Ligand Substitution Processes on Carbonylmetal Derivatives. 4.¹ NMR Study of the Reaction of Hydridocarbonylchromates with PX₃ (X = Br, Cl)[†]

Jean-Jacques Brunet,* Ousmane Diallo, and Emmanuel Roblou

Laboratoire de Chimie de Coordination du CNRS, Unité No. 8241, Liée par Conventions, à l'Université Paul Sabatier et à l'Institut National Polytechnique, 205 Route de Narbonne, 31077 Toulouse Cedex 04, France

Received September 27, 2002

Summary: At 193 K, $K^+[HCr(CO)_5]^-$ (1 equiv) reacts with PBr₃ to give $Cr(CO)_5PH_3$ and $K^+[BrCr(CO)_5]^-$. The latter further reacts with PBr₃ only above 253 K to give $Cr(CO)_5PBr_3$. At room temperature, $K^+[HCr(CO)_5]^-$ (3 equiv) reacts with PBr₃ to give $Cr(CO)_5PH_3$ as the sole phophorus derivative. A similar reactivity is observed for the reaction of $K^+[HCr(CO)_5]^-$ with PCI₃. In contrast, $K^+(\mu-H)[Cr(CO)_5]_2^-$ reacts with PBr₃ only above 298 K, affording selectively $Cr(CO)_5PBr_3$.

Ligand substitution processes in transition metal complexes, especially neutral metal carbonyls, have attracted much attention, both for the design of specific syntheses of heteroleptic complexes and for a contribution to the understanding of reaction mechanisms, particularly the loss of small molecules or ions from low-valent metal complexes.^{2–4}

In the last years, our study of ligand substitution processes on $K^+[HFe(CO)_4]^-$ has been particularly fruitful, both from a synthetic point of view and for the understanding of the reactivity of hydridocarbonylferrates toward phosphites and phosphines.⁵

More recently we reported a study of the reaction of phosphines with the chromium derivative $K^+[HCr-(CO)_5]^-$, **1**, in aprotic solvents.¹ The reaction of **1** with PEt₃ starts by a carbonyl ligand substitution, generating the monosubstituted derivative $K^+[HCr(CO)_4PEt_3]^-$. Although the latter complex could be spectroscopically characterized, it reacts in situ with the PEt₃ to afford the disubstituted *trans*-Cr(CO)₄(PEt₃)₂ complex by displacement of the hydride ligand (eqs 1, 2).

$$\begin{array}{c} \mathbf{K}^{+}[\mathrm{HCr(CO)}_{5}]^{-} + \mathrm{PEt}_{3} \xrightarrow{\mathrm{THF}} \\ \mathbf{1} \\ \mathbf{K}^{+}[\mathrm{HCr(CO)}_{4}(\mathrm{PEt}_{3})]^{-} + \mathrm{CO} \ (1) \end{array}$$

$$K^{+}[HCr(CO)_{4}PEt_{3}]^{-} + PEt_{3} \xrightarrow{\text{THF}} Cr(CO)_{4}(PEt_{3})_{2} + KH (2)$$

The bridged dinuclear hydride $K^+(\mu-H)[Cr(CO)_5]_2^-$, **2**, also reacts with PEt₃ to give *trans*-Cr(CO)₄(PEt₃)₂ (eq 3).^{1,6}

$$\begin{array}{c} \mathrm{K}^{+}(\mu - \mathrm{H})[\mathrm{Cr(CO)}_{5}]_{2}^{-} + 4 \mathrm{PEt}_{3} \xrightarrow{\mathrm{IHF}} \\ \mathbf{2} \\ 2 \mathrm{Cr(CO)}_{4}(\mathrm{PEt}_{3})_{2} + \mathrm{KH} \end{array}$$
(3)

Thus, although different mechanisms are involved,¹ the reactions of **1** and **2** with PEt₃ yield the same disubstituted *trans*-Cr(CO)₄(PEt₃)₂ derivative.

In this communication, we wish to report for the first time the reactions of **1** and **2** with trihalogenophosphines, PX_3 (X = Br, Cl), evidencing a great difference of reactivity between these two hydridocarbonylmeta-lates.

When **1** was reacted with 1 equiv of PBr₃ in THF at RT for 3 h in a Schlenk tube, a mixture of two new phosphorus complexes is formed which exhibits ³¹P{¹H} NMR signals at $\delta = -127.7$ and 95.8 ppm (ca. 1:2 ratio). PBr₃ ($\delta = 233.8$ ppm) was totally consumed. According to the assignments determined later (vide infra), this reaction can be represented by eq 4.

$$K^{+}[HCr(CO)_{5}]^{-} + PBr_{3} \xrightarrow{THF}_{RT}$$

$$1 \\ 1/3 Cr(CO)_{5}PH_{3} + 2/3 Cr(CO)_{5}PBr_{3} + KBr$$
(4)
$$3$$

$$4$$

To gain more information, the reaction of **1** with PBr₃ was performed at low temperature in THF- d_8 in a NMR tube and monitored by ³¹P and ¹H NMR. After mixing the precooled reagents (1:1) at ca. 100 K, the temperature of the probe was allowed to reach 193 K. After 0.5 h, the ³¹P NMR spectrum indicated the presence of unreacted PBr₃ (major compound) and of a unique new phosphorus compound, **3**, exibiting a well-defined quadruplet at $\delta = -127.7$ ppm (¹ $J_{P-H} = 344$ Hz). No trace of free PH₃ ($\delta_P = -242.4$ ppm) could be detected. The ¹H NMR spectrum indicated the total consumption of **1** ($\delta = -6.9$ ppm) and the appearance of a doublet at $\delta = 3.8$ ppm (¹ $J_{H-P} = 344$ Hz) corresponding to **3** (a small

 $^{^{\}dagger}\,\text{Dedicated}$ to Professor J. Barrans on the occasion of his 70th birthday.

^{*} Corresponding author. Fax: 33 5 61 555 30 03. E-mail: brunet@lcc-toulouse.fr.

⁽¹⁾ Part of the Ph.D. Thesis of E. Roblou. For Part 3, see: Brunet, J.-J.; Diallo, O.; Donnadieu, B.; Roblou, E. *Organometallics* **2002**, *21*, 3388–3394.

⁽²⁾ Basolo, F.; Pearson, R. G. *Mechanisms of Inorganic Reactions*; Wiley: New York, 1968. Basolo, F. *Inorg. Chim. Acta* **1981**, *50*, 65–70.

⁽³⁾ Albers, M. O.; Coville, N. J. Coord. Chem. Rev. 1984, 53, 227–259. Luth, T. Y. Coord. Chem. Rev. 1984, 60, 255–276.
(4) Darensbourg, D. J. In Advances in Organometallic Chemistry.

⁽⁴⁾ Darensbourg, D. J. In *Advances in Organometallic Chemistry*, Stone, F. G. A., West R., Eds.; Academic Press: New York, 1982; Vol. 21, pp 113–150.

⁽⁵⁾ Brunet, J.-J.; Chauvin, R.; Diallo, O.; Kindela, F.-B.; Leglaye, P.; Neibecker, D. *Coord. Chem. Rev.* **1998**, *178–180*, 331–351.

 ⁽⁶⁾ Darensbourg, M. Y.; Walker, N.; Burch, R. R. Inorg. Chem. 1978, 17, 52–56.

signal corresponding to **2** ($\delta = -19.5$ ppm) is also observed). Examination of literature data led us to conclude that 3 was the previously reported monosubstituted complex Cr(CO)₅PH₃.⁷ This assignment was confirmed by the ¹³C NMR spectrum of the reaction mixture at 193 K.⁸ Interestingly, the above ¹³C NMR spectrum also indicates the presence of $K^+[BrCr(CO)_5]^-$, 5, and of small amounts of 2, both identified by comparison with the ¹³C NMR spectra of authentic samples registered at 193 K.⁹ Furthermore a very minor signal is observed at $\delta = 215.5$ ppm. The latter does not correspond to Cr(CO)₅thf¹⁰ and may be tentatively assigned to $K^+(\mu$ -Br)[Cr(CO)₅]₂^{-.13} These observations are *qualitatively* summarized by eq 5.

$$\mathbf{I}^{\mathrm{HCr(CO)}_{5}]^{-} + \mathrm{PBr}_{3} \xrightarrow{\mathrm{THF}}_{193 \mathrm{K}}}_{\mathbf{I}^{0}} \mathrm{Cr(CO)}_{5}\mathrm{PH}_{3} + \mathrm{K}^{+}[\mathrm{BrCr(CO)}_{5}]^{-} (5)}_{\mathbf{3}}$$

Since the reaction did not seem to evolve at 193 K, the temperature was allowed to increase slowly. ³¹P NMR monitoring allowed the observation of the formation of a new phosphorus complex, **4** (δ = 95.8 ppm, s), starting when the temperature reached ca. 255 K, whereas the consumption of 2 apparently occurred only after reaching 273 K (¹H NMR analysis). Consumption of PBr₃ was complete at 293 K. The ³¹P NMR chemical shift of 4 corresponds to that of the monosubstituted Cr(CO)₅PBr₃ derivative.¹⁴ This assignment was confirmed by recording the ¹³C and ¹³C{³¹P} NMR spectra of pure 4 (vide infra), which exhibits two doublets (ca. 1:4 ratio) ($\delta_{trans-CO} = 217.8$ ppm, d, ${}^2J_{C-P} = 5$ Hz, and $\delta_{cis-CO} = 213.3$ ppm, d, ${}^{2}J_{C-P} = 14$ Hz,), in agreement with literature data.14

It thus appeared that **1** reacts with PBr₃ at 193 K to give selectively 3, with formation of unsaturated "Cr(CO)₅" species, stabilized mainly as 5. In contrast, in situ generated 2 does not react with PBr₃ at 193 K. The reaction starts only at higher temperatures to give Cr(CO)₅PBr₃, 4 (and perhaps some amounts of 3). Furthermore, it could be anticipated that PBr3 reacts with $K^+[BrCr(CO)_5]^-$ near 255 K, affording 4.

To verify the above hypothesis, we examined the reaction of PBr₃ with 5.15 The reaction of PBr₃ with 5

(1 equiv) in THF was started at 193 K and monitored by ³¹P NMR. As expected, no reaction occurred at this temperature. Allowing the temperature to increase slowly promoted the formation of 4 near 255 K, thus confirming our previous expectations. The consumption of PBr₃ was complete after a few hours at 298 K.

Owing to the formation of $Cr(CO)_5PH_3$ (eq 1), we also adapted the stoichiometry for the reaction of 1 with PBr₃. Reacting PBr₃ with 3 equiv of **1** in THF- d_8 at RT for 0.25 h promoted the total consumption of 1 (¹H NMR analysis) and the formation of 3 as the sole phosphorus complex (³¹P NMR analysis), thus suggesting a quantitative transformation (eq 6). The liberated "Cr(CO)₅" moeity is stabilized as 5 (13 C NMR analysis).

$$3K^{+}[HCr(CO)_{5}]^{-} + PBr_{3} \xrightarrow{THF, RT}_{0.25 h}$$

$$1$$

$$Cr(CO)_{5}PH_{3} + 2 K^{+}[BrCr(CO)_{5}]^{-} + KBr (6)$$

$$3$$

$$5$$

To try to detect some intermediate species, reaction 6 was performed using a large (100 fold) excess of PBr₃. Unfortunately, even at 193 K, no internediate could be evidenced. In particular, no trace of free PH₃ could be detected. Consequently, we also examined the reaction of PH₃ with 5. Bubbling slowly gaseous PH₃¹⁸ into a THF solution of 5 at 193 K clearly indicated (³¹P NMR and IR monitoring) that no reaction occurred at this temperature. The reaction of PH₃ with **5** started only when the temperature reached 293 K, generating 3 selectively. It thus appears that the formation of 3 at 193 K (reaction 5) does not involve free PH₃.

Although a little less reactive than PBr₃, PCl₃ similarly reacts with 1 to give 3. Interestingly, however, when the reaction of **1** with a 100-fold excess of PCl₃ was conducted in *toluene* at RT, ³¹P and ¹H NMR analyses allowed the observation of two intermediate carbonylchromium complexes, Cr(CO)₅PHCl₂ and Cr(CO)₅PH₂Cl.¹⁹ This result confirms that PH₃ is not formed before complexation on the carbonylchromium species and strongly suggests that the reaction starts by a tandem reduction-complexation of PCl₃ generating Cr(CO)₅PHCl₂, which is further reduced, step by step, to Cr(CO)₅PH₃.

For comparison, we also examined the reaction of 2 with PBr₃. Adding PBr₃ (1 equiv) to a THF-d₈ solution of **2** at 193 K in a NMR tube confirmed that **2** does not react with PBr₃ at this temperature (³¹P NMR analysis). The reaction started only when the temperature reached 293 K, affording selectively 4 (no trace of 3). PBr₃ was

⁽⁷⁾ The reported ³¹P NMR chemical shift for **3** is $\delta_P = -129.6$ ppm. The disubstituted *cis*-Cr(CO)₄(PH₃)₂ has also been described ($\delta_P = -121.5 \text{ ppm}, \delta_H = 3.7 \text{ ppm}, {}^1J_{H-P} = 317 \text{ Hz}$). Moser, E.; Fischer, E. O.; Bathelt, W.; Gretner, W.; Knauss, L.; Louis, E. *J. Organomet. Chem.*

¹⁹⁶⁹, *19*, 377–385. (8) The ¹³C{¹H} NMR spectrum of **3** exhibits two doublets in a 1:4 ratio ($\delta_{trans-CO}$ 221.6 ppm, ² J_{C-P} = 6 Hz and δ_{cis-CO} 216.6 ppm, ² J_{C-P} = 14 Hz).

^{(9) &}lt;sup>13</sup>C NMR for **5** (THF- d_8 at 193 K): $\delta_{trans-CO}$ 225.0 ppm and δ_{cls-CO} 217.2 ppm. ¹³C NMR for **2** (THF- d_8 at 193 K): $\delta_{trans-CO}$ 226.1 ppm and δ_{cls-CO} 221.3 ppm. (10) The ¹³C NMR data of Cr(CO)₅thf have never been reported,

probably because of its high instability in solution.¹¹ A solution of $Cr(CO)_6$ in THF- d_8 was irradiated for 1 h at $\lambda = 365$ nm. The IR spectrum of the above solution exhibits the expected main absoption bands (1936 and 1894 cm⁻¹)¹² together with that of unreacted Cr(CO)₆ (1977 cm⁻¹). The solution was immediadely cooled to ca. 193 K and the ¹³C NMR spectrum recorded at 193 K for 3 h. It exhibits signals at δ 212.9 ppm (Cr(CO)₆) and δ 220.8 ppm, tentatively assigned to the cis-CO of Cr(CO)5thf.

⁽¹¹⁾ Brown, R. A.; Dobson, G. R. Inorg. Chim. Acta 1972, 6, 65-71. (12) Arndt, L. W.; Bischoff, C. J.; Darensbourg, M. Y. Inorg. Synth. 1989, 26, 335-341.

⁽¹³⁾ Ruff, J. K. Inorg. Chem. 1968, 7, 1821-1825.

⁽¹⁴⁾ Davies, M. S.; Pierens, R. K.; Aroney, M. J. J. Organomet. Chem. **1993**, 458, 141-146.

⁽¹⁵⁾ Although [XCr(CO)₅]⁻ derivatives have been known for long time,¹⁶ the potassium salt K⁺[BrCr(CO)₅]⁻, 5, has never been described. Its preparation was adapted from that of $Et_4N^+[BrCr(CO)_5]^-$ by reacting **1** with CHBr₃ in THF.¹⁷ ¹³C NMR spectrum of **5** at 193 K (THF- d_8): 2 signals in 1:4 ratio, $\delta_{trans-CO}$ 225.0 ppm and δ_{cis-CO} 217.2 ppm.

⁽¹⁶⁾ Abel, E. W.; Butler, I. S.; Reid, J. G. J. Chem. Soc. 1963, 2068-2070.

⁽¹⁷⁾ Gibson, D. H.; Ahmed, F. U.; Phillips, K. R. Organometallics 1982. 1. 679-681.

⁽¹⁸⁾ PH₃ was generated by reaction of PCl₃ with LiAlH₄ according to: Gunn, S. R.; Green, L. G. *J. Phys. Chem.* **1961**, *65*, 779–783. (19) NMR data (toluene- d_8) for Cr(CO)₅PHCl₂: ³¹P, δ 158.8 ppm, d,

 $^{{}^{1}}J_{P-H} = 402$ Hz; ¹H, δ 7.63 ppm, d, ${}^{1}J_{H-P} = 402$ Hz, in agreement with J_{P-H} = 402 μZ, H, O 105 ppin, d, J_{H-P} = 402 μZ, in agreement with literature data.²⁰ NMR data (toluen- d_8) for Cr(CO)₅PH₂Cl: ³¹P, δ 51.2 ppm, t, ¹J_{P-H} = 356 HZ; ¹H, δ 5.68 ppm, d, ¹J_{H-P} = 356 HZ. (20) Bartmann, A.; Diemert, K.; Kuchen, W. J. Organomet. Chem.

^{1993, 453, 65-70.}

totally converted after 10 h at 293 K, whereas large amounts of **2** were still present. As expected, reacting **2** with 2 equiv of PBr₃ for 23 h at RT (eq 7) induced complete consumption of PBr₃ with formation of **4** as the sole carbonylchromium complex (^{13}C NMR analysis).

$$\begin{array}{c} \text{K}^{+}(\mu\text{-H})[\text{Cr(CO)}_{5}]_{2}^{-} + 2 \text{ PBr}_{3} \xrightarrow{\text{THF}} \\ 2 \\ \text{Cr(CO)}_{5}\text{PBr}_{3} \text{ KH} (7) \\ \end{array}$$

It is thus clear that **1** and **2** react quite differently with PX₃. The reaction of **1** may be viewed as a fast tandem reduction–complexation of PX₃ by the hydride, generating $Cr(CO)_5PHX_2$, which is further reduced by **1**, to finally afford $Cr(CO)_5PH_3$. The liberated " $Cr(CO)_5$ " species are stablized as K⁺[XCr(CO)₅]⁻.

In contrast, 2 does not react with PBr₃ as a hydride transfer agent. Therefore, it would be expected to react

like classical phosphines. Under the same conditions, **2** has been shown to react with PEt₃ to afford the disubstituted derivative $Cr(CO)_4(PEt_3)_2$, a reaction that involves the substitution of both a CO *and* the hydride ligand.^{1,6} The reaction of **2** with PBr₃ involves a completely different mechanism. Indeed, no CO substitution is observed in the final product, and the in situ disruption of **2** into " $Cr(CO)_5$ " and [HCr(CO)₅]⁻ is highly doubtful since the latter would have reacted with PBr₃ to give $Cr(CO)_5PH_3$ and $Cr(CO)_5PBr_3$ according to eq 4.

Work is in progress to gain more insight into the reaction mechanism of $K^+(\mu-H)[Cr(CO)_5]_2^-$ with trihalophosphines.

Acknowledgment. The Centre National de la Recherche Scientifique (France) is acknowledged for financial support.

OM0208063