Synthesis and Structure of $[Mg(dmso)_6]^{2+}[C_5H_5]^{-2}$ and $[Mg(\eta^1-C_5H_5)(\eta^5-C_5H_5)(thf)_2]$ (dmso = dimethylsulfoxide, thf = tetrahydrofuran)

Anja Jaenschke, Joachim Paap, and Ulrich Behrens*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-20146 Hamburg, Germany

Received October 9, 2002

Summary: Dicyclopentadienylmagnesium, $Mg(C_5H_5)_2$, reacts with dimethyl sulfoxide, dmso, to afford the ionic compound $[Mg(dmso)_6]^{2+}[C_5H_5]^-_2$ with "naked" uncoordinated cyclopentadienyl rings; the reaction of $Mg(C_5H_5)_2$ with tetrahydrofuran, thf, leads to the neutral complex $[Mg(C_5H_5)_2(thf)_2]$ with an η^{1-} and η^{5-} coordinated cyclopentadienyl ring.

Introduction

Solvent-separated ion pairs (SSIPs) are practically not known in the organometallic chemistry of the alkalineearth metals. To our knowledge there is no example of a compound with a "naked" uncoordinated cyclopentadienyl anion and a solvated Be, Mg, Ca, Sr, or Ba cation. Only two substances with a free fluorenyl anion are known: $[(pmdta)Mg(\mu-Me)_2Mg(pmdta)]^{2+}[fluorenyl]_2$ in Mg chemistry and $[Ca(thf)_6]^{2+}[Me_3Si(fluorenyl)]^{-2}$ in Ca chemistry.¹ In the organometallic chemistry of the alkali metals SSIPs with the cyclopentadienyl ring are more familiar,²⁻⁴ e.g., [K(15-crown-5)₂]⁺[C₅H₅]⁻, [Rb₂(C₅H₅)-(18-crown-6)₂]⁺[C₅H₅]⁻, [Rb(15-crown-5)₂]⁺[C₅H₅]⁻, and with substituted cyclopentadienyl rings, 5-7 [Li(12 $crown-4)_2]^+[C_5H_2(SiMe_3)_3]^-, [Na(diglyme)_2]^+[C_5HPh_4]^-,$ $[Na_2(18-crown-6)_3]^{2+}$ - $[Na(triglyme)_2]^+[C_5HPh_4]^-,$ [C₅HPh₄]⁻₂, [K-cryptand(2.2.2)]⁺[isodiCp]⁻. In addition there are some alkali metal compounds with a free fluorenyl anion.8

In this study, we report on the first example of a magnesium complex, $[Mg(dmso)_6]^{2+}[C_5H_5]^{-}_2$ (1), with dissociated $C_5H_5^{-}$ anions. Furthermore, a neutral Mg

(7) Gallucci, J. C.; Gobley, O.; Zaegel, F.; Meunier, P.; Gantheron, B.; Lange, H.; Gleiter, R.; Kozmina, N.; Paquette, L. A. *Organometallics* **1998**, *17*, 111. complex, $[Mg(C_5H_5)_2(thf)_2]$ (2), is described with an η^1 and an η^5 -coordinated cyclopentadienyl ligand.

Results and Discussion

The compounds $[Mg(dmso)_6]^{2+}[C_5H_5]^{-}_2$ (1) and $[Mg(C_5H_5)_2(thf)_2]$ (2) were synthesized from $Mg(C_5H_5)_2$ and dimethyl sulfoxide or tetrahydrofuran, respectively. Complex 1 forms a colorless crystalline powder that is thermally stable up to 60 °C. Several compounds with "naked" $C_5H_5^-$ anions can be isolated and handled only at low temperatures.⁹ Even more stable than 1 seems to be the recently synthesized complex $[K(15\text{-crown-}5)_2]^+[C_5H_5]^{-,2}$ Compound 2 forms light yellow crystals that are stable up to 107 °C, where they melt. Both compounds can be handled in air only for short periods (some seconds). In solution they decompose immediately when exposed to air.

The stoichiometry of **1** and **2** was ascertained by elemental analysis and NMR spectroscopy. The ¹H NMR spectrum of compound **1** shows a singlet at 5.45 ppm, which is diagnostic for uncoordinated cyclopentadienyl rings. Complex **2** has its resonance for the coordinated cyclopentadienyl rings at 5.86 ppm. The singlet observed indicates dynamic behavior of the five-membered rings or η^5 -coordination of both in solution.

The crystal and molecular structures of 1 and 2 were determined by single-crystal structural analysis. The structures are illustrated in Figures 1 and 2, where relevant bond lengths and angles are also given. Compound **1** crystallizes in the space group $P\overline{1}$, with the magnesium atom on an inversion center. Only one free C₅H₅⁻ anion is crystallographically independent. Interestingly, the C₅H₅ moiety is not disordered. Often free C₅H₅ rings are heavily disordered.⁹ Thus reliable values for the C–C distances within the C₅H₅ ring could be obtained (average value 139.8 pm; range 139.3-140.0-(2) pm). The C–C distances in the planar C_5H_5 ring are in good agreement with data previously observed for compounds with free $C_5H_5^-$ rings.⁹ In the $[Mg(dmso)_6]^{2+}$ cation, which was not known before, the metal atom is octahedrally coordinated by the oxygen atoms of the

 $[\]ast$ To whom correspondence should be addressed. Fax: +49(0)40/428382893. E-mail: behrens@xray.chemie.uni-hamburg.de.

 ^{(1) (}a) Viebrock, H.; Abeln, D.; Weiss, E. Z. Naturforsch. B 1994,
 49, 89. (b) Harder, S.; Feil, F.; Repo, T. Chem. Eur. J. 2002, 8, 1992.
 (2) Cole, M. L.; Jones, C.; Junk, P. C. J. Chem. Soc., Dalton Trans.

⁽²⁾ Cole, M. L.; Jones, C.; Junk, P. C. *J. Chem. Soc., Dalton Trans* **2002**, 896.

⁽³⁾ Neander, S.; Olbrich, F.; Behrens, U. Unpublished (CCDC-REFCODE: QIRFIG).

⁽⁴⁾ Wilde, B.; Olbrich, F. Private communication (CCDC-184627).
(5) Chen, H.; P. Jutzi, P.; Leffers, W.; Olmstead, M. M.; Power, P. Organometallics 1991, 10, 1282.

^{(6) (}a) Bock, H.; Hauck, T.; Näther, C.; Havlas, Z. Z. Naturforsch. B **1997**, 52, 524. (b) Angew. Chem. **1997**, 109, 650; Angew. Chem., Int. Ed. Engl. **1997**, 36, 638. (7) Gallucci, J. C.; Gobley, O.; Zaegel, F.; Meunier, P.; Gantheron, B. Lorge H. Cleiter, P.; Kurning, N. Parra, H. A. C.

^{(8) (}a) Buchholz, S.; Harms, K.; Marsch, M.; Massa, W.; Boche, G. Angew. Chem. 1989, 101, 57; Angew. Chem., Int. Ed. Engl. 1989, 28, 72. (b) Bock, H.; Näther, C.; Havlas, Z.; John, A.; Arad, C. Angew. Chem. 1994, 106, 931; Angew. Chem., Int. Ed. Engl. 1994, 33, 875. (c) Becker, B.; Enkelmann, V.; Müllen, K. Angew. Chem. 1989, 101, 501; Angew. Chem., Int. Ed. Engl. 1989, 28, 458.

^{(9) (}a) Wessel, J.; Behrens, U.; Lork, E.; Mews, R. Angew. Chem.
1995, 107, 516; Angew. Chem., Int. Ed. Engl. 1995, 34, 443. (b) Harder,
S.; Prosenc, M. H.; Rief, U. Organometallics 1996, 15, 118. (c) Reets,
M. T.; Hütte, S.; Goddard, R. Z. Naturforsch. B 1995, 50, 415. (d)
Harder, S. Chem. Eur. J. 1999, 5, 1852. (e) Casey, C. P.; O'Connor, J.
M.; Haller, K. J. J. Am. Chem. Soc. 1985, 107, 1241. (f) Lilga, M. A.;
Sohn, Y. S.; Ibers, J. A. Organometallics 1986, 5, 766. (g) Kakkar, A.
K.; Taylor, N. J.; Marder, T. B. Organometallics 1989, 8, 1765. (h)
Butts, M. D.; Bergman, R. G. Organometallics 1994, 13, 1899.

^{10.1021/}om0208927 CCC: \$25.00 © 2003 American Chemical Society Publication on Web 01/30/2003

Figure 1. View of the structure of $[Mg(dmso)_6]^{2+}[C_5H_5]^{-2}$ (1) with atomic numbering scheme (50% thermal ellipsoids). Selected bond lengths (pm) and angles (deg): Mg-O 206.9-209.0(1), S-O 152.0-152.5(1), S-C 177.7-1.784(2), C-C 139.3-140.0(2), av.139.8; O-Mg-O 88.81-91.19(3), Mg-O-S 120.7-123.1(1), O-S-C 104.9-105.7-(1), C-S-C 97.9-98.6(1), C-C-C 107.9-108.1(2)°.

Figure 2. View of the molecular structure of $[Mg(C_5H_5)_2$ - $(thf)_2$ (2) with atomic numbering scheme (50% thermal ellipsoids). Selected bond lengths (pm) and angles (deg): Mg-O 208.8, 209.8(2), Mg- $C(\eta^5-C_5H_5)$ 241.7–247.9(3), $Mg-(\eta^{5}-C_{5}H_{5})$ 213.7(1), $Mg-C(\eta^{1}-C_{5}H_{5})$ 228.2(2), $C-C(\eta^{5}-C_{5}H_{5})$ C_5H_5) 139.6–141.6(6), av 140.3, C–C(η^1 -C₅H₅) 141.6(C8– C9), 138.8(C9-C10), 140.1(C6-C10), 138.5(C6-C7), 143.1-(C7-C8)(5); O-Mg-O 90.2(1), O-Mg-C8 93.0, 94.3(1), (η⁵- C_5H_5)-Mg-O 113.6(1), 116.8(1), (η^5 - C_5H_5)-Mg-C8 137.7(1).

dimethyl sulfoxide ligands (Mg-O 206.9-209.0(1) pm; O-Mg-O 88.81-91.19(3)° or 180°). The average S-O and S-C distances within the pyramidal dmso ligands are 152.2 and 178.0 pm. In uncoordinated dimethyl sulfoxide 151.3 and 178.8 pm are observed.¹⁰ There is an intermolecular hydrogen bond network present in the crystal structure of compound **1**. The shortest contact is between a methyl hydrogen atom at C(6) of the dmso ligand and an oxygen atom [O(1)'] of an adjacent cation [H(6a)····O(1)' 246 pm; C-H···O 176° (C-H fixed at 108 pm)]. Important hydrogen bonds are also between the "naked" C₅H₅⁻ anion and the methyl groups of adjacent $[Mg(dmso)_6]^{2+}$ cations, e.g., H(8c)····Cp-center 248 pm and H(11b)····Cp-center 251 pm; angle H····Cp····H 176°.

Complex 2 (Figure 2) crystallizes in the acentric space group $P2_1$ with one molecule as asymmetric unit. The complexation of two tetrahydrofuran molecules to $[Mg(C_5H_5)_2]$ results in a change of the coordination of one C₅H₅ ligand from η^5 to η^1 . Most probably, this change in coordination is steric in origin. The Mg-C- $(\eta^5$ -C₅H₅) bond lengths are between 241.7 and 247.9(3) pm (average 244.7 pm), and the Mg–C(η^1 -C₅H₅) bond length is 228.2(3) pm. The other Mg-C distances are greater than 270 pm. Within the η^{1} - C₅H₅ ring variable C-C bond lengths are found, indicating a cyclopentadiene-like structure with three longer and two shorter bonds. The closest known structure available for comparison with **2** is that of $[Mg(\eta^5-C_5H_5)(\eta^1-C_5H_5)(thf)-$ (t-BuNH₂)] (**3**).¹¹ Here the Mg–O bond length is 206.7 pm (cf. 2: 208.8 and 209.8(2) pm), the average $Mg-C(\eta^5-C_5H_5)$ distance 246 pm, and the Mg-C- $(\eta^1-C_5H_5)$ bond length 237.0 pm. Thus, in our complex **2** the Mg–C(η^1 -C₅H₅) distance (228.2 pm) is a good deal shorter (8.8 pm) owing to the minor donor properties of the two tetrahydrofuran ligands in 2 in comparison with the amine and ether ligand in 3.

Conclusion

To generate an uncoordinated "naked" cyclopentadienyl ring in alkali metal chemistry, it is necessary to encapsulate the alkali metal ion by crown ether ligands.^{2–4} The magnesium cation is already satisfied by six DMSO ligands to liberate its cyclopentadienyl rings. THF as ligand is not strong enough to generate free $C_5H_5^-$, but a change to η^1 -coordination of one cyclopentadienyl ligand is observed.

Experimental Section

Dicyclopentadienylmagnesium was purchased from Strem Chemicals. All manipulations were performed using conventional Schlenk techniques under an atmosphere of argon.

Synthesis of $[Mg(dmso)_6]^{2+}[C_5H_5]^{-2}$ (1). To a solution of 0.15 g (0.97 mmol) of $[Mg(C_5H_5)_2]$ in 2 mL of tetrahydrofuran was added 4 mL of dimethyl sulfide. A white precipitate was obtained, which was redissolved by heating of the mixture. On cooling, colorless crystals of 1 appeared, which were washed with hexane and dried in a vacuum. Yield: 0.48 g (0.77 mmol, 80%). The compound (mp 133 °C) is insoluble in hexane and toluene, slightly soluble in tetrahydrofuran, and easily soluble in acetonitrile, dichloromethane, and dmso. ¹H NMR (200 MHz, CD₃CN):¹² δ 5.45 (s, C₅H₅), 2.51 (s, dmso) ppm. Anal. Found: C 41.5, H 6.5. Calcd: C 42.4, H 7.4.

Synthesis of [Mg(C₅H₅)₂(thf)₂] (2). To a solution of 0.20 g (1.3 mmol) of $[Mg(C_5H_5)_2]$ in 5 mL of tetrahydrofuran was added 1 mL of hexane. The yellow powder obtained was redissolved by heating the mixture. The solution was evaporated to 2 mL and cooled to 5 °C. Slightly yellow crystals of 2 were obtained and dried in a vacuum. Yield: 0.24 g (0.80 mmol, 62%). The compound (mp 107 °C) is insoluble in hexane and toluene, but soluble in acetonitrile, dichloromethane, thf, and dmso. ¹H NMR (200 MHz, CD₃CN): δ 5.86 (s, C₅H₅), 3.65

⁽¹⁰⁾ Thomas, R.; Shoemaker, C. B.; Eriks, K. Acta Crystallogr. 1966, 21, 12.

⁽¹¹⁾ Olmstead, M. M.; Grigsby, W. J.; Chacon, D. R.; Hascall, T.; Power, P. P. *Inorg. Chim. Acta* **1996**, 251, 273. (12) NMR analysis of crystalline **1** showed that the $C_5H_5/dmso$ ratio

was generally too low. This is due to partial H/D exchange of the C5H5 anion with the deuterated solvent.

(m, thf), 1.83 (m, thf) ppm. Anal. Found: C 73.2, H 7.4. Calcd: C 72.4, H 8.8.

X-ray Structure Determination of 1 and 2. In the syntheses of **1** and **2** crystals suitable for X-ray crystal structural analysis were obtained. The crystals were mounted on glass fibers in rapidly cooled mineral oil.

Crystal Data. For 1: $C_{22}H_{46}MgO_6S_6$, M = 623.26, triclinic, space group $P\bar{1}$, a = 837.50(5) pm, b = 938.22(5) pm, c =1102.30(6) pm, $\alpha = 74.027(1)^\circ$, $\beta = 73.267(1)^\circ$, $\gamma = 88.710(1)^\circ$, U = 795.93(8) Å, Z = 1, $D_c = 1.300$ g cm⁻³, μ (Mo K α) = 0.482 mm⁻¹. Bruker SMART-CCD diffractometer (2θ limit 55.0°). Crystal dimensions: 0.8/0.24/0.12 mm, 3273 observed data [1 > $2\sigma I$)] of 3554 independent data measured (T = 153 K). Refinement (on F^2) to $R_1 = 0.032$ and $wR_2 = 0.083$. No. of refined parameters: 166. For **2**: $C_{18}H_{26}MgO_2$, M = 298.70, monoclinic, space group $P2_1$, a = 905.0(1) pm, b = 889.2(1)pm, c = 1054.8(1) pm, $\beta = 105.74(1)^{\circ}$, U = 817.0(2) Å, Z = 2, $D_{\rm c} = 1.214 \text{ g cm}^{-3}$, μ (Mo K α) = 0.111 mm⁻¹. P4 Siemens diffractometer (2 θ limit 55.0°). Crystal dimensions: 0.5/0.4/ 0.25 mm, 1853 observed data $[I > 2\sigma I]$ of 1997 independent data measured (T = 173 K). Refinement (on F^2) to $R_1 = 0.048$ and $wR_2 = 0.120$. No. of refined parameters: 190. In both structures all atoms (excluding hydrogens) were refined using anisotropic displacement parameters (riding model for hydrogens). The structures were solved by direct methods (SHELXS-97 and SHELXL-97).¹³ CCDC 187582/3.

Acknowledgment. This work was supported by the Deutsche Forschungsgemeinschaft and the Claussen-Simon-Stiftung.

Note Added in Proof. A noncrystallographically characterized unstable tetrahydrofuran adduct of magnesocene was described by Lehmkuhl, H.; Mehler, K.; Benn, R.; Rufinska, A.; Krueger, C. *Chem. Ber.* **1986**, *119*, 1054.

Supporting Information Available: X-ray crystallographic information for **1** and **2**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0208927

⁽¹³⁾ Sheldrick, G. M. SHELXS-97 and SHELXL-97, Program for Crystal Structure Solution (SHELXS) and Program for Crystal Structure Refinement (SHELXL); University of Göttingen, 1997.