Mechanism of the Pyridine-Modified Cobalt-Catalyzed Hydromethoxycarbonylation of 1,3-Butadiene

Róbert Tuba,[†] László T. Mika,[†] Andrea Bodor,[†] Zoltán Pusztai,^{†,‡} Imre Tóth,[§] and István T. Horváth*,†

Department of Chemical Technology and Environmental Chemistry, Eötvös University, H-1117 Budapest, Pazmany Peter setany 1/A, Hungary, and DSM Research, Geleen, The Netherlands

Received January 24, 2003

Summary: The pyridine-modified cobalt-catalyzed hydromethoxycarbonylation of 1,3-butadiene (1) starts by the disproportionation of $Co_2(CO)_8$ to $[CoPy_6][Co(CO)_4]_2$ followed by the formation of $HCo(CO)_4$ (3). The addition of **3** to **1** leads to $CH_3CH=CHCH_2Co(CO)_4$ (**4**), which, depending on the conditions, can undergo facile CO insertion to yield $CH_3CH=CHCH_2COCo(CO)_4$ (5) or reversible decarbonylation to form η^3 -C₄H₇Co(CO)₃ (7). Pyridine accelerates the conversion of 7 to methyl-3pentenoate (2) and the methanolysis of 5.

The hydromethoxycarbonylation of 1,3-butadiene (1) to methyl 3-pentenoate (2) could be the first step in the green production of adipic acid or ϵ -caprolactam, which are key intermediates in nylon manufacture.^{1,2} Co₂(CO)₈ in the presence of pyridine (Py) represents one of the few known catalyst systems which is suitable for this reaction.³ Although several different mechanisms have been proposed for this system, 4-7 no intermediates have been isolated and characterized under reaction conditions. One of the proposed mechanisms is based on the catalytic cycle of cobalt-catalyzed hydroesterification of olefins.^{4c} Thus, the reaction starts by the addition of $HCo(CO)_4$ (3) to 1, resulting in $CH_3CH=CHCH_2Co(CO)_4$ (4), which can undergo CO insertion to yield $CH_3CH=$ $CHCH_2COCo(CO)_4$ (5). Impanitov has suggested that the reaction of 5 with pyridine could lead to [CH₃CH= $CHCH_2COPy]^+[Co(CO)_4]^-$, which in turn could react with MeOH to give 2 and regenerate 3.⁴ In contrast, Milstein has suggested the formation of the coordinatively unsaturated species $\{MeOCOCo(CO)_3\}$ by the

[‡] This paper is dedicated to the memory of Mr. Zoltán Pusztai, a cherished colleague whose untimely death prematurely ended a brilliant career.

Figure 1. Reaction of 18.08 mmol of η^3 -C₄H₇Co(CO)₃ (7) with CO (75 bar) and MeOH (55 mL) at 140 °C.

reaction of [Co(CO)₄Py]⁺[Co(CO)₄]⁻ and MeOH.⁵ The addition of 1 to $\{MeOCOCo(CO)_3\}$ leads to the allyl complex (η^3 -CH₂CHCHCH₂COOMe)Co(CO)₃ (**6**),⁶ which reacts with 3 to give 2 and the coordinatively unsaturated $\{Co_2(CO)_7\}$. These species have not been observed under catalytic conditions, however. We report here our high-pressure IR and NMR study on the pyridinemodified cobalt-catalyzed hydromethoxycarbonylation of 1,3-butadiene (1), which has led to the characterization of several key intermediates and the catalytic cycle.

First we have investigated the addition of 1 to the equilibrium mixture⁷ of Co₂(CO)₈ and [Co(MeOH)₆][Co-(CO)₄]₂ under 75 bar of CO at 100 °C in MeOH.⁸ The quantitative formation of η^3 -C₄H₇Co(CO)₃ (7)⁹ was observed (the first spectrum in Figure 1.). Since no further reaction could be detected after several hours, the temperature was increased to 140 °C. During the next 6.5 h, 7 disappeared and the formation of 2^{8d} and the equilibrium mixture of Co₂(CO)₈ and [Co(MeOH)₆][Co- $(CO)_4]_2^-$ was observed (Figure 1). Compound **6**, which could be readily isolated in THF is apparently absent in the reaction mixture.^{5a,6} The formation of **7**, instead of 6, was confirmed in a similar experiment by using high-pressure NMR.¹⁰

When the reaction was performed in pyridine, [CoPy₆]-[Co(CO)₄]₂ was the only cobalt species detectable by IR^{8e} even at 100 °C under 75 bar of CO (the first spectrum

Eötvös University.

DSM Research.

^{*} Corresponding author.

⁽¹⁾ Beller, M.; Cornils, B.; Frohning, C. D.; Kohlpainter, C. W. J. Mol. Catal. A 1995, 104, 17-85.

⁽²⁾ Dahlhoff, G.; Niederer, J. P. M.; Hoelderich, W. E. Catal. Rev. 2001, 43(4), 381-441

⁽³⁾ Matsuda, A. Bull. Chem. Soc. Jpn. 1972, 46, 524–530.
(4) (a) Imyanitov, N. S.; Bogoradovskaya, N. M.; Semenova, T. A. Kinet. Katal. 1978, 19, 573. (b) Imyanitov, N. S. Kinet. Katal. 1999,

^{40, 71. (}c) Forster, D.; Hersman, A.; Morris, D. E. Catal. Rev. Sci. Eng. 1981. 23. 89.

^{(5) (}a) Milstein, D.; Huckaby, J. L. J. Am. Chem. Soc. **1982**, 104, 6150–6152. (b) Milstein, D. Acc. Chem. Res. **1988**, 21, 428–434. (6) Since no spectroscopic data were reported for **6**,^{5a} we have characterized it by both IR and NMR. IR (ν (CO), *n*-pentane, cm⁻¹): 2067 (vs), 1999 (vs), 1751 (w). ¹³C NMR in d_4 -MeOH (ppm): syn isomer, 68 e (CII) 48.9 (CII) 4171.7 (CII) 42.9 (CII) 42 202.9 (CH₂), 48.0 (CH₂), 51.2 (CH₃), 66.6 (CH), 83.3 (CH), 171.7 (C=O), 202.9 (C≡O); anti isomer, 36.8 (CH₂), 48.0 (CH₂), 51.0 (CH₃), 67.2 (CH), 82.2 (CH), 171.7 (C=O), 202.9 (C≡O).

⁽⁷⁾ Mirbach, M. F.; Mirbach, M. J. J. Mol. Catal. 1985, 32, 59-75.

⁽⁸⁾ Characteristic IR bands (ν (CO), MeOH, cm⁻¹): (a) Co₂(CO)₈, 2070 (s), 2041 (s), 2026 (s), 1858 (m); (b) [Co(MeOH)₆][Co(CO)₄]₂, 1903 (vs); (c) 7, 2057 (s), 1988 (vs); (d) **2**, 1739 (vw); (e) [CoPy₆][Co(CO)₄]₂, 1889 (vs)

^{(9) (}a) Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 1961, 83, 1097-1102. (b) Bertrand, J. A.; Jonassen, H. B.; Moore, D. W. Inorg. Chem. **1963**, 2, 601-604.

Figure 2. Reaction of 11.3 mmol of $Co_2(CO)_8$ with 28,2 mmol of 1,3-butadiene (1) and 39.5 mmol of MeOH in pyridine (55 mL) under 75 bar of CO at 140 °C.

in Figure 2). After the temperature was increased to 140 °C, the concentration of $[CoPy_6][Co(CO)_4]_2$ decreased and the formation of 7 and 2 was observed. Upon further stirring the formation of 2 continued and 7 was converted to $[CoPy_6][Co(CO)_4]_2$. It should be noted that the conversion of 7 to 2 is about 4 times faster in pyridine than in MeOH.

Since no intermediates could be observed under catalytic conditions, we have tried to prepare and characterize **4** and **5**. The reaction of NaCo(CO)₄ with crotyl bromide in MeOH at -40 °C under N₂ leads to the slow formation of **4**.^{11a} This complex is very unstable and can be readily converted to **5**,^{11b} by purging the reaction mixture with CO,¹² or to **7**, by raising the reaction temperature to room temperature. The reproduction of this experiment at -40 °C under 70 bar of CO resulted in the quantitative formation of **5** (Figure 3). While this complex is stable under 70 bar of CO even at 0 °C, at higher temperatures (>40 °C) it is readily converted to **7** and a small amount of [Co(MeOH)₆][Co-(CO)₄]₂. The structure of **5** was unambiguously established also by in situ NMR experiments in *d*₄-MeOH.¹³

Since the accelerating effect of bases on the methanolysis of acyl cobalt carbonyls is well established,¹⁴ we have investigated the role of pyridine on the methanolysis of **5**. The addition of pyridine to the solution of

(11) Characteristic IR bands (ν (CO), MeOH, cm⁻¹): (a) **4**, 2099 (w), 2028 (m, sh), 2011 (s), 2005 (s, sh); (b) **5**, 2108 (w), 2047 (m), 2026 (s), 2007 (s), 1710 (w).

(12) Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc. 1962, 84, 2499-2502.

(13) Preparation of **5** was done under an N₂ atmosphere in a highpressure NMR tube. A 1.5 mL solution of NaCo(CO)₄ (1.61 mmol) in d_4 -MeOH was introduced into the NMR tube at 0 °C, which was then cooled to -80 °C. At this temperature 0.165 mL (1.62 mmol) of crotyl bromide was added dropwise, and then the tube was pressurized with 30 bar of CO. The reaction was conducted for 2 h at 0 °C, and the NMR measurements were performed at the same temperature. ¹³C NMR (ppm): 17.2 (CH₃), 66.4 (CH₂), 123.6 (CH), 130.1 (CH), 196.8 (C=O), 227.0 (C=O).

(14) (a) Sóvágó, J.; Sisak, A.; Ungváry, F.; Markó, L. Inorg. Chim.
 Acta 1994, 227, 297–300. (b) Kovács, I.; Ungváry, F. Coord. Chem.
 Rev. 1997, 161, 1–32.

Figure 3. Reaction of 19.22 mmol of NaCo(CO)₄ with 19.43 mmol of crotyl bromide in MeOH (55 mL) under 70 bar of CO: formation of 5 at -40 °C and 7 above 40 °C.

Figure 4. Reaction of 17.2 mmol of NaCo(CO)₄ with 18 mmol of crotyl bromide at 0 °C under 72 bar of CO in MeOH (55 mL) followed by the addition of 62 mmol of pyridine to the formed **5** at 0 °C under 82 bar of CO.

Scheme 1. Proposed Catalytic Cycle of the Hydromethoxycarbonylation of 1,3-Butadiene (1) by Pyridine-Modified Cobalt Catalysts

5 under 82 bar of CO resulted in the rapid disappearance of **5** and the formation of **2** and $[CoPy_6][Co(CO)_4]_2$ (Figure 4), as expected. Thus, the formation of **2** can take place via the pyridine-assisted methanolysis of the acyl cobalt species CH₃CH=CHCH₂COCo(CO)₄ (**5**).

The proposed catalytic cycle is depicted in Scheme 1. The first step is the well-established disproportionation of $Co_2(CO)_8$, leading to $[CoPy_6][Co(CO)_4]_2$.¹⁵ The formation of $HCo(CO)_4$ (**3**) can be explained by the reaction of MeOH with $[CoPy_6][Co(CO)_4]_2$. This is in accordance

⁽¹⁰⁾ All high-pressure NMR experiments were performed in 10 mm sapphire tubes, using a 250 MHz Bruker spectrometer. Preparation and detection of 7 was done under an N₂ atmosphere as follows: 0.16 g (2.96 mmol) of 1 was introduced into the high-pressure NMR tube at -80 °C. In the meantime 0.289 g (0.84 mmol) Co₂(CO)₈ was dissolved in 1.5 mL of d_4 -MeOH in a Schlenk bottle at 0 °C and then added to 1 at -80 °C and pressurized with 50 bar of CO. Over the next 6 h the NMR tube was heated to 100 °C and the solution changed from brown to orange. NMR measurements of this solution were performed at room temperature. Besides the signals of 1, compound 7 could be detected. ¹³C NMR of 7 (ppm): 19.2 (CH₃), 45.8 (CH₂), 71.8 (CH), 84.0 (CH). (11) Characteristic IR bands (ν (CO), MeOH, cm⁻¹): (a) 4, 2099 (w),

⁽¹⁵⁾ Mirbach, M. F.; Mirbach, M. J. J. Mol. Catal. 1985, 33, 23-35.

with the fact that no accelerating effect was observed by the addition of H₂ on the hydromethoxycarbonylation of 1,3-butadiene (1).³ The reaction of $HCo(CO)_4$ (3) with 1¹⁶ leads to the formation of the alkyl cobalt species CH₃- $CH=CHCH_2Co(CO)_4$ (4). Depending on the conditions, this species can undergo CO insertion to yield CH₃CH= CHCH₂COCo(CO)₄ (5) or decarbonylation to form η^{3-1} $C_4H_7Co(CO)_3$ (7). Similar steps have been demonstrated for the reaction of **3** and 2,3-dimethyl-1,3-butadiene.¹⁷ It appears that the formation of η^3 -C₄H₇Co(CO)₃ (7) is a reversible side reaction during the hydromethoxycarbonylation of 1,3-butadiene (1).

Our results indicate that the presence of pyridine leads to the formation of [CoPy₆][Co(CO)₄]₂ and [HPy]- $[Co(CO)_4]$, both of them being highly stable under reaction conditions (see Figure 2). The net result is a significantly lower concentration of the catalytically active cobalt species. On the other hand, pyridine accelerates the conversion of $C_4H_7C_0(CO)_3$ (7) to 2 and the methanolysis of $CH_3CH=CHCH_2COCo(CO)_4$ (5) by providing a much higher concentration of [HPy][MeO].

Acknowledgment. This work was partially supported by DSM Research, Geleen, The Netherlands, and the Hungarian National Scientific Research Fund (Grant No. OTKA-T032850). The donation of the ReactIR 1000 instrument by Applied Systems Inc, a Mettler-Toledo Company, is greatly appreciated.

OM030058X

^{(16) (}a) Jonassen, H. B.; Stearns, R. I.; Kenttämaa, J.; Moore, D. W.; Whittaker, A. G. J. Am. Chem. Soc. 1958, 80, 2586. (b) Rupilius,
 W.; Orchin, M. J. Org. Chem. 1971, 36, 3604.
 (17) Ungváry, F.; Markó, L. Organometallics 1984, 3, 1466–1470.