998, 37, 2180, and references therein. (c) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc. 1997, 119, 10235. (d) Prokopchuk, E. M.; Jenkins, H. A.; Puddephatt, R. J. Organometallics 1999, 18, 2861. (e) Haskel, A.; Keinan, E. Organometallics 1999, 18, 4677. (f) Hill, G. S.; Yap, G. P. A.; Puddephatt, R. J. Organometallics 1999, 18, 1408. (g) Crumpton, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2000, 122, 962. (h) Levy, C. J.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1999, 18, 1408. (g) Crumpton, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2000, 122, 962. (h) Levy, C. J.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1996, 15, 35. (i) Hill, G. S.; Puddephatt, R. J. Organometallics 1996, 15, 35. (i) Levy, C. J.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1996, 15, 2108. (k) Hill, G. S.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1996, 15, 2108. (k) Hill, G. S.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1996, 15, 2108. (k) Hill, G. S.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1996, 15, 2845. (n) O'Reilly, S. A.; White, P. S.; Templeton, J. L. J. Am. Chem. Soc. 1996, 118, 5684. (o) Jenkins, H. A.; Yap, G. P. A.; Puddephatt, R. J. Organometallics 1997, 16, 1297, 16, 1297, 16, 1997, 16, 1998, 121, 252. (q) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc. 1999, 121, 252. (q) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc. 1999, 121, 11900.

trans-Pt(Cl)(Me)(TPPTS)₂ shows no reaction after 1 h of dissolution in 0.1 M HCl. After 19 h 20% of *cis*-PtCl₂-(TPPTS)₂ is formed and a trace of *cis*-Pt(Cl)(Me)-(TPPTS)₂ is observed; after 48 h 25% of the trans-Pt(Cl)(Me)(TPPTS)₂ is unreacted, and after 90 h *trans*-Pt(Cl)(Me)(TPPTS)₂ is still observed. For higher pH's a similar lack of reactivity toward protonolysis of trans-Pt(Cl)(Me)(TPPTS)₂ occurs.

Using HBF_4 (0.1 M) as the proton source shows that Cl⁻ also plays a role; while the first methyl is readily protonated, the second is stable.

$$Pt(Me)_{2}(TPPTS)_{2} + HBF_{4} \xrightarrow{H_{2}O} cis-Pt(H_{2}O)(Me)(TPPTS)_{2}^{+} \downarrow \qquad (4)$$
$$trans-Pt(H_{2}O)(Me)(TPPTS)_{2}^{+}$$

The *cis* complex, $Pt(H_2O)(Me)(TPPTS)_2^+$, isomerizes to the trans complex, but does not undergo further protonolysis in 2 days. The aquo, methyl complex is stable at room temperature, pH = 1.0, as a 70-30% mixture of trans and cis, respectively. This is in contrast to Pt-(OH)(Me)(TPPTS), which is stable as the *cis* isomer. The stability of $Pt(H_2O)(Me)(TPPTS)_2^+$ toward further protonation, possibly from the positive charge, eliminates protonation of the aquo complex playing a role in protonolysis with HCl.

The protonolysis reactions of platinum methyl complexes provide some observations: (1) protonolysis of the platinum methyl bond requires acidic conditions; (2) the protonolysis is stereospecific, i.e., cis-PtMe₂(TPPTS)₂ gives cis-Pt(Cl)(Me)(TPPTS)₂; (3) complexes of bidentate ligands where cis geometry is maintained eliminate CH4 more readily; and (4) cis-Pt(Cl)(Me)(TPPTS)₂ undergoes protonolysis ~10 times more readily than does trans-Pt(Cl)(Me)(TPPTS)₂. (5) With bidentate florinated phosphine ligands, Roddick and co-workers required elevated temperatures and strong acids to cleave both methyls of PtMe₂(LL),⁹ while with DPPETS, DPPPTS, and DPPBTS both methyls are readily cleaved at 0.1 M acid and room temperature. This suggests a significant electronic effect on protonolysis by spectator ligands.

Since cis-Pt(Cl)(Me)(TPPTS)₂ undergoes protonolysis much more readily and appears to be present in about 2% from an equilibrium, it is possible that the mechanism involves trans to cis interconversion, as shown in reaction 3, although we cannot exclude slow protonolysis on trans-Pt(Cl)(Me)(TPPTS)₂ and rapid isomerization of trans-PtCl₂(TPPTS)₂. Cis-trans isomerization of squareplanar platinum(II) complexes is well understood and usually occurs rapidly at elevated temperatures. At 60 °C cis-PtCl₂(TPPTS)₂ is formed in 50% yield after 30 min with trans-Pt(Cl)(Me)(TPPTS)2 dissolved in 0.10 M HCl. The stability of the Pt-Me bond toward base hydrolysis or protonolysis indicates that platinum may be a poor choice for catalytic reactions that require product elimination from base hydrolysis of an alkyl or protonolysis of an alkyl. However, platinum complexes continue to provide important mechanistic data.

Experimental Section

Materials. Pt(1,5-COD)Me₂ was purchased from Strem Chemicals. Water was triply distilled and was purged with

Figure 4. Figure of aryl group to show labeling scheme for C and H atoms.

nitrogen prior to use. d_6 -DMSO, d_4 -methanol, and HBF₄ were purchased from Aldrich Chemical Co. Concentrated HCl was purchased from Fisher Scientific. Deuterium oxide was purchased from Isotec Inc. N2(g) was purchased from Irish Welding Corporation. All materials were used as received without further purification. DPPETS, DPPPTS, DPPBTS,²⁴ TPPTS,²⁵ and Pt(Cl)(1,5-COD)Me²⁶ were synthesized according to published procedures. Elemental analyses were performed by E and R Microanalytical Laboratory, Parisspany, NJ.

Solvents. MeOH and DMSO were purchased from Fisher Scientific. MeNO₂ was purchased from Aldrich Chemical Co. CH₂Cl₂ and Et₂O were purchased from VWR. All solvents were used without further purification and purged with $N_2(g)$ prior to use.

Buffers. The pH = 4 buffer was composed of a 0.05 M solution of biphthalate. The pH = 7 buffer was composed of a solution of 0.021 M NaH₂PO₄ and 0.029 M Na₂HPO₄. The pH = 10 buffer was composed of a solution of 0.025 M NaHCO₃ and 0.025 M Na₂CO₃. All three buffers were purchased from VWR and diluted to the appropriate volume using triply distilled water.

Instrumentation. ¹H, ³¹P, and ¹⁹⁵Pt NMR spectra were recorded on a Varian VXR 400 MHz spectrometer. ³¹P NMR (161.89 MHz) spectra were ¹H decoupled and referenced to an external standard of 85% phosphoric acid in D₂O (reference set to 0.00 ppm). ¹⁹⁵Pt NMR (85.97 MHz) spectra were referenced to an external standard of 0.2 M $K_2 P \dot{tC} l_4$ (in 0.4 M KCl/D₂O), which was set to -1627 ppm.²⁷

pH measurements were performed using a Fisher Scientific Accumet basic pH meter by Denver Instruments Inc. with a semimicro glass pH electrode with a silver/silver chloride reference electrode. The electrode was calibrated using the pH = 4, 7, and 10 buffers.

Synthesis of PtMe₂(LL). Into a small (100 mL) Schlenk flask 150 mg of Pt(1,5-COD)Me₂, 1 molar equiv of LL, and a stir bar were added. Then the apparatus was back-filled with $N_2(g)$ three times. Under $N_2(g)$ flow, 5.0 mL of DMSO was added. After all solids had dissolved and were stirred for 5 min, 50 mL of CH₂Cl₂ was added to facilitate precipitation. This crude product was then collected on a fine-grain sintered frit and washed with 2×50 mL of CH₂Cl₂. Recrystallization of this from MeOH with MeNO₂ yielded the final product. Before being used this was dried under vacuum at 90 °C.

PtMe₂(DPPETS) (refer to Figure 4 for labeling scheme). ³¹P{¹H} NMR (D₂O): 50.0 (s, ${}^{1}J_{(Pt-P)} = 1740$). ¹H NMR (D₂O): 7.53 (d, J = 9.6, 4H, **D**), 7.41 (d, J = 7.4, 4H, **B**), 7.58 (t, J =9.0, 4H, E), 7.18 (t, J = 7.4, 4H, F), 2.12 (br, 4H, PCH₂), 0.22 (t, ${}^{3}J_{(P-H)} = 6.8$, ${}^{2}J_{(Pt-H)} = 69.2$, 6H, PtCH₃). 195 Pt NMR (D₂O): -4578(t) ppm, $J_{Pt-P} = 1740$ Hz. Anal. Calcd for $C_{28}H_{26}Na_4O_2P_2$ -

⁽²⁴⁾ Lucey, D. W.; Atwood, J. D. Organometallics 2002, 21 (12), 2481, and references therein.

^{(25) (}a) Herrmann, W. A.; Kohlpaintner, C. W. Inorg. Synth. 1998 32, 14. (b) Bartik, T.; Bartik, B.; Hanson, B. E.; Glass, T.; Bebout, W. *Inorg. Chem.* **1992**, *31*, 2667. (c) Bhanage, B. M.; Divekar, S. S.; Deshparde, R. M.; Chaudhari, R. V. *Org. Proc. Res. Dev.* **2002**, *4* (5), 342

 ⁽²⁶⁾ Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411.
 (27) Hollis, S. L.; Lippard, S. J. J. Am. Chem. Soc. 1983, 105, 3494.
 (28) Francisco, L. W.; Moreno, D. A.; Atwood, J. D. Organometallics 2001. 20. 4237.

 PtS_4 or $PtMe_2(DPPETS)$: C, 32.60; H, 2.54; Na, 8.91; P, 6.00. Found: C, 32.37; H, 2.49; Na, 8.53; P, 5.82.

PtMe₂(DPPPTS) (refer to Figure 4 for labeling scheme). ³¹P{¹H} NMR (D₂O): 4.7 (s, ¹*J*(Pt-P) = 1730). ¹H NMR (D₂O): 7.78 (d, *J* = 7.2, 4H, **D**), 7.71 (d, *J* = 7.6, 4H, **B**), 7.58 (br, 4H, **E**), 7.42 (t, *J* = 7.6, 4H, **F**), 2.66 (br, 4H, PC*H*₂), 1.87 (br-t, 2H, PCH₂C*H*₂), 0.18 (br, ²*J*(Pt-H) = 68.4, 6H, PtC*H*₃). ³¹P{¹H} NMR (*d*₆-DMSO): 7.0 (s, ¹*J*(Pt-P) = 1810). ¹H NMR (*d*₆-DMSO): 7.86 (br, 4H, **D**), 7.64 (br, 4H, **B**), 7.57 (br, 4H, **E**), 7.41 (t, *J* = 7.4, 4H, **F**), 2.60 (br, 4H, PC*H*₂), 1.63 (br, 2H, PCH₂C*H*₂), 0.12 (br, ²*J*(Pt-H) = 67.6, 6H, PtC*H*₃). ¹⁹⁵Pt NMR: -4580(t) ppm, *J*_{Pt-P} = 1730 Hz. Anal. Calcd for C₂₉H₂₈Na₄O₁₂P₂PtS₄ or PtMe₂ (DP-PPTS): C, 33.31; H, 2.70; Na, 8.79; P, 5.92. Found: C, 33.19; H, 2.82; Na, 8.69; P, 5.82.

PtMe₂(DPPBTS) (refer to Figure 4 for labeling scheme). ³¹P{¹H} NMR (D₂O): 21.9 (s, ¹ $J_{(Pt-P)} = 1820$). ¹H NMR (D₂O): 7.42 (d, J = 8.4, 4H, **D**), 7.35 (d, J = 7.6, 4H, **B**), 7.26 (t, J = 8.4, 4H, **E**), 7.08 (t, J = 7.6, 4H, **F**), 2.27 (br, 4H, PCH₂), 1.23 (br, 2H, PCH₂CH₂ _{ax}), 1.18 (br, 2H, PCH₂CH₂ _{eq}), -0.29 (t, ³ $J_{(P-H)} = 6.40$, ² $J_{(Pt-P)} = 66.8$, 6H, PtCH₃). ³¹P{¹H} NMR (d_6 -DMSO): 20.7 (s, ¹ $J_{(Pt-P)} = 1877$). ¹H NMR (d_6 -DMSO): 7.82 (d, J = 6.4, 4H, **D**), 7.63 (br, 4H, **B**), 7.57 (br, 4H, **E**), 7.42 (br, 4H, **F**), 2.60 (br, 4H, PCH₂), 1.52 (br, 2H, PCH₂CH₂ _{ax}), 1.48 (br, 2H, PCH₂CH₂ _{eq}), 0.02 (s, ² $J_{(Pt-H)} = 67.6$, 6H, PtCH₃). ¹⁹⁵Pt NMR (D₂O): -4667 (t, ¹ $J_{(Pt-P)} = 1820$). Anal. Calcd for C₃₀H₃₀-Na₄O₁₂P₂PtS₄ or PtMe₂(PPPBTS): C, 34.00; H, 2.85; Na, 8.68; P, 5.85. Found: C, 33.82; H, 2.86; Na, 8.54; P, 5.73.

Synthesis of cis-Pt(Me)₂(TPPTS)₂. Into a 25 mL Schlenk flask were placed 0.2161 g (0.648 mmol) of Pt(1,5-COD)Me₂, 0.8074 g (1.297 mmol) of TPPTS, and a small stir bar. The flask was sealed with a rubber septum, evacuated, and backfilled with N₂ three times, then left under a continuous flow of N2. To this flask was added 5 mL of degassed DMSO via airtight syringe. The contents of the flask were stirred for 18 h at room temperature. After the allotted time, CH₂Cl₂ was added to the flask to encourage precipitation. The product was collected via vacuum filtration using a medium glass frit. The product was washed with 3 \times 50 mL of CH_2Cl_2, followed by 3 \times 50 mL of Et₂O, then dried in vacuo at 80 °C for 24 h. Yield = 0.8925 g (96% based on starting Pt complex). ¹⁹⁵Pt NMR (D₂O): -4676 (t, ${}^{1}J_{Pt-P} = 1875$ Hz, *cis-Pt*(Me)₂(TPPTS)₂). ${}^{31}P$ -{¹H} NMR (d_6 -DMSO): 29.8 (s, ¹ $J_{Pt-P} = 1875$ Hz, *cis*-Pt(Me)₂-(TPPTS)₂) 98%, 28.1 (s, OTPPTS) 2%. ¹H NMR (d₆-DMSO): 7.8–7.2 (m, TPPTS, 24H), 0.19 (m, ${}^{2}J_{Pt-H} = 68$ Hz, *cis*-Pt(CH₃)₂-(TPPTS)₂, 6H). ³¹P{¹H} NMR (D₂O): 34.7 (s, OTPPTS) 2%, 30.3 (s, ${}^{1}J_{Pt-P} = 1875$ Hz, *cis*-Pt(Me)₂(*TPPTS*)₂) 98%. ${}^{1}H$ NMR (D₂O): 7.8–7.2 (m, TPPTS, 24H), 0.32 (m, ${}^{2}J_{Pt-H} = 68$ Hz, cis-Pt(CH₃)(TPPTS)₂, 6H). Anal. Calcd for C₄₀H₃₆Na₆O₁₉P₂PtS₇, Pt(CH₃)₂(TPPTS)₂·DMSO: C, 33.36; H, 2.52; Na, 9.58; P, 4.30. Found: C, 32.98; H, 2.43; Na, 9.39; P, 4.14.

Synthesis of PtClMe(LL). Into a small (100 mL) Schlenk flask 150 mg of PtCl(1,5-COD)Me, 1 molar equiv of LL, and a stir bar were added. Then the apparatus was back-filled with N₂(g) three times. Under N₂(g) flow, 5.0 mL of DMSO was added. After all solids had dissolved and were stirred for 5 min, 50 mL of CH₂Cl₂ was added to facilitate precipitation. This crude product was then collected on a fine-grain sintered frit and washed with 2×50 mL of CH₂Cl₂. Recrystallization of this from MeOH with MeNO₂ yielded the final product. Before being sent out for elemental analysis this was dried under vacuum at 90 °C.

PtCIMe(DPPETS). ¹H NMR (D₂O): 8.0–7.5 (16H, *aromatic hydrogens*), 2.42 (br-d, ${}^{3}J_{(P-H)} = 28.0$, 2H, PC*H*₂ trans to Cl), 2.25 (br-d, ${}^{3}J_{(P-H)} = 24.0$, 2H, PC*H*₂ trans to Me), 0.24 (br, 3H, PtC*H*₃). ¹H NMR (D₂O) at 60 °C: ignoring everything except PtCH₃, 0.80 (d, ${}^{3}J_{(P-H)} = 4.4$, ${}^{2}J_{(Pt-H)} = 44.0$, 3H). ³¹P-{¹H} NMR (D₂O) VT at 60 °C: 49.4 (s, ${}^{1}J_{(Pt-P)} = 1730$, P trans to Me), 44.6 (s, ${}^{1}J_{(Pt-P)} = 4310$, P trans to Cl). ¹⁹⁵Pt NMR (D₂O): -4585 (dd, ${}^{1}J_{(Pt-P)} = 1720$, ${}^{1}J_{(Pt-P)} = 4310$). Anal. Calcd for C₂₇H₂₃ClNa₄O₁₂P₂PtS₄ or PtClMe(DPPETS): C, 30.82; H, 2.20;

Table 5. Products of PtMe₂(L₂) at Various pH's

L_2	pH ^a	product(s)
DPPETS ^b	6.5 (8.3)	CH ₄ (trace), PtMe ₂ (DPPETS)
DPPETS	0.98 (1.06)	CH ₄ , PtCl ₂ (DPPETS)
DPPETS	2.0 (6.8)	CH ₄ , Pt(Cl)(Me)(DPPETS),
		$Pt(Me)(H_2O)(DPPETS)^+$
DPPETS	3.0 (7.8)	CH ₄ (trace), PtMe ₂ (DPPETS)
DPPETS	4.1 (8.1)	CH ₄ (trace), PtMe ₂ (DPPETS)
$DPPPTS^{b}$	6.5 (8.3)	PtMe ₂ (DPPPTS)
DPPPTS	0.98 (0.98)	CH_4 , $PtCl_2(DPPPTS)$
DPPPTS	2.0 (2.9)	CH ₄ , Pt(Cl)(Me)(DPPPTS),
		$PtMe(H_2O)(DPPPTS)^+$
DPPPTS	3.0 (7.9)	CH ₄ (trace), PtMe ₂ (DPPPTS)
DPPPTS	4.1 (8.3)	CH ₄ (trace), PtMe ₂ (DPPPTS)
$DPPBTS^{b}$	6.5 (8.2)	PtMe ₂ (DPPBTS)
DPPBTS	0.98 (0.98)	CH ₄ , PtCl ₂ (DPPBTS)
DPPBTS	2.0 (6.7)	CH ₄ , Pt(Cl)(Me)(DPPBTS),
		$PtMe(H_2O)(DPPBTS)^+$
DPPBTS	3.0 (7.6)	CH ₄ (trace), PtMe ₂ (DPPBTS)
DPPBTS	4.1 (8.0)	CH ₄ (trace), PtMe ₂ (DPPBTS)
2TPPTS ^b	6.5 (8.4)	PtMe ₂ (TPPTS) ₂
2TPPTS ^c	0.98 (1.07)	CH ₄ , cis- and trans-Pt(Cl)(Me)(TPPTS) ₂
2TPPTS	2.0 (6.5)	CH ₄ , cis- and trans-Pt(Cl)(Me)(TPPTS) ₂ ,
		<i>cis</i> - and <i>trans</i> -Pt(H ₂ O)(Me)(TPPTS) ₂ ⁺
2TPPTS	3.0 (8.3)	CH ₄ (trace), PtMe ₂ (TPPTS) ₂
2TPPTS	4.1 (8.4)	CH_4 (trace), $PtMe_2$ (TPPTS) ₂

 a Before addition; after addition is in parentheses. b Triply distilled water. c After 30 min.

P, 5.89; Cl, 3.37; Na, 8.74. Found: C, 30.58; H, 2.42; P, 5.73; Cl, 3.24; Na, 8.59.

Pt(Cl)(Me)(DPPPTS). ³¹P{¹H} NMR (D₂O): 7.2 (d, ² $J_{(P-P)} = 22.9$, ¹ $J_{(Pt-P)} = 1630$, P *trans* to Me) & 6.7 (d, ² $J_{(P-P)} = 22.9$, ¹ $J_{(Pt-P)} = 4270$, P *trans* to Cl) 96%, 12.2 (br) and 0.66 (br) minor < 4%. ¹H NMR (D₂O): 7.9–7.5 (16H, *aromatic hydrogens*), 2.85 (br-s, 2H, PCH₂ *trans* to Cl), 2.67 (br-s, 2H, PCH₂ *trans* to Me), 1.92 (br-m, 2H, PCH₂CH₂), 0.25 (m, 3H, PtCH₃). ¹⁹⁵Pt NMR (D₂O): -4571 (dd, ¹ $J_{(Pt-P)} = 1630$, ¹ $J_{(Pt-P)} = 4270$). Anal. Calcd for C₂₈H₂₅ClNa₄O₁₂P₂PtS₄ or PtClMe(DPPPTS): C, 31.54; H, 2.36; P, 5.81; Cl, 3.33; Na, 8.62. Found: C, 31.38; H, 2.45; P, 5.63; Cl, 3.21; Na, 8.54.

Pt(Cl)(Me)(DPPBTS). ³¹P{¹H} NMR (D₂O): 23.05 (br, ${}^{1}J_{(Pt-P)} = 1750$) and 20.53 (br, ${}^{1}J_{(Pt-P)} = 4460$) major. ¹H NMR (D₂O): 8.0–7.4 (br-m, 16 H, *aromatic hydrogens*), 2.69 (br, 4H, PC*H*₂), 1.53 (br, 4H, PCH₂C*H*₂), 0.26 (br, 3H, PtC*H*₃). ¹⁹⁵Pt NMR (D₂O): -4626 (dd, ${}^{1}J_{(Pt-P)} = 1750$, ${}^{1}J_{(Pt-P)} = 4460$). Anal. Calcd for C₂₉H₂₇ClNa₄O₁₂P₂PtS₄ or PtClMe(DPPBTS): C, 32.24; H, 2.52; P, 5.73; Cl, 3.28; Na, 8.51. Found: C, 32.34; H, 2.57; P, 5.41; Cl, 3.40; Na, 8.42.

Synthesis of trans-Pt(Cl)(Me)(TPPTS)2. Into a 25 mL Schlenk flask was placed 0.1501 g (0.425 mmol) of Pt(Cl)(1,5-COD)Me, 0.5311 g (0.853 mmol) of TPPTS, and a small stir bar. The flask was sealed with a rubber septum, evacuated, and back-filled with N2 three times, then the flask was left under a continuous flow of N2. To the flask was added 5 mL of degassed DMSO via airtight syringe. The contents of the flask were stirred for 18 h at room temperature. After the allotted time, CH₂Cl₂ was added to encourage precipitation. The product was collected via vacuum filtration and washed with 3 \times 50 mL of CH_2Cl_2 and 3 \times 50 mL of Et_2O and dried in vacuo at 80 °C for 24 h. Yield = 0.5789 g (93.3% based on starting Pt complex). ¹⁹⁵Pt NMR (*d*₆-DMSO): -4662 (t, ¹*J*_{Pt-P} = 3176 Hz, trans-Pt(Cl)(Me)(TPPTS)₂). ³¹P{¹H} NMR (d_{6} -DMSO): 33.3 (s, ${}^{1}J_{Pt-P} = 3176$ Hz, trans-Pt(Cl)(Me)(TPPTS)₂) 95%, 26.6 (s, OTPPTS) 5%. ¹H NMR (d₆-DMSO): 7.8-7.2 (m, OTPPTS), -0.33 (t, ${}^{2}J_{Pt-H} = 76$ Hz, trans-Pt(Cl)(CH₃)-(TPPTS)₂). ³¹P{¹H} NMR (D₂O): 34.7 (s, OTPPTS) 4%, 32.9 $(s, {}^{1}J_{Pt-P} = 3226 \text{ Hz}, trans-[Pt(D_2O)(Me)(TPPTS)_2]^+) 20\%, 31.9$ $(s, {}^{1}J_{Pt-P} = 3176 \text{ Hz}, trans-Pt(Cl)(Me)(TPPTS)_{2})$ 76%. ¹H NMR (D₂O): 7.8-7.2 (m, TPPTS), 0.04 (t, ²J_{Pt-H} = 73 Hz, trans-[Pt- $(D_2O)(CH_3)(TPPTS)_2]^+)$, -0.11 (t, ${}^2J_{Pt-H} = 76$ Hz, trans-Pt(Cl)-(CH₃)(TPPTS)₂). Anal. Calcd for C₃₉H₃₃ClNa₆O₁₉P₂PtS₇, transPt(Cl)(Me)(TPPTS)₂·DMSO: C, 32.07; H, 2.28; Cl, 2.43; Na, 9.44; P, 4.24. Found: C, 31.81; H, 2.20; Cl, 2.56; Na, 9.25; P, 4.02.

Solution Chemistry of PtMe₂(L₂). A clean, dry 2 dram vial was loaded with $(1.08-2.70) \times 10^{-5}$ mol of PtMe₂(L₂). Then, the complex was dissolved in 2.0 mL of 0.105 M HCl, 1.07×10^{-2} M HCl, 9.55×10^{-4} M HCl, 8.1×10^{-5} M HCl, and triply distilled water. The pH of these solutions was then recorded. Finally the NMR spectrum was recorded with a *d*₆-DMSO insert used as the instrument lock. The products are summarized in Table 5, and the detailed NMR characterizations are provided in the Supporting Information.

Acknowledgment. Support of this research by the Department of Energy, ER13775, is gratefully acknowledged. D.W.L. acknowledges a Gordon Harris Fellowship.

Supporting Information Available: Detailed NMR characterization data and spectra and plots of amounts versus time are available. This material is available free of charge via the Internet at http://pubs.acs.org.

OM020699C