Structural Divergence in the Products of the Reaction of $[MoCl(\eta^3-C_3H_5)(CO)_2(dmpm)]$ with Nucleophiles

Julio Pérez,^{*,†} Víctor Riera,[†] Amor Rodríguez,[†] Ramón López,[‡] Tomás L. Sordo,[‡] Santiago García-Granda,[‡] Esther García-Rodríguez,[‡] and Agustín Galindo[§]

Departamento de Química Orgánica e Inorgánica-IUQOEM and Departamento de Química Fisica y Analítica, Facultad de Química, Universidad de Oviedo-CSIC, Oviedo, Spain, and Departamento de Química Inorgánica, Facultad de Química, Universidad de Ŝevilla, Sevilla, Spain

Received November 5, 2002

The complex $[MoCl(\eta^3-allyl)(CO)_2(dmpm)]$ (dmpm = bis(dimethylphosphino)methane) (1) reacts with sodium azide and with sodium cyanide to afford the new complexes [Mo(N₃)- $(\eta^3-\text{allyl})(\text{CO})_2(\text{dmpm})$ (2) and $[M_0(\text{CN})(\eta^3-\text{allyl})(\text{CO})_2(\text{dmpm})]$ (3), respectively, which were characterized spectroscopically and by X-ray diffraction. Complex 2 is a *cis*-dicarbonyl in which one of the P atoms of dmpm is approximately *trans* to a carbonyl, and the other is *trans* to the allyl. In contrast, **3** is a rare *trans*-dicarbonyl. A theoretical analysis was applied to rationalize this difference.

Introduction

The reaction of $[MoX(\eta^3-allyl)(CO)_2(L-L)]$ (X = anionic monodentate ligand, L-L = neutral diimine or diphosphine chelate) complexes with resonance-stabilized carbanions inspired the use of Mo complexes as allylic alkylation catalysts¹ and models a proposed step of this catalytic process.^{1,2} There are important differences between the complexes with L-L = bipy or phen and those in which L-L is a chelating diphosphine.³ Thus, whereas the former are rigid molecules with the allyl and X ocupying mutually trans positions (structure A in Chart 1), the latter are fluxional in solution and feature solid state structures with one of the phosphorus donors trans to the allyl ligand (structure B in Chart $1).^{4}$

We have recently isolated stable alkyls and alkynyls $[MoR(\eta^3-allyl)(CO)_2(N-N)]$ (N-N = 2,2'-bipyridine or 1,10-phenanthroline) from the reaction of chloro precursors with nonstabilized carbanions.⁵ These products retain the above-mentioned features of the halo precursors, i.e., rigidity in solution and a geometry with mutually trans R and allyl groups. As a consequence, these alkyl complexes do not undergo reductive elimination of alkyl-allyl coupling products. In contrast, we

found that $[MoCl(\eta^3-allyl)(CO)_2(dmpm)]$ (dmpm = bis-(dimethylphosphino)methane) reacts with acetylide, enolate, or alkyl anions R⁻ to afford the products of the allyl-anion coupling through the intermediacy of complexes having the R and allyl groups in *cis* positions.⁶ In a first step, the R carbanion substitutes the Cl ligand with a retention of the geometry, and, subsequently, the product isomerizes to an unprecedented trans-dicarbonyl complex, which is the species that undergoes the elimination of the R-allyl coupling product.

These results and the lack of previous studies in this area led us to investigate the reactivity of $[MoCl(\eta^3$ $allyl(CO)_2(dmpm)$ (1) with different anions; our first results are the matter of this paper.

Results and Discussion

The reaction of 1 with sodium azide afforded [Mo(N₃)- $(\eta^3$ -C₃H₅)(CO)₂(dmpm)] (2). The IR spectrum of 2 showed two intense C-O bands at 1936 and 1851 cm⁻¹, corresponding to the cis-Mo(CO)₂ unit, and a strong band at 2072 cm⁻¹, assigned to the azido group. The three-signal pattern for the allyl ligand in ¹H NMR, along with the single peak in ³¹P NMR, is consistent with fluxional behavior, as is typical of $[MoX(\eta^3-allyl)(CO)_2(P-P)]$ species (see above), given that the molecule of 2 lacks

Corresponding author. E-mail: japm@sauron.quimica.uniovi.es. † Departamento de Química Orgánica e Inorgánica-IUQOEM, Universidad de Oviedo-CSIC.

[‡] Departamento de Química Física y Analítica, Universidad de Oviedo.

[§] Universidad de Sevilla.

Trost, B. M.; Lautens, M. J. Am. Chem. Soc. **1982**, 104, 5543.
 (2) (a) Trost, B. M.; Merlic, C. A. J. Am. Chem. Soc. **1990**, 112, 9591.
 (b) Sjögren, M. P. T.; Frisell, H.; Åkermark, B.; Norrby, P. D.; Eriksson,

⁽a) Sjogren, va. r. 1.; FISEH, FL; AKEFMARK, B.; NORTDY, P. D.; EPIKSSON, L.; Vitagliano, A. Organometallics 1997, 16, 942.
(3) Baker, P. K. Adv. Organomet. Chem. 1996, 40, 46.
(4) (a) Brisdon, B. J. J. Organomet. Chem. 1977, 125, 225. (b) Faller, J. W.; Haitko, D. A.; Adams, R. D.; Chodosh, D. F. J. Am. Chem. Soc. 1979, 101, 865. For exceptions to this trend see ref 2b.
(5) (a) Pérez, L. Pierz, L. Pierz, V.: Carría, Carada, S.: Caraía, S.: Caraí

^{(5) (}a) Pérez, J.; Riera, L.; Riera, V.; García-Granda, S.; García-Rodríguez, E. *J. Am. Chem. Soc.* **2001**, *123*, 7469. (b) Pérez, J.; Riera L.; Riera, V.; García-Granda, S.; García-Rodríguez, E.; Miguel, D. Organometallics 2002, 21, 1622.

⁽⁶⁾ Pérez, J.; Riera, V.; Rodríguez, A.; García-Granda, S. Angew. Chem., Int. Ed. 2002, 41, 1427.

Figure 1. Thermal ellipsoid (30%) plot of complex 2. Selected bond lengths (Å) and angles (deg): Mo(1)-N(1)2.270(4), Mo(1)-P(1) 2.4702(12), Mo(1)-P(2) 2.4795(10), N(1)-N(2) 1.128(5), N(2)-N(3) 1.156(5), C(2)-Mo(1)-N(1) 175.14(15), C(1)-Mo(1)-N(1) 101.22(17), N(2)-N(1)-Mo-(1) 135.4(3), N(1)-N(2)-N(3) 176.8(5).

any elements of symmetry, as shown by the results of an X-ray structural determination (Figure 1).

The molecule of **2** shows the geometry typically found for $[MoX(\eta^3-allyl)(CO)_2(P-P)]$ complexes, i.e., P atoms trans to the allyl group and to one CO. However, the allyl group of **2** is oriented *endo*, with the open face opposed to the carbonyls.⁷ The normal (exo) allyl orientation, with the allyl open face pointing toward the carbonyls, was found in the $[MoX(\eta^3-allyl)(CO)_2(L-L)]$ compounds that have been structurally characterized so far and was found to be favored for these pseudooctahedral compounds on the basis of EHMO calculations.⁸ On the other hand, the *endo* orientation, as in 2, has been found only in complexes with cyclopentadienyl⁹ or tris(pyrazolyl)borato¹⁰ (Tp) ligands occupying the coordination positions of X and dmpm ligands in our complexes.

Compound **1** reacted with NaCN to give $[Mo(CN)(\eta^3 C_{3}H_{5}(CO)_{2}(dmpm)$] (3). The most striking structural feature of 3 is the mutually *trans* disposition of the two CO ligands, indicated by a single $\nu_{\rm CO}$ band at 1867 cm⁻¹ and by the two ¹³C NMR carbonyl signals (a single v_{CO} band could also be consistent with the presence of a single CO ligand). A weak IR band at 2069 cm⁻¹ was assigned to the $v_{\rm CN}$ stretch of the cyanide ligand. Unlike previously known $[MoX(\eta^3-allyl)(CO)_2(P-P)]$ compounds, 3 is stereochemically rigid in solution at room temperature, and the structure deduced from the spectroscopic data in solution coincides with that present in the solid state, which was determined by X-ray diffraction (Figure 2). Thus, the OC-Mo-CO angle is 174.1(3)°. A trans M(CO)₂ arrangement in dicarbonyl complexes is electronically disfavored because competition for the backdonation of the metal electron density is maximized between mutually *trans* ligands; hence, strongly π -ac-

Figure 2. Thermal ellipsoid (30%) plot of complex 3. Selected bond lengths (Å) and angles (deg): Mo(1)-C(6)2.255(9), Mo(1)-P(2) 2.501(3), Mo(1)-P(1) 2.504(2), C(6)-N(6) 1.172(11), N(6)-C(6)-Mo(1) 176.5(8).

ceptor CO ligands prefer to be trans to ligands other than CO.¹¹ As a result, trans-dicarbonyls are very rare and, among the plethora of Mo(II) complexes, virtually unprecedented. Considering together the structures of **2** and **3**, it seems that the *trans* geometry of **3** is due to the electronic properties of the CN ligand (a cyanocomplex isostructural with 2 would not present additional steric hindrance compared with these compounds). It is noteworthy that some of the few other trans-dicarbonyl complexes also possess cyano ligands.¹²

Also remarkable is that, whereas malonate-type anions attack the allyl group of $[MoX(\eta^3-allyl)(CO)_2(L-$ L)] complexes,^{1,13} the reactions of **1** with azide and with cyanide give a single product resulting from chloride substitution in each case, which, despite the mutually *cis* disposition of the η^3 -C₃H₅ group and the ligand resulting from the incoming nucleophile, does not undergo coupling.

The orientation of the allyl ligand in 3, displayed in Figure 2b,¹⁴ deprives the molecule of **3** of a mirror plane,

⁽⁷⁾ Curtis, M. D.; Eisenstein, O. Organometallics 1984, 3, 887.

⁽⁸⁾ The angle between the vectors (centroid of $Mo(CO)_2$ -Mo) and allyl central carbon-(centroid of the allyl) have been used to specify the rotational orientation of η^3 -allyl ligands:⁹ These angles are 41(1)⁶

⁽⁹⁾ Faller, J. W.; Linebarrier, D. *Organometallics* 1988, *7*, 1670.
(10) Frohnapfel, D. S.; White, P. S.; Templeton, J. L.; Rüegger, H.; Pregosin, P. S. Organometallics 1997, 16, 3737.

⁽¹¹⁾ Lukehart, C. M. Fundamental Chemistry of Cyano Complexes of the Transition Metals; Academic Press: London, 1976; p 77

 ^{(12) (}a) Jiang, J.; Koch, S. A. Angew. Chem., Int. Ed. 2001, 40, 2629.
 (b) Carriedo, G. A.; Crespo, M. C.; Riera, V.; Sánchez, M. G.; Valin, M. L.; Moreiras, D.; Solans, X. J. Organomet. Chem. 1986, 302, 47.
 (13) Tom Dieck, H.; Friedel, H. J. Organomet. Chem. 1968, 14, 375.

⁽¹⁴⁾ In Figure 2b, obtained by spatial rotation of 2a, a ball-andstick representation was used for clarity.

Figure 3. Main orbital interactions diagram for $[Mo(CN)(\eta^3-C_3H_5)(CO)_2(dmpm)]$ (3).

Table 1.	Crystal Data and Refinement Details for	
	Complexes 2 and 3	

	-		
	2	3	
formula	$C_{10}H_{19}M_0N_3O_2P_2$	$C_{11}H_{19}M_0NO_2P_2$	
fw	371.16	353.16	
cryst syst	monoclinic	monoclinic	
space group	P2(1)/n	P2(1)/n	
a, A	7.723(2)	8.706(5)	
b, Å	14.189(3)	13.546(5)	
<i>c</i> , Å	14.656(6)	14.246(5)	
α, deg	90	90	
β , deg	101.20(3)	101.17(5)	
γ , deg	90	90	
V, Å ³	1575.5(9)	1648.2(13)	
Ζ	4	4	
Т, К	293(2)	293(2)	
$D_{\rm c}$, g cm ⁻³	1.565	1.423	
F(000)	752	716	
λ(Mo Kα), Å	0.71073	0.71073	
cryst size, mm	$0.50 \times 0.25 \times 0.1$	$0.20\times0.20\times0.03$	
μ , mm ⁻¹	1.033	8.254	
scan range, deg	$2.02 \le heta \le 25.97$	$4.55 \le heta \le 66.47$	
abs corr	SADABS	SADABS	
no. of reflns measd	3210	2494	
no. of ind reflns	3089	2494	
no. of data/restraints/	3089/0/224	2494/0/173	
params			
goodness-of-fit on F^2	1.052	1.005	
$\tilde{R}_{1}/R_{w2} [I > 2\sigma(I)]$	0.0290/0.0730	0.00802/0.1988	
R_1/R_{w2} (all data)	0.0524/0.0839	0.0920/0.2035	

thus making the two CO ligands and the halves of the allyl group inequivalent, as indicated by the ¹H and ¹³C spectra. This allyl orientation can be rationalized using simple MO arguments.¹⁵ Figure 3 displays the main interactions between the fragment {Mo(CN)(CO)₂-(dmpm)} and the allyl ligand. Metal orbitals were derived from d⁴-ML₅ FMOs ¹⁶ by considering the presence of two mutually *trans* CO groups and one CN⁻

ligand. The strongest bonding combination was that of the π_2 allyl MO with the LUMO of the metal fragment. Additionally, a minor stabilization was produced due to the back-donation from the d_{xy} metal orbital to the π_3 allyl antibonding combination. The maximum overlap between these FMOs was attained when the relative orientation of the allyl ligand and the OC-Mo-CO vector is the one found in **3**.

Whereas this simple picture seems appropriate to rationalize the allyl orientation in $\mathbf{3}$, we have performed DFT calculations in an attempt to obtain information on the factors governing the different structures found for $\mathbf{2}$ and $\mathbf{3}$.

B3LYP calculations using the LANL2DZ and LANL1DZ basis sets for Mo and P atoms, respectively, and the 3-21G basis set for C, N, O, and H atoms render the *trans* isomer of [Mo(CN)(η^3 -C₃H₅)(CO)₂(dmpm)] (with a rotational allyl orientation qualitatively in agreement with the previously mentioned EHMO arguments) 3.01 kcal/mol more stable than the *cis* one in Gibbs energy in solution.¹⁷ Parallel calculations showed *cis*-[Mo(N₃)(η^3 -C₃H₅)(CO)₂(dmpm)] to be 0.45 kcal/mol more stable than the *trans* isomer. Optimized geom-

⁽¹⁵⁾ EH calculations have been carried out with the model trans- $[Mo(CN)(C_3H_5)(CO)_2(PH_3)_2]$. Details available from Prof. A. Galindo (galindo@us.es).

⁽¹⁶⁾ Albright, T. A.; Burdett, J. K.; Whangbo, M. H. Orbital Interactions in Chemistry; Wiley: New York, 1985.

⁽¹⁷⁾ Calculations were performed with the Gaussian 98 series of programs including the effect of dichloromethane as solvent by means of the PCM method ($\epsilon = 8.93$): Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*; Gaussian, Inc.: Pittsburgh, PA, 1998.

Figure 4. Optimized geometries of (A) *trans*-[Mo(N₃)(η^3 -C₃H₅)(CO)₂(dmpm)], (B) *cis*-[Mo(N₃)(η^3 -C₃H₅)(CO)₂(dmpm)], (C) *trans*-[Mo(CN)(η^3 -C₃H₅)(CO)₂(dmpm)], and (D) *cis*-[Mo(CN)(η^3 -C₃H₅)(CO)₂(dmpm)].

 Table 2. B3LYP Calculations for 2 and 3 Using the LANL2DZ and LANL1DZ Basis Sets for Mo and P

 Atoms, Respectively, and the 3-21G Basis Set for C, N, O, and H Atoms^a

isomer	ΔE_0	$\Delta E_{ m ZPVE}$	ΔH	$-T\Delta S$	$\Delta G_{ m gas-phase}$	$\Delta\Delta G_{ m solvation}$	$\Delta G_{ m solution}$				
$[Mo(CN)(\eta^3-C_3H_5)(CO)_2(dmpm)]$ (3)											
trans	0.00	0.00	0.00	0.00	0.00	0.0	0.00				
cis	1.63	0.36	1.86	0.47	2.33	0.68	3.01				
$[Mo(N_3)(\eta^3-C_3H_5)(CO)_2(dmpm)]$ (2)											
cis	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
trans	1.61	-0.16	1.43	0.14	1.57	-1.12	0.45				

^{*a*} The effect of dichloromethane as solvent was included by the PCM method ($\epsilon = 8.93$). Energies in kcal/mol.

MoCNcis

MoN₃cis

Figure 5. Net natural population analysis charges for 2 and 3.

etries and energies are given in Figure 4 and Table 2, and the results of the net natural population analysis charges are summarized in Figure 5. The NPA charge¹⁸ on the metal atom of **3** is -0.63 in the *cis* isomer and -0.76 in the *trans* one. The NPA charges on all the ligands are similar in both isomers except for CN⁻, which presents a net charge of -0.51 and -0.37 in the *cis* and *trans* structures, respectively.

An analysis of the Kohn–Sham MOs of $[Mo(CN)(\eta^3-C_3H_5)(CO)_2(dmpm)]$ (3) in terms of those of the metal atom and the ligands¹⁹ shows that the most important fragment electronic configurations describing the *trans* structure imply electron transfers from the HOMOs of $C_3H_5^-$ and CN^- to the LUMO of Mo²⁺. In contrast, in the *cis* isomer the relative weight of these electronic configurations considerably diminish, the electron transfers from the HOMOs of Mo²⁺ becoming dominant, particularly those configurations corresponding to back-donation from the metal to the CO's.

The above-mentioned differences in energy and electronic structure between the *cis* and *trans* isomers of $[Mo(CN)(\eta^3-C_3H_5)(CO)_2(dmpm)]$ can be easily rational-

ized taking into account the main interactions between CN and the metal atom. As displayed by the diagram in Figure 3, our analysis reveals that, in the *trans* isomer, the HOMOs of CN⁻ and C₃H₅⁻ interact mainly with the d_{yz} LUMO of the metal, whereas in the *cis* isomer the HOMO of CN⁻ and the HOMO of one of the CO ligands present the most important interaction with the d_{x²-y²} LUMO of Mo²⁺. From the diagram it is clear that this different interaction pattern can explain the fact that CN⁻ behaves as a better electron donor in the *trans* structure and appears to determine the preferential stabilization of that isomer.

Therefore, our theoretical analysis establishes the strong σ -donor character of the cyano ligand as responsible for the encountered difference between the structures of **2** and **3**.²⁰

Experimental Section

All manipulations were carried out under nitrogen using standard Schlenk techniques. Solvents were distilled from Na (hexane), NaOMe (MeOH), and CaH₂ (CH₂Cl₂). CD₂Cl₂ was dried over molecular sieves (4 Å) and stored over Na₂CO₃ in Young tubes in the dark. Elemental analyses were obtained using a Perkin-Elmer 240-B microanalyzer. The IR and NMR spectra were recorded on Perkin-Elmer FT 1720-X (over the

⁽¹⁸⁾ Weinhold, F.; Carpenter, J. E. *The Structure of Small Molecules and Ions*; Plenum: New York, 1988.

⁽¹⁹⁾ This analysis was performed by using the ANACAL program: López, R.; Menéndez, M. I.; Suárez, D.; Sordo, T. L.; Sordo, J. A. *Comput. Phys. Commun.* **1993**, *76*, 235–249.

range 2200–1600 cm⁻¹) and Bruker AC-200 (or AC-300) spectrometers, respectively, using TMS as internal reference.

Synthesis of 1. Under N₂, dmpm (56 μ L, 0.35 mmol) was added to a solution of [MoCl(η^3 -C₃H₅)(CO)₂(NCMe)₂]¹³ (0.110 g, 0.35 mmol) in CH₂Cl₂ (10 mL). After 5 min stirring the volume was reduced in vacuo to 5 mL and hexane (20 mL) was layered, giving (2 days at -20 °C) red crystals of **1.** Yield: 0.120 g, 93%. Anal. Calcd for C₁₀H₁₉ClMoO₂P₂: C, 32.94; H, 5.25. Found: C, 33.21; H, 4.97. IR (CH₂Cl₂): 1944(s), 1845(s) cm⁻¹. ³¹P{¹H} NMR (CD₂Cl₂): δ -24.38. ¹H NMR (CD₂Cl₂): δ 4.75(m, 1H, H_c); 3.69(m, 2H, H_{syn}); 3.24(m, 2H, CH₂ dmpm); 2.31(d, ³*J*(H,H) = 11.7, 2H, H_{anti}); 1.73(t, ²*J*(P,H) = 4.8, 6H, CH₃ dmpm): 1.65(t, ²*J*(P,H) = 5.2, 6H, CH₃ dmpm). ¹³C{¹H} NMR (CD₂Cl₂): 226.68(t, ²*J*(P,C) = 7.6, CO); 98.68(s, C₂ allyl); 62.36(s, C₁ and C₃ allyl); 40.65(t, ¹*J*(P,C) = 23.2, CH₂ dmpm); 17.34(t, ¹*J*(P,C) = 13.6, CH₃ dmpm); 13.40(t, ¹*J*(P,C) = 12.8, CH₃ dmpm).

Synthesis of 2. Sodium azide (0.017 g, 0.27 mmol) was added to a solution of 1 (0.100 g, 0.27 mmol) in 15 mL of a mixture of CH₂Cl₂/MeOH (5:1, v/v). Stirring (90 min), solvent evaporation in vacuo, extraction of the residue (CH₂Cl₂, 10 mL), filtration (Celite), in vacuo concentration (to 5 mL), and layering with hexane (20 mL) afforded, after 2 days at -20°C, orange crystals. Yield: 0.01 g, 68.7%. Anal. Calcd for C₁₀H₁₉MoN₃O₂P₂: C, 32.36; H, 5.16; N, 11.32. Found: C, 32.56; H, 5.34; N, 11.12. IR (CH₂Cl₂): 2072(s), 1936(s), and 1851(s) cm⁻¹. ³¹P{¹H} NMR (CD₂Cl₂): δ –22.38, s. ¹H NMR (CD₂Cl₂): δ 4.82(m, 1H, H_c); 3.70(m, 2H, H_{syn}); 3.28(at, ²J(H,P) = 10, 2H, CH₂ dmpm); 2.19(d, ${}^{3}J(H,H) = 12$, 2H, H_{anti}); 1.71(m, 12H, CH₃) dmpm). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂): 226.51(at, ${}^{2}J(P,C) = 8$, CO); 62.30(s, C₁ allyl); 57.86(s, C₂ allyl); 40.93(at, J(P,C) = 24, CH₂ dmpm); 17.56(at, *J*(P,C) = 15, CH₃ dmpm); 16.43(d, *J*(P,C) = 23, CH₃ dmpm); 14.62(at, *J*(P,C) = 11, CH₃ dmpm).

Synthesis of 3. Sodium cyanide (0.016 g, 0.32 mmol) was added to a solution of 1 (0.100 g, 0.32 mmol) in 15 mL of a mixture of CH₂Cl₂/MeOH (5:1, v/v). After 6 h stirring, workup as for 2 gave 3 as a pale yellow powder. Yellow crystals of 3 were obtained by slow diffusion of hexane into a concentrated solution of 3 in CH₂Cl₂ at -20 °C. Yield: 0.078 g, 68.4%. Anal. Calcd for C₁₁H₁₉MoNO₂P₂: C, 37.20; H, 5.39; N, 3.94. Found: C, 37.47; H, 5.12; N, 3.72. IR (CH₂Cl₂): 2096(w), 1867(vs) cm⁻¹. ³¹P{¹H} NMR (CD₂Cl₂): δ -11.4, -21.4 (ABq, ²J(P,P) = 85.4). ¹H NMR (CD₂Cl₂): δ 5.21(m, 1H, H_c); 3.20(m, 2H, CH₂ dmpm); $3.08(dd, {}^{3}J(P,H) = 7.0, {}^{2}J(H,H) = 3.2, 1H, H_{svn}); 2.77(d, {}^{3}J(H,H))$ = 12.2, 1H, H_{anti}); 2.21(m, 2H, H_{anti}, H_{syn}); 1.96(d, ${}^{2}J(P,H) =$ 9.8, 3H, CH₃ dmpm); 1.73(t, ${}^{2}J(P,H) = 9.9$, 6H, CH₃ dmpm); $1.59(d, {}^{2}J(P,H) = 9.1, 3H, CH_{3} dmpm). {}^{13}C{}^{1}H} NMR (CD_{2}-$ Cl₂): 211.53(t, ${}^{2}J(P,C) = 10.1$, CO); 209.33(t, ${}^{2}J(P,C) = 8.3$, CO); 145.81(d, ²*J*(P,C) = 17.1, CN); 98.67(s, C₂ allyl); 53.96(s, C_1 allyl); 45.47(d, ²J(P,C) = 9.2, C_3 allyl); 40.88(t, ¹J(P,C) = 24, CH_2 dmpm); 20.35(t, ${}^1J(P,C) = 3.2$, CH_3 dmpm); 18.50(t, ${}^{1}J(P,C) = 6.0, CH_{3} dmpm).$

Acknowledgment. We thank the Ministerio de Ciencia y Tecnología (grants BQU2000-0220 and BQU2000-0219) and Principado de Asturias (grants PR-01-GE-7 and PR-01-GE-4) for support of this work.

Supporting Information Available: Tables giving positional and thermal parameters, bond distances and bond angles for **2** and **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM020919M