An Approach to Catalyst Design: Cyclopentadienyl-Titanium Phosphinimide Complexes in **Ethylene Polymerization**

Douglas W. Stephan,*,† Jeffrey C. Stewart,† Frédéric Guérin,† Silke Courtenay,† James Kickham,† Emily Hollink,† Chad Beddie,† Aaron Hoskin,† Todd Graham,† Pingrong Wei,[†] Rupert E. v. H. Spence,[‡] Wei Xu,[‡] Linda Koch,[‡] Xiaoliang Gao, and Daryll G. Harrison

School of Physical Sciences, Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P, and NOVA Chemicals Corporation, Research & Technology Center, 2928 16 Street N.E., Calgary, Alberta, Canada T2E 7K7

Received November 19, 2002

A strategy for polymerization catalyst design has been developed based on the steric and electronic analogy of bulky phosphinimides to cyclopentadienyl ligands. To this end, the family of complexes of the form (Cp[†])TiCl₂(NPR₃) has been prepared and characterized. Alkyl and aryl derivatives of these species have also been synthesized, and a number have been evaluated for use as catalyst precursors in olefin polymerization. The polymerization of ethylene has been examined employing several types of cocatalyst activators. Trends and patterns in the structure-activity relationship are discussed, and the implications for catalyst design are evaluated.

Introduction

Strategies for the development of new homogeneous olefin polymerization catalysts have resulted in the synthesis and exploration of a variety of new and interesting early transition metal complexes.¹⁻³ For example, Ti and Zr complexes containing amido, 4-6 diamido, 7-12 amidinates, 13-15 imidophosphonamides, 16 pyridine-alkoxides, 17 aryloxides, 18-22 ketimides, 23,24 borol-

- * Corresponding author. Fax: 519-973-7098. E-mail: stephan@ uwindsor.ca.
 - University of Windsor.
 - [‡] NOVA Chemicals Corporation.
- (1) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem. **1999**, 38, 428-447.
 - (2) Hlatky, G. G. Coord. Chem. Rev. 2000, 199, 235-329.
 - (3) Hlatky, G. G. Chem. Rev. 2000, 100, 1347-1376.
- (4) Sinnema, P. J.; Okuda, J. J. Organomet. Chem. 2000, 598, 179-
- (5) Shab, S. A. A.; Dorn, H.; Voigt, A.; Roesky, H. W.; Parisini, E.; Schmidt, H. G.; Noltemeyer, M. Organometallics 1996, 15, 3176.
- (6) Nomura, K.; Fujii, K. *Organometallics* **2002**, *21*, 3042. (7) Lorber, C.; Donnadieu, B.; Choukroun, R. *Organometallics* **2000**,
- (8) Scollard, J. D.; McConville, D. H. J. Am. Chem. Soc. 1996, 118,
- (9) Scollard, J. D.; McConville, D. H.; Vittal, J. J. Organometallics **1995**, 14, 5478-5480.
- (10) Warren, T. H.; Schrock, R. R.; Davis, W. M. Organometallics **1998**, 17, 308-321.
- (11) Cloke, F. G. N.; Geldach, T. J.; Hitchcock, P. B.; Love, J. B. J.
- Organomet. Chem. **1996**, *506*, 343-345. (12) Bazan, G. C.; Cotter, W. D.; Komon, Z. J. A.; Lee, R. A.; Lachicotte, R. J. J. Am. Chem. Soc. 2000, 122, 1371-1380.
- (13) Jayaratne, K. C.; Sita, L. R. J. Am. Chem. Soc. 2000, 122, 958-959.
- (14) Jayaratne, K. C.; Koarron, R. J.; Hemmingsen, D. A.; Sita, L. R.; Babcock, R. *J. Am. Chem. Soc.* **2000**, *122*, 10490. (15) Richter, J.; Edelmann, F. T.; Noltemeyer, M.; Schmidt, H.-G.;
- Shmulinson, M.; Eisen, M. S. J. Mol. Catal. A: Chem. 1998, 130, 149-
- (16) Vollmerhaus, R.; Shao, P.; Taylor, N. J.; Collins, S. *Organometallics* **1999**, *18*, 2731–2733.
- (17) Doherty, S.; Errington, R. J.; Jarvis, A. P.; Collins, S.; Clegg, W.; Elsegood, M. R. J. *Organometallics* **1998**, *17*, 3408.

- lide, 25,26 boratabenzene, 27,28 pendant cyclopentadienyl borane ligands,²⁹ trimethylene,²⁸ cyclopentadienylborate,³⁰ diketimine,³¹ tropidinyl,³² tridentate,³³ and macrocyclic ligands³⁴ have been shown to exhibit appreciable catalytic activities. Nonetheless, perhaps the most commercially significant development since the advent of metallocene catalysts has been systems based on the so-called "constrained geometry catalyst" (CGC).^{35–43} This catalyst system evolved from a strategy of increas-
- (18) Nomura, K; Naga, N.; Miki, M.; Yanagi, K.; Imai, A. *Organo metallics* **1998**, *17*, 2152–2154.
- (19) Tsukahara, T.; Swenson, D. C.; Jordan, R. F. Organometallics **1997**, 16, 3303-3313.
- (20) Van Der Linden, A.; Schaverien, C. J.; Meijboom, N.; Ganter, C.; Orpen, A. G. J. Am. Chem. Soc. 1995, 117, 3008-3021.
- (21) Nomura, K.; Naga, N.; Miki, M.; Yanagi, K. Macromolecules
- (22) Antinolo, A.; Carrillo-Hermosilla, F.; Corrochano, A. E.; Fernandez-Baeza, J.; Lara-Sanchez, A.; Ribeiro, M. R.; Lanfranchi, M.; Otero, .; Pellinghelli, M. A.; Portela, M. F.; Saritos, J. V. Organometallics **2000**, 19, 2837.
- (23) McMeeking, J.; Gao, X.; Spence, R. E. v. H.; Brown, S. J.; Jeremic, D. NOVA Chemicals: USA 6114481, 2000.
- (24) Kretschmer, W. P.; Dijkhnis, C.; Meetsma, A.; Hessen, B. T.; Teuben, J. H. Chem. Commun. 2002, 608.
- (25) Bazan, G. C.; Schaefer, W. P.; Bercaw, J. E. Organometallics **1993**, 12, 2126.
- (26) Bazan, G. C.; Donnelly, S. J.; Ridriguez, G. J. Am. Chem. Soc. **1995**, 117, 2671-2672.
- (27) Bazan, G. C.; Rodriguez, G.; Ashe, A. J., III; Al-Ahmad, S.; Muller, C. J. Am. Chem. Soc. 1996, 118, 2291-2292.
- (28) Bazan, G. C.; Rodriguez, G. Organometallics 1997, 16, 2492-(29) Spence, R. E. v. H.; Piers, W. E. Organometallics 1995, 14,
- 4617-4624.
- (30) Sun, Y.; Spence, R. E. v. H.; Piers, W. E.; Parvez, M.; Yap, G. P. A. J. Am. Chem. Soc. 1997, 119, 5132-5143.
 (31) Vollmerhaus, R.; Rahim, M.; Tomaszewski, R.; Xin, S.; Taylor, N. J.; Collins, S. Organometallics 2000, 19, 2161-2169.
 (32) Skoog, S. J.; Mateo, C.; Lavoie, G. G.; Hollander, F. J.; Bergman, R. G. Organometallics 2000, 19, 1406-1421.
- (33) Okuda, J.; Eberle, T.; Spaniol, T. P.; Piquet-Faure, V. *J. Organomet. Chem.* **2000**, *591*, 127–137.

 (34) Fokken, S.; Spaniol, T. P.; Kang, H.-C.; Massa, W.; Okuda, J.
- Organometallics 1996, 15, 5069-5072.

ing the exposure of the metal center by the incorporation of a constrained chelating cyclopentadienyl-amide ligand.

In developing our own approach to catalyst design, we noted the work of Wolczanski et al.,44 who described the steric analogy between the tri-tert-butylmethoxide (tritox) and cyclopentadienyl ligands. In addition, we took notice of the electronic analogy between phosphinimide and cyclopentadienyl ligands described by Dehnicke et al.45-48 As phosphinimide ligands are structurally related to Wolczanski's "tritox", we recognized that bulky phosphinimides offer both steric and electronic analogies to the cyclopentadienyl ligand. Moreover, these ligands are easily modified, providing the opportunity for systematic studies of structure—activity relationships and they provide the powerful probe associated with ³¹P NMR spectroscopy. ⁴⁹ In this article, we detail the synthesis and characterization of a family of complexes of the form Cp[†]TiCl₂(NPR₃) that include such phosphinimide ligands. In addition, a number of alkyl and aryl derivatives are described. These species are shown to act as precursors to effective ethylene polymerization catalysts. This family of compounds yields active catalysts, although the levels of activity depend both on the precise details of the ligands and on the mode of activation. Trends in the structureproperty—activity relationships are evaluated and discussed. A preliminary account of some of the results presented herein has previously been published.⁵⁰

Experimental Section

General Data. All preparations were done under an atmosphere of dry, O₂-free N₂ employing both Schlenk line techniques and Innovative Technologies, Braun, or Vacuum Atmospheres inert atmosphere gloveboxes. Solvents were purified employing Grubbs' type column systems manufactured by Innovative Technology. ¹H and ¹³C{¹H} NMR spectra were recorded on Bruker Avance-300 and -500 spectrometers operating at 300 and 500 MHz, respectively. Trace amounts of protonated solvents were used as references, and chemical shifts in ppm are reported relative to SiMe₄. $^{31}P\{^{1}H\}$ NMR, ¹¹B{¹H} NMR, and ¹⁹F NMR spectra were recorded on a Bruker Avance-300 and are referenced to 85% H₃PO₄, saturated NaBH₄/H₂O, and 80% CFCl₃ in CDCl₃, respectively. Unless otherwise stated, all spectra were recorded at 25 °C in d₆-benzene. Guelph Chemical Laboratories performed combustion analyses. In a very few cases, despite repeated analyses and the use of added oxidant, C analyses yielded deviations from calculated values. We attribute this to partial formation of TiC during combustion of the Ti-organometallic derivatives. The compounds R₃PNSiMe₃, CpTiCl₃, Cp*TiCl₃, (indenyl)TiCl₃, $(t-BuC_5H_4)TiCl_3$, $(n-BuC_5H_4)TiCl_3$, $(indenyl)Ti(NPt-Bu_3)Cl_2$ (24), and (Indenyl)Ti(NPt-Bu₃)Me₂ (41) were prepared via published methods. 46,51,52 The precursor phosphines and N₃SiMe₃ were purchased from either the Strem Chemical or Aldrich Chemical Companies.

Synthesis of R_3 PNSiMe₃ (R = Et 1, Cy 2, i-Pr 3, t-Bu 4, Ph 5, p-MeC₆H₄ 6, p-CF₃C₆H₄ 7, p-FC₆H₄ 8, p-MeOC₆H₄ 9). These compounds were prepared in a fashion similar to that described in the literature for 5 with only minor modifications to the published procedure, other than substitution of the appropriate phosphine precursor. Thus, a single preparation is detailed. Me₃SiN₃ (2.95 g, 10.7 mmol) was added to 3.00 g (10.7 mmol) of Et₃P to give an off-white slush. Heating with stirring for 5 h at 80 °C initially produced a bubbling, light yellow liquid, which became a darker yellow, clear liquid after 20 min. Cooling yielded a light brown, waxy solid, which was recrystallized at −35 °C from MeCN (50 mL) to give 1.75 g (80%) of the cream-colored solid product 1. 31P{1H} NMR: 15.0. ¹H NMR: 1.12 (m, 6H, CH₂); 0.84 (m, 9H, Me); 0.34 (s, 9H, SiMe₃). ${}^{13}C\{{}^{1}H\}$ NMR: 21.9 (d, ${}^{1}J_{PC} = 67$ Hz, PCH_{2}); 6.4 (CH₂Me), 5.0 (SiMe₃). 2 (93%): ³¹P{¹H} NMR: 17.0. ¹H NMR: 1.88–1.09 (m, 33H, Cy); 0.43 (s, 9H, SiMe₃). ¹³C{¹H}: 37.1 (d, ${}^{1}J_{PC} = 48 \text{ Hz}, PCH$); 27.4 (d, ${}^{2}J_{PC} = 12 \text{ Hz}, CH_{2}$), 27.3, 26.9 (CH₂); 5.3 (SiMe₃). 3 (87%): ³¹P{¹H} NMR: 24.6. ¹H NMR: 1.62 (m, 3H, CHMe₂); 0.93 (m, 18H, CHMe₂); 0.34 (s, 9H, SiMe₃). ¹³C{¹H} NMR: 26.1 (d, ${}^{1}J_{PC} = 63$ Hz, PCHMe₂); 17.2 (PCHMe₂); 5.0 (SiMe₃). **4** (86%): ³¹P{¹H} NMR: 32.4. ¹H NMR: 1.17 (d, $^{3}J_{PH} = 13 \text{ Hz}, 27H, PCMe_{3}); 0.4 \text{ (s, 9H, Si}Me_{3}). \, ^{13}C\{^{1}H\} \text{ NMR}:$ 39.9 (d, ${}^{1}J_{PC} = 55 \text{ Hz}$, PCMe₃); 29.6 (PCMe₃); 4.8 (SiMe₃). Anal. Calcd for C₁₅H₃₆NPSi: C, 62.21; H, 12.56; N, 4.84. Found: C, 62.12; H, 12.40; N, 4.85. 5: ³¹P{¹H} NMR: -0.5. ¹H NMR: 7.72 (m, 6H, Ph); 7.03 (m, 9H, Ph); 0.36 (s, 9H, SiMe₃). ¹³C{¹H} NMR: 136.7, 135.4, 132.3 (d, ${}^{2}J_{PC} = 9$ Hz, Ph); 128.8 (d, ${}^{3}J_{PC}$ = 6 Hz, Ph); 4.43 (Si Me_3). **6** (93%): ${}^{31}P\{{}^{1}H\}$ NMR: 0.04. ${}^{1}H$ NMR: 7.75 (dd, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{PH} = 12$ Hz, 6H, $C_{6}H_{4}Me$); 6.92 (d, ${}^{3}J_{HH} = 8$ Hz, 6H, $C_{6}H_{4}Me$); 1.99 (s, 9H, $C_{6}H_{4}Me$); 0.42 (s, 9H, SiMe₃). ¹³C{¹H} NMR: 140.9, 134.2 (C₆H₄Me); 132.4 (d, ${}^{3}J_{PC} = 11 \text{ Hz}, C_{6}H_{4}Me); 129.1 \text{ (d, } {}^{2}J_{PC} = 13 \text{ Hz}, C_{6}H_{4}Me); 21.2$ (C₆H₄Me); 4.5 (SiMe₃). Anal. Calcd for C₂₄H₃₀NPSi: C, 73.62; H, 7.72; N, 3.58. Found: C, 72.90; H, 7.93; N, 3.88. 7 (92%): $^{31}P\{^{1}H\}$ NMR: -5.5. ^{1}H NMR: 7.38 (dd, $^{3}J_{HH} = 8$ Hz, $^{3}J_{PH} =$ 12 Hz, 6H, $C_6H_4CF_3$); 7.25 (d, $^3J_{HH} = 8$ Hz, 6H, $C_6H_4CF_3$); 0.27 (s, 9H, SiMe₃). ¹³C{¹H} NMR: 139.3 (C₆H₄CF₃), 137.9, 132.5 $(C_6H_4CF_3)$; 133.3 (d, ${}^2J_{PC} = 35$ Hz, $p-C_6H_4CF_3$); 125.5 (d, ${}^3J_{FC}$ = 13 Hz, m- C_6 H₄CF₃); 4.0 (SiMe₃). ¹⁹F NMR: 14.8. Anal. Calcd for C₂₄H₂₁F₉NPSi: C, 65.59; H, 4.81; N, 3.19. Found: C, 65.23; H, 4.55; N, 3.07. **8** (93%): ³¹P{¹H} NMR: -3.8. ¹H NMR: 7.41 (m, 6H, C_6H_4F); 6.69 (dd, $^3J_{HH} = 8$ Hz, $^3J_{PH} = 2$ Hz, 6H, C_6H_4F); 0.29 (9H, Si Me_3). ¹³C{¹H} NMR: 164.8 (d, ¹ $J_{FC} = 253$ Hz, C_6H_4-F); 134.4 (dd, ${}^2J_{PC} = 12$ Hz, ${}^3J_{FC} = 8$ Hz, o- C_6H_4); 131.5 (dd, ${}^{4}J_{FC} = 4$ Hz, ${}^{1}J_{PC} = 106$ Hz, $ipso\text{-}C_{6}H_{4}F$); 115.7 (dd, ${}^{3}J_{PC}$ = 13 Hz, ${}^{2}J_{FC}$ = 21 Hz, m-C₆H₄F); 4.2 (d, ${}^{3}J_{PC}$ = 4 Hz, Si Me_{3}). ^{19}F NMR: -30.6. Anal. Calcd for $C_{21}H_{21}F_3NPSi$: C, 62.51; H, 5.26; N, 3.47. Found: C, 62.55; H, 5.32; N, 3.20. 9 (89%): 31P- ${^{1}H}$ NMR: -0.7. ${^{1}H}$ NMR: 7.75 (dd, ${^{3}J_{HH}} = 8$ Hz, ${^{3}J_{PH}} = 12$ Hz, 6H, C_6H_4); 6.71 (dd, ${}^3J_{HH} = 8$ Hz, ${}^4J_{PH} = 2$ Hz, 6H, C_6H_4); 3.21 (s, 9H, MeO); 0.45 (s, 9H, SiMe₃). ¹³C{¹H} NMR: 162.0 (d, ${}^{4}J_{PC} = 4$ Hz, $p - C_{6}H_{4}$); 134.1 (d, ${}^{3}J_{PC} = 12$ Hz, $m - C_{6}H_{4}$); 128.9, 113.9 (d, ${}^{2}J_{PC} = 13$ Hz); 54.7 (OMe); 4.64 (SiMe₃).

⁽³⁵⁾ Shapiro, P. J.; Bunel, E.; Schaefer, W. P.; Bercaw, J. E. Organometallics 1990, 9, 867-869.

⁽³⁶⁾ Chen, Y.-X.; Marks, T. J. Organometallics 1997, 16, 3649-3657. (37) Tian, S.; Arredondo, V. M.; Stern, C. L.; Marks, T. J. Organo-metallics 1999, 18, 2568–2570.

⁽³⁸⁾ Deck, P. A.; Beswick, C. L.; Marks, T. J. J. Am. Chem. Soc. **1998**, 120, 1772-1784.

⁽³⁹⁾ Woo, T. K.; Margl, P. M.; Lohrenz, J. C. W.; Blochl, P. E.;
Ziegler, T. J. Am. Chem. Soc. 1996, 118, 13021–13030.
(40) Shapiro, P. J.; Cotter, W. D.; Schaefer, W. P.; Labinger, J. A.;

Bercaw, J. E. *J. Am. Chem. Soc.* **1994**, *116*, 4623–4640. (41) Devore, D. D.; Timmers, F. J.; Hasha, D. L.; Rosen, R. K.;

Marks, T. J.; Deck, P. A.; Stern, C. L. Organometallics 1995, 14, 3132-

⁽⁴²⁾ Lindsay, K. F. Mod. Plast. 1993, 82.(43) Stevens, J. C. In Catalyst Design for Taylor-made Polyolefins, Studies in Surface Science and Catalysis; Soga, K., Terano, M., Eds.; Elsevier: Amsterdam, 1994; Vol. 89, pp 277–284. (44) Lubben, T. V.; Wolczanski, P. T.; Van Duyne, G. D. Organo-

metallics 1984, 3, 977-983.

⁽⁴⁵⁾ Anfang, S.; Harms, K.; Weller, F.; Borgmeier, O.; Lueken, H.; Schilder, H.; Dehnicke, K. *Z. Anorg. Allg. Chem.* **1998**, *624*, 159–166. (46) Dehnicke, K.; Weller, F. *Coord. Chem. Rev.* **1997**, *158*, 103– 169.

⁽⁴⁷⁾ Dehnicke, K.; Krieger, M.; Massa, W. Coord. Chem. Rev. 1999, $18\hat{2}$, 19-65.

⁽⁴⁸⁾ Dehnicke, K.; Straehle, J. Polyhedron 1989, 8, 707-726.

⁽⁴⁹⁾ Kickham, J. E.; Guerin, F.; Stephan, D. W. J. Am. Chem. Soc. **2002**, 124, 11486-11494.

⁽⁵⁰⁾ Stephan, D. W.; Stewart, J. C.; Guerin, F.; Spence, R. E. v. H.; Xu, W.; Harrison, D. G. Organometallics 1999, 18, 1116-1118.

⁽⁵¹⁾ Samuel, E.; Rausch, M. D. J. Am. Chem. Soc. 1973, 95, 6263. (52) Guerin, F.; Beddie, C. L.; Stephan, D. W.; Spence, R. E. v. H.; Wurz, R. *Organometallics* **2001**, *20*, 3466–3471.

Synthesis of CpTi(NPR₃)Cl₂ (R = Et 10, Cy 11, *i*-Pr 12, t-Bu 13, Ph 14, p-MeC₆H₄ 15, p-CF₃C₆H₄ 16, p-FC₆H₄ 17, p-MeOC₆H₄ 18), (Cp')Ti(NPR₃)Cl₂ (Cp' = Me₃SiC₅H₄, R = *i*-Pr 19, *t*-Bu 20; $Cp' = Me_5C_5$, R = i-Pr 21, *t*-Bu 22; Cp' =indenyl, R = i-Pr 23; $Cp' = t-BuC_5H_4$, R = Cy 25, i-Pr 26, t-Bu 27; Cp' = n-Bu C_5H_4 , R = t-Bu 28; $Cp' = Ph_4C_5H$, R = t-Bu 27; $Cp' = Ph_4C_5H$, R = t-Bu 28; $Cp' = Ph_4C_5H$, R = t-Bu 29; $Cp' = Ph_4C_5H$, R = t-Bu 20; $Cp' = Ph_4C_5H$, R = t-Bu 20; Cp' = t-Bu t-Bu 29). These compounds were prepared employing similar procedures, and thus only one representative preparation is detailed. To 515 mg (2.35 mmol) of CpTiCl₃ and 820 mg (2.35 mmol) of 5 was added 50 mL of benzene to give a cloudy yellow mixture. Heating for 4 h at 80 °C gave a clear, deep yellow solution. Cooling and removal of volatiles gave 1.03 g (95%) of **14** as a deep yellow solid product. **10** (89%): ³¹P{¹H} NMR: 26.4. ¹H NMR: 6.42 (s, 5H, Cp); 0.95 (m, 6H, CH₂); 0.72 (m, 9H, Me). ${}^{13}C{}^{1}H}$ NMR: 114.9 (Cp), 18.9 (d, ${}^{1}J_{PC} = 63$ Hz, $P\mathit{C}H_2$), 5.8 ($CH_2\mathit{Me}$). Anal. Calcd for $C_{11}H_{20}Cl_2NPTi$: C, 41.81; H, 6.38; N, 4.43. Found: C, 41.52; H, 6.49; N, 4.02. 11 (94%): ³¹P{¹H} NMR: 28.5. ¹H NMR: 6.47 (s, 5H, Cp); 1.74–1.02 (m, 33H, Cy). ${}^{13}C\{{}^{1}H\}$ NMR: 114.9 (*C*p); 35.8 (d, ${}^{1}J_{PC} = 54$ Hz, P-CH); 27.0, 26.8, 26.7, 26.1 (Cy). Anal. Calcd for C23H36Cl2-NPTi: C, 58.00; H, 7.62; N, 2.94. Found: C, 57.77; H, 7.35; N, 2.78. **12** (90%): ³¹P{¹H} NMR: 36.9. ¹H NMR: 6.42 (s, 5H, Cp); 1.65 (m, 3H, CHMe₂); 0.87 (dd, ${}^{3}J_{HH} = 7$ Hz, ${}^{2}J_{PH} = 15$ Hz, 18H, CH Me_2). ¹³C{¹H} NMR: 114.9 (Cp); 27.6 (d, ¹ J_{PC} = 56 Hz, P-CH), 16.5 (CHMe2). Anal. Calcd for C14H26Cl2NPTi: C, 46.95; H, 7.32; N, 3.91. Found: C, 46.45; H, 7.11; N, 3.76. **13** (92%): ³¹P{¹H} NMR: 45.2. ¹H NMR: 6.46 (s, 5H, Cp); 1.14 (d, ${}^{2}J_{PH} = 14 \text{ Hz}, 27\text{H}, PCMe_3$). ${}^{13}C\{{}^{1}H\}$ NMR: 115.0 (*Cp*); 41.9 (d, ${}^{1}J_{PC} = 44 \text{ Hz}$, PCMe₃); 29.4 (PCMe₃). Anal. Calcd for C₁₇H₃₂-Cl₂NPTi: C, 51.02; H, 8.06; N, 3.50. Found: C, 50.87; H, 7.89; N, 3.22. 14: ³¹P{¹H} NMR: 2.7. ¹H NMR: 7.67 (m, 6H, Ph); 6.98 (m, 9H, Ph); 6.19 (s, 5H, Cp). ¹³C{¹H} NMR: 132.6, 130.4, 129.5 (*Ph*); 129.0 (d, ${}^{2}J_{PC} = 12$ Hz, Ph); 115.3 (Cp). Anal. Calcd for C₂₃H₂₀NPCl₂Ti: C, 60.03; H, 4.38; N, 3.04. Found: C, 59.70; H, 4.38; N, 3.04. **15** (98%): ³¹P{¹H} NMR: 3.7. ¹H NMR: 7.71 (dd, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{PH} = 13$ Hz, 6H, $C_{6}H_{4}$); 6.86 (dd, ${}^{4}J_{PH} = 3$ Hz, 6H, C_6H_4); 6.27 (s, 5H, Cp); 1.92 (s, 9H, Me). $^{13}C\{^1H\}$ NMR: 143.2, 126.5 (C_6H_4); 132.9 (d, ${}^3J_{PC} = 11$ Hz, C_6H_4), 129.8 $(d, {}^{2}J_{PC} = 13 \text{ Hz}, C_{6}H_{4}), 115.2 (Cp); 21.3 (Me). \text{ Anal. Calcd for}$ C₂₆H₂₆NPCl₂Ti: C, 62.18; H, 5.22; N, 2.79. Found: C, 61.85; H, 5.17; N, 2.60. 16 (89%): ³¹P{¹H) NMR: -3.0. ¹H NMR: 7.44 (dd, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{PH} = 13$ Hz, 6H, $C_{6}H_{4}$); 7.27 (dd, ${}^{4}J_{PH} = 2$ Hz, 6H, C_6H_4); 6.18 (s, 5H, Cp). ¹³C{¹H} NMR: 133.6, 132.8, 128.5 (C_6H_4); 133.0 (d, ${}^3J_{PC} = 11$ Hz, C_6H_4); 126.2 (d, ${}^2J_{FC} =$ 10 Hz, p-C₆H₄); 116.1 (Cp). ¹⁹F{¹H} NMR: 14.6. Anal. Calcd for C₂₆H₁₇Cl₂F₉NPTi: C, 47.02; H, 2.58; N, 2.11. Found: C, 46.70; H, 2.19; N, 2.40. 17: (91%). ³¹P{¹H} NMR: -0.6. ¹H NMR: 7.40 (m, 6H, C_6H_4); 6.66 (td, ${}^3J_{HH} = 8$ Hz, ${}^3J_{PH} = 2$ Hz, $^{2}J_{\text{FH}} = 8 \text{ Hz}, 6\text{H}, C_{6}H_{4}); 6.18 \text{ (s, 5H, Cp)}. \ ^{13}\text{C}\{^{1}\text{H}\} \text{ NMR}: 165.6$ (d, ${}^{1}J_{CF} = 252$ Hz, $C_{6}H_{4}-F$); 135.1 (dd, ${}^{2}J_{PC} = 11$ Hz, ${}^{3}J_{FC} =$ 10 Hz, o-C₆H₄); 125.6 (d, ${}^{1}J_{PC} = 107$ Hz, ipso-C₆H₄); 116.5 (dd, ${}^{3}J_{PC} = 13 \text{ Hz}, {}^{2}J_{FC} = 21 \text{ Hz}, m\text{-}C_{6}H_{4}F); 115.5 (Cp). {}^{19}F\{{}^{1}H\}$ NMR: -26.7. Anal. Calcd for C₂₃H₁₇F₃NPTiCl₂: C, 53.73; H, 3.33; N, 2.72. Found: C, 53.58; H, 3.37; N, 2.41. 18 (90%): ³¹P-{¹H} NMR: 3.4. ¹H NMR: 7.73 (dd, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{PH} = 12$ Hz, 6H, C_6H_4); 6.69 (dd, ${}^4J_{PH} = 2$ Hz, 6H, C_6H_4); 6.30 (s, 5H, Cp); 3.19 (s, 9H, OMe). ${}^{13}C\{{}^{1}H\}$ NMR: 163.3 (C_6H_4 -OMe); 134.7 (d, ${}^{1}J_{PC} = 11 \text{ Hz}$, $ipso\text{-}C_{6}H_{4}$); 120.8 ($C_{6}H_{4}$); 114.7 (d, ${}^{2}J_{PC}$ = 13 Hz, C_6H_4); 115.1 (*Cp*); 54.9 (O*Me*). Anal. Calcd for C₂₆H₂₆O₃NPCl₂Ti: C, 56.75; H, 4.76; N, 2.55. Found: C, 56.82; H, 5.25; N, 2.52. 19: ³¹P{¹H} NMR: 36.6. ¹H NMR: 6.81 (s, 2H, C₅H₄); 6.55 (s, 2H, C₅H₄); 1.66 (m, 3H, PCHMe₂); 0.88 (dd, ${}^{3}J_{HH} = 7 \text{ Hz}, {}^{3}J_{PH} = 12 \text{ Hz}, 18H, PCH}Me_{2}$; 0.50 (s, 9H, Si Me_{3}). ¹³C{¹H} NMR: 126.6, 124.0, 115.1 (*Cp*); 25.6 (d, ${}^{1}J_{PC} = 54$ Hz, PCHMe₂); 16.6 (PCHMe₂); 0.05 (SiMe₃). Anal. Calcd for C₁₇H₃₄-Cl₂NPSiTi: C, 47.45; H, 7.96; N, 3.26. Found: C, 47.23; H, 7.79; N, 3.04. **20** (91%): ³¹P{¹H} NMR: 45.4. ¹H NMR: 6.83 (s, 2H, Cp); 6.58 (s, 2H, Cp); 1.15 (d, ${}^{3}J_{PH} = 14$ Hz, 27H, PCMe₃); 0.52 (s, 9H, SiMe₃). ¹³C{1H} NMR: 126.6, 124.5, 114.4 (Cp); 41.9 (d, ${}^{1}J_{PC} = 44 \text{ Hz}$, $PCMe_3$); 29.5 ($PCMe_3$); 0.05 ($SiMe_3$). Anal. Calcd for C₂₀H₄₀NPSiTiCl₂: C, 50.85; H, 8.54; N, 2.97. Found: C, 50.72; H, 8.45; N, 2.95. 21 (93%): ³¹P{¹H} NMR: 34.5. ¹H NMR: 2.20 (s, 15H, C₅Me₅); 1.81 (m, 3H, PCHMe₂); 0.97 (m, 18H, PCHMe₂). ¹³C{¹H} NMR: 125.5 (C₅Me₅); 26.2 (d, ${}^{1}J_{PC} = 56 \text{ Hz}$, P CHMe₂); 16.9 (PCHMe₂); 13.1 (C₅Me₅). Anal. Calcd for $C_{19}H_{36}Cl_2NPTi$: C, 53.29; H, 8.47; N, 3.27. Found: C, 53.45; H, 8.83; N, 3.14. **22** (73%): ³¹P{¹H} NMR: 46.0. ¹H NMR: 2.18 (s, 15H, C_5Me_5); 1.26 (d, $^3J_{PH} = 13$ Hz, 27H, PC Me_3). ¹³C{¹H} NMR: 125.2 (C_5Me_5); 41.8 (d, ¹ $J_{PC} = 44$ Hz, PCMe₃); 29.8 (PCMe₃); 13.1 (C₅Me₅). Anal. Calcd for C₂₂H₄₂-Cl₂NPTi: C, 56.18; H, 9.00; N, 2.98. Found: C, 56.39; H, 9.38; N, 3.04. 23 (88%): ³¹P{¹H} NMR: 37.1. ¹H NMR: 7.78 (m, 2H, Ind); 7.18 (m, 2H, Ind); 6.79 (m, 1H, Ind); 6.61 (m, 2H, Ind); 1.60 (m, 3H, CHMe₂); 0.85 (m, 18H, CHMe₂). ¹³C{¹H} NMR: 129.9, 125.7, 126.3, 115.8, 105.3 (Ind); 25.5 (d, ${}^{1}J_{PC} =$ 56 Hz, PCHMe2); 16.5 (PCHMe2). Anal. Calcd for C18H28Cl2-NPTi: C, 52.97; H, 6.91; N, 3.43. Found: C, 52.68; H, 6.49; N, 3.22. **25** (93%): ³¹P{¹H} NMR: 29.4. ¹H NMR: 6.55 (m, 2H, Cp); 6.44 (m, 2H, Cp); 1.85 (br d, 6H, Cy); 1.67 (br s, 6H, Cy); 1.55 (br m, 6H, Cy); 1.49 (s, 9H, CMe₃); 1.44 (br m, 6H, Cy); 1.16 (br m, 9H, Cy). ¹³C{¹H} NMR: 142.5 (t-BuC₅H₄); 115.2, 111.7 (*Cp*); 35.9 (d, ${}^{1}J_{PC} = 55 \text{ Hz}$, P*C*H); 26.9 (d, ${}^{2}J_{PC} = 12 \text{ Hz}$, CH₂); 33.0 (CMe₃), 31.5 (CMe₃); 26.7, 26.6 (m, CH₂). Anal. Calcd for C₂₇H₄₆Cl₂NPTi; C, 60.68; H, 8.68; N, 2.62. Found: C, 60.39; H, 8.56; N, 2.52. 26 (95%): ³¹P{¹H} NMR: 38.3. ¹H NMR: 6.47 (m, 2H, Cp); 6.36 (m, 2H, Cp); 1.81 (d of sept, ${}^{3}J_{HH} = 7$ Hz, ${}^{2}J_{PH} = 11 \text{ Hz}, 3H, PCHMe_{2}; 1.46 \text{ (s, 9H, C}Me_{3}); 0.99 \text{ (dd, } {}^{3}J_{PH}$ = 16 Hz, ${}^{3}J_{HH}$ = 7 Hz, 18H, PCHMe₂). ${}^{13}C\{{}^{1}H\}$ NMR: 142.5 $(t-\text{Bu}\,C_5\text{H}_4)$; 115.1, 111.7 ($C_5\text{H}_4$); 33.0 ($C\text{Me}_3$), 31.5 (CMe_3), 25.8 (d, ${}^{1}J_{PC} = 56 \text{ Hz}$, PCHMe₂), 16.7 (s, CHMe₂). Anal. Calcd for C₁₈H₃₄Cl₂NPTi: C, 52.19; H, 8.27; N, 3.38. Found: C, 52.09; H, 8.19; N, 3.32. 27 (91%): ³¹P{¹H} NMR: 45.8 (s). ¹H NMR: 6.56 (m, 2H, Cp); 6.42 (m, 2H, Cp); 1.52 (s, 9H, CMe₃); 1.19 (d, ${}^{3}J_{PH} = 14 \text{ Hz}, \bar{2}7H, PCMe_{3}). {}^{13}C\{{}^{1}H\} \text{ NMR}: 142.5 (t-Bu}C_{5}H_{4});$ 116.0, 110.8 (C_5H_4); 42.0 (d, ${}^1J_{PC} = 43$ Hz, $PCMe_3$); 33.1 (CMe_3); 31.5 (CMe₃); 29.6 (PCMe₃). Anal. Calcd for C₂₁H₄₀Cl₂NPTi; C, 55.28; H, 8.84; N, 3.07. Found: C, 55.35; H, 8.93; N, 2.91. 28 (91%): ${}^{31}P\{{}^{1}H\}$ NMR (C_6D_6): 45.0 (s). ${}^{1}H$ NMR (C_6D_6): 6.44 (dd, 2H, C_5H_4 , ${}^3J_{H-H} = 3$ Hz, ${}^4J_{H-H} = 3$ Hz), 6.31 (dd, 2H, C_5H_4 , ${}^{3}J_{H-H} = 3$ Hz, ${}^{4}J_{H-H} = 3$ Hz), 2.90 (t, 2H, ${}^{3}J_{H-H} = 8$ Hz, $CH_2C_5H_4$), 1.63 (tt, 2H, ${}^3J_{H-H} = 8$ Hz, ${}^3J_{H-H} = 8$ Hz, CH_2CH_2 -CH₂), 1.33 (tq, 2H, ${}^{3}J_{H-H} = 8$ Hz, ${}^{3}J_{H-H} = 7$ Hz, CH₃CH₂), 1.17 (t, 27H, ${}^{3}J_{P-H} = 14$ Hz, PCMe₃), 0.87 (t, 3H, ${}^{3}J_{H-H} = 7$ Hz, Me), ${}^{13}C\{{}^{1}H\}$ NMR: 135.4 (s, C_4H_4CR , I), 118.0 (s, C_4H_4CR), 113.4 (s, C_4H_4CR), 40.3 (d, ${}^1J_{P-C}=44$ Hz, CMe_3), 33.3 (s, $CH_2C_5H_4$), 31.0 (s, $CH_2CH_2CH_2$), 29.9 (s, $PCMe_3$), 23.3 (s, $CH_3-CH_2CH_3$), 29.9 (s, $PCMe_3$), 20.3 (s, $PCMe_3$), 29.9 (s, $PCMe_3$), 20.3 (s, $PCMe_3$ CH₂), 14.5 (s, CH₃CH₂) Anal. Calcd: C, 55.28; H, 8.84; N, 3.07. Found: C, 55.42; H, 9.06; N, 3.23. **29** (63%): ${}^{31}P\{{}^{1}H\}$ NMR: 48.1. ¹H NMR: 7.84 (m, 8H, Ph); 7.56 (s, 1H, Cp); 7.09 (m, 4H, Ph); 6.95 (m, 6H, Ph); 6.90 (m, 2H, Ph); 0.91 (d, ${}^{3}J_{PH} = 14$ Hz, 27H, PCMe₃). ¹³C{¹H} NMR (partial): 135.1, 134.9, 132.9, 130.4, 129.1, 128.5, 127.9, 127.2, 105.9 (Cp and Ph); 42.2 (d, ${}^{1}J_{PC} = 43 \text{ Hz}, PCMe_{3}; 29.4 (PCMe_{3}). \text{ Anal. Calcd for } C_{41}H_{48}$ Cl₂NPTi: C, 69.89; H, 6.87; N, 1.99. Found: C, 69.62; H, 6.52; N. 1.75.

Synthesis of CpTi(NPR₃)Me₂ (R = Cy 30, *i*-Pr 31, *t*-Bu 32, Ph 33, $p\text{-MeC}_6H_4$ 34, $p\text{-CF}_3C_6H_4$ 35, $p\text{-FC}_6H_4$ 36, p-MeOC₆H₄ 37), Cp'Ti(NPR₃)Me₂ (Cp' = Me₅C₅, R = i-Pr 38, t-Bu 39; Cp' = Indenyl, R = i-Pr 40; Cp' t-BuC₅H₄, R = Cy 42, *i*-Pr 43, *t*-Bu 44; $Cp' = Ph_4C_5H$, R = t-Bu 45), $CpTi(NPR_3)Bn_2$ (R = Cy 46, *i*-Pr 47, *t*-Bu 48, Ph 49, p-MeC₆H₄ 50, p-CF₃C₆H₄ 51, p-FC₆H₄ 52, p-MeOC₆H₄ 53), CpTi(NPR₃)Ph₂ (R = Cy 54, *i*-Pr 55, *t*-Bu 56, Ph 57), CpTi- $(NPR_3)(C_6H_33,5-(CF_3)_2)_2$ (R = Cy 58, Ph 59), and CpTi- $(NPPh_3)(C_6H-2,3,4,5-F_4)_2$ (60). These compounds were prepared employing similar procedures using the appropriate starting material and the corresponding alkyl/arylating agent. Thus only one representative preparation is detailed. To a slightly cloudy, yellow 5 mL benzene solution of 150 mg (0.326 mmol) of **14** was added 0.47 mL (0.658 mmol) of a 1.4 M ether solution of MeLi. After stirring for 20 min, the mixture became more cloudy and dark yellow-gray in color. Removal of benzene

gave a yellow-gray solid. The solid was extracted with 4 imes 4mL of hexane, and the extracts were filtered to give a clear, deep yellow solution. Evaporation of hexane gave 82 mg (60%) of 33 as a deep yellow solid product. 30 (95%): ³¹P{¹H} NMR: 14.8. ¹H NMR: 6.24 (s, 5H, Cp); 1.92–1.05 (br m, 33H, Cy); 0.70 (s, 6H, TiMe). 13 C $\{^{1}$ H $\}$ NMR: 110.5 (Cp), 39.5 (TiMe), 36.8 (d, ${}^{1}J_{PC} = 57$ Hz, $PCMe_3$); 27.3, 27.1, 26.5. Anal. Calcd for C₂₅H₄₄NPTi: C, 68.64; H, 10.14; N, 3.20. Found: C, 68.32; H, 9.79; N, 3.12. **31** (91%): ³¹P{¹H} NMR: 22.5. ¹H NMR: 6.20 (s, 5H, Cp); 1.67 (m, 3H, PCHMe₂); 0.93 (dd, ${}^{3}J_{PH} = 14$ Hz, ${}^{3}J_{HH} = 7$ Hz, 18H, PCHMe₂); 0.96 (s, 6H, TiMe). ${}^{13}C\{{}^{1}H\}$ NMR: 110.5 (*Cp*); 39.6 (Ti*Me*); 26.2 (d, ${}^{1}J_{PC} = 57$ Hz, P*C*HMe₂); 16.9 (PCHMe2). Anal. Calcd for C16H32NPTi: C, 60.57; H, 10.17; N, 4.41. Found: C, 60.11; H, 9.82; N, 4.17. 32: (97%). $^{31}P\{^{1}H\}$ NMR: 31.3. ^{1}H NMR: 6.22 (s, 5H, Cp); 1.20 (d, $^{3}J_{PH}$ = 13 Hz, 27H, PC Me_3); 0.67 (s, 6H, TiMe). ¹³C{¹H} NMR: 110.8 (Cp); 41.3 (d, ${}^{1}J_{PC} = 47 \text{ Hz}$, $PCMe_3$); 39.9 (TiMe); 29.6 (PCMe₃). Anal. Calcd for C₁₉H₃₈NPTi: C, 63.50; H, 10.66; N, 3.90. Found: C, 63.12; H, 10.54; N, 3.93. **33**: ³¹P{¹H} NMR: -7.4. ¹H NMR: 7.77 (m, 6H, Ph); 7.03 (m, 9H, Ph); 6.03 (s, 5H, Cp); 0.94 (s, 6H, TiMe). ${}^{13}C\{{}^{1}H\}$ NMR: 133.3, 131.5, 132.4 (d, ${}^{3}J_{PC}$ = 9 Hz); 128.6 (d, ${}^{2}J_{PC}$ = 12 Hz); 111.2 (Cp); 43.2 (TiMe). Anal. Calcd for C25H26NPTi: C, 71.60; H, 6.25; N, 3.34. Found: C, 70.92; H, 6.26; N, 3.31. **34** (80%): ³¹P{¹H} NMR: -7.3. ¹H NMR: 7.79 (dd, ${}^{3}J_{HH} = 8$ Hz, ${}^{2}J_{PH} = 12$ Hz, 6H, Ph); 6.91 (dd, ${}^{3}J_{PH} = 2$ Hz, 6H, Ph); 6.10 (s, 5H, Cp); 1.96 (s, 9H, Me); 0.96 (s, 6H, TiMe). ${}^{13}C\{{}^{1}H\}$ NMR: 141.8, 132.5 (d, ${}^{3}J_{PC} = 11$ Hz, C_6H_4); 131.2, 129.3 (d, ${}^2J_{PC} = 12$ Hz, C_6H_4); 111.0 (*Cp*), 42.5 (s, TiMe); 21.2 (Ph-Me). Anal. Calcd for C₂₈H₃₂NPTi: C, 72.89; H, 6.99; N, 3.04. Found: C, 73.11; H, 7.15; N, 3.02. 35 (71%): $^{31}P\{^{1}H\}$ NMR: -13.2. ^{1}H NMR: 7.46 (dd, $^{3}J_{HH} = 8$ Hz, $^{2}J_{PH} =$ 12 Hz, 6H, C_6H_4); 7.26 (dd, $^3J_{HH} = 8$ Hz, $^3J_{PH} = 2$ Hz, 6H, C_6H_4); 6.00 (s, 5H, Cp); 0.89 (s, 6H, TiMe). ¹³C{¹H} NMR: 136.8 $(d, {}^{1}J_{PC} = 98 \text{ Hz}, ipso-C_{6}H_{4}); 133.8 (d, {}^{2}J_{PC} = 34 \text{ Hz}, o-C_{6}H_{4});$ 132.5 (d, ${}^{3}J_{PC} = 9$ Hz, m- $C_{6}H_{4}$); 125.7 (q, ${}^{1}J_{FC} = 271$ Hz, Ph-CF₃); 122.3 (p-C₆H₄), 111.6 (Cp); 46.0 (TiMe). ¹⁹F NMR: 14.8. Anal. Calcd for C₂₈H₂₃F₉NPTi: C, 53.95; H, 3.72; N, 2.25. Found: C, 53.52; H, 3.41; N, 2.04. **36** (71%): ³¹P{¹H} NMR: -10.9. ¹H NMR: 7.47 (m, 6H, C_6H_4); 6.70 (ddd, $^3J_{HH} = 8$ Hz, ${}^{2}J_{PH} = 2$ Hz, ${}^{3}J_{FH} = 8$ Hz, 6H, $C_{6}H_{4}$); 6.02 (s, 5H, Cp); 0.86 (s, 6H, TiMe). ${}^{13}C\{{}^{1}H\}$ NMR: 165.1 (d, ${}^{1}J_{FC} = 250$ Hz, $C_{6}H_{4}-F$); 134.7 (dd, ${}^{2}J_{PC} = 10 \text{ Hz}$, ${}^{3}J_{FC} = 9 \text{ Hz}$, $C_{6}H_{4}$); 129.4, 116.0 (dd, $^{2}J_{FC} = 21 \text{ Hz}, \, ^{3}J_{PC} = 12 \text{ Hz}, \, C_{6}H_{4}); \, 111.2 \, (Cp); \, 44.1 \, (\text{Ti}Me). \, ^{19}\text{F}$ NMR: -29.1. Anal. Calcd for $C_{25}H_{23}F_3NPTi$: C, 63.44; H, 4.90; N, 2.96. Found: C, 63.26; H, 4.67; N, 2.79. **37** (73%): ³¹P{¹H} NMR: -7.9. ¹H NMR: 7.79 (dd, $^{3}J_{HH} = 7$ Hz, $^{2}J_{PH} = 12$ Hz, 6H, C_6H_4); 6.71 (dd, ${}^3J_{PH} = 2$ Hz, 6H, C_6H_4); 6.15 (s, 5H, Cp); 3.18 (s, 9H, OMe); 0.99 (s, 6H, TiMe). ¹³C{¹H} NMR: 162.5 (OC_6H_4) ; 134.3 (d, ${}^2J_{PC} = 11$ Hz, o-C₆H₄); 125.7 (m-C₆H₄); 114.2 (d, ${}^{1}J_{PC} = 13$ Hz, $ipso\text{-}C_{6}H_{4}$); 110.9 (*Cp*); 54.8 (O*Me*); 41.9 (TiMe). Anal. Calcd for C₂₈H₃₂NO₃PTi: C, 66.02; H, 6.33; N, 2.75. Found: C, 65.67; H, 6.27; N, 2.82. 38 (83%): ³¹P{¹H} NMR: 20.7. ¹H NMR: 2.04 (s, 15H, C₅Me₅); 1.85 (m, 3H, $PCHMe_2$); 1.06 (dd, ${}^3J_{PH} = 14 \text{ Hz}$, ${}^3J_{HH} = 7 \text{ Hz}$, 18H, $PCHMe_2$); 0.29 (s, 6H, TiMe). ¹³C{¹H} NMR: 118.1 (C₅Me₅); 41.6 (TiMe); 26.9 (d, ${}^{1}J_{PC} = 57.5 \text{ Hz}$, P CHMe₂); 17.3 (PCHMe₂); 12.2 (C₅Me₅). Anal. Calcd for C₂₁H₄₂NPTi: C, 65.11; H, 10.93; N, 3.62. Found: C, 64,67; H, 11.00; N, 3.74. **39** (87%): ³¹P{¹H} NMR: 31.9. ¹H NMR: 2.05 (s, 15H, C_5Me_5); 1.29 (d, $^3J_{PH} = 12.8$ Hz, 27H, PCMe₃); 0.41 (s, 6H, TiMe). ¹³C{¹H} NMR: 118.0 (C₅-Me₅); 43.0 (Ti*Me*), 41.5 (d, ${}^{1}J_{PC} = 46.6$ Hz, P*C*Me₃); 29.9 (PCMe₃), 11.0 (C₅Me₅). Anal. Calcd for C₂₄H₄₈NPTi: C, 67.12; H, 11.26; N, 3.26. Found: C, 67.09; H, 11.56; N, 3.26. 40 (72%): ³¹P{¹H} NMR: 22.6. ¹H NMR: 7.69 (m, 2H, indenyl); 7.19 (m, 2H, indenyl); 6.34 (m, 2H, indenyl); 6.03 (m, 1H, indenyl); 1.68 (m, 3H, PCHMe₂); 0.94 (dd, ${}^{3}J_{PH} = 14$ Hz, ${}^{3}J_{HH}$ = 7 Hz, 18H, PCH Me_2); 0.22 (s, 6H, TiMe). ¹³C{¹H} NMR: 126.4, 125.0, 123.5, 112.5, 100.5 (Indenyl); 42.6 (TiMe); 26.2 (d, ${}^{1}J_{PH} = 58 \text{ Hz}$, PCHMe₂); 16.9 (s, PCHMe₂). Anal. Calcd for C₂₀H₃₄NPTi: C, 65.39; H, 9.33; N, 3.81. Found: C, 65.02; H, 9.04; N, 3.42. **42** (94%): ³¹P{¹H} NMR: 14.3. ¹H NMR: 6.33

(m, 2H, Cp); 6.16 (m, 2H, Cp); 2.04 (br d, 6H, Cy); 1.81 (br s, 6H, Cy); 1.69 (br m, 6H, Cy); 1.64 (br m, 6H, Cy); 1.50 (s, 9H, CMe₃); 1.23 (br m, 9H, Cy), 0.77 (s, 6H TiMe). ¹³C{¹H} NMR: 138.9 (*ipso-C*₅H₄); 109.4 (*C*₅H₄); 108.0 (*C*₅H₄); 39.8 (Ti*Me*); 37.1 (d, ${}^{1}J_{PC} = 57$ Hz, PCH); 27.3 (d, ${}^{3}J_{PC} = 13$ Hz, CH₂); 32.1 (CMe₃); 31.9(CMe₃); 27.2, 26.5 (CH₂). Anal. Calcd for C₂₉H₅₂-NPTi; C, 70.57; H, 10.62; N, 2.84. Found: C, 70.26; H, 10.33; N, 2.65. **43** (91%): ³¹P{¹H} NMR: 22.3. ¹H NMR: 6.21 (m, 2H, Cp); 5.99 (m, 2H, Cp); 1.81 (d of sept, ${}^{2}J_{PH} = 11$ Hz, 3H, $PCHMe_2$); 1.39 (s, 9H, CMe_3); 0.99 (dd, $^3J_{PH} = 16$ Hz, $^3J_{HH} = 16$ 7 Hz, 18H, PCHMe₂); 0.64 (s, 6H, TiMe). ¹³C{¹H} NMR: 139.5 $(ipso-C_5H_4)$; 109.3, 108.1 (C_5H_4) ; 39.8 (TiMe); 32.9 (CMe_3) ; 32.1 (CMe_3) ; 26.5 (d, ${}^{1}J_{PC} = 58 \text{ Hz}$, $PCHMe_2$); 17.1 (PCH Me_2). Anal. Calcd for C₂₀H₄₀NPTi: C, 64.34; H, 10.80; N, 3.75. Found: C, 64.19; H, 10.66; N, 3.66. 44 (87%): ³¹P{¹H} NMR: 32.2. ¹H NMR: 6.27 (m, 2H, Cp); 5.79 (m, 2H, Cp); 1.47 (s, 9H, CMe₃); 1.21 (d, ${}^{3}J_{PH} = 13$ Hz, 27H, PCMe₃); 0.60 (s, 6H, TiMe). ${}^{13}C_{-}$ {1H} NMR: 139.4 (*ipso*-C₅H₄); 108.9, 108.0 (C₅H₄); 41.5 (d, ¹J_{PC} = 46 Hz, CMe₃); 39.6 (TiMe); 33.1 (CMe₃); 32.1 (CMe₃); 29.7 (PCMe₃). Anal. Calcd for C₂₃H₄₆NPTi: C, 66.49; H, 11.16; N, 3.37. Found: C, 66.32; H, 11.07; N, 3.23. 45: ³¹P{¹H} NMR: 34.4. ¹H NMR: 7.74 (d, 4H, Ph); 7.48 (d, 4H, Ph); 7.0 (m, 12H, Ph); 6.49 (s, 1H, Cp); 1.12 (s, 6H, TiMe); 1.05 (d, ${}^{3}J_{PH} = 13$ Hz, 27H, PCMe₃). ¹³C{¹H} NMR: 137.1, 136.4, 132.8, 129.6, 129.2, 127.8, 126.7, 126.2, 125.1, 109.8, 102.6 ($C_5(C_6H_5)_4H$); 46.9 (Ti*Me*); 41.6 (d, ${}^{1}J_{PC} = 45$ Hz, P*C*Me₃); 29.6 (PC*Me*₃). Anal. Calcd for $C_{43}H_{54}NPTi:\ C,\ 77.81;\ H,\ 8.20;\ N,\ 2.11.$ Found: C,77.54; H, 8.01; N, 1.97. **46** (76%): ³¹P{¹H} NMR: 18.9. ¹H NMR: 7.23 (t, ${}^{3}J_{HH} = 8$ Hz, 4H, o-C₆H₅); 7.11 (d, 4H, ${}^{3}J_{HH} =$ 7 Hz, m-C₆H₅); 6.89 (t, 2H, ${}^3J_{HH} = 7$ Hz, p-C₆H₅); 5.95 (s, 5H, Cp); 2.91 (d, ${}^{2}J_{HH} = 9$ Hz, 2H, C H_{2} Ph); 2.61 (d, 2H, C H_{2} Ph); 1.81-1.05 (bm, 33H, Cy). ${}^{13}C\{{}^{1}H\}$ NMR: 153.1 (*ipso-C*₆H₅); 128.1, 126.5, 120.4 (C₆H₅); 112.8 (Cp); 69.7 (CH₂Ph); 36.4 (d, ${}^{1}J_{PC} = 56$ Hz, PCH); 27.2, 27.1, 26.4 (CH₂). Anal. Calcd for C₃₇H₅₂NPTi: C, 75.37; H, 8.89; N, 2.38. Found: C, 75.12; H, 8.43; N, 2.09. 47 (65%): ³¹P{¹H} NMR: 26.6. ¹H NMR: 7.23 (t, ${}^{3}J_{HH} = 8 \text{ Hz } 4\text{H}$, $o\text{-C}_{6}H_{5}$); 7.09 (d, ${}^{3}J_{HH} = 7 \text{ Hz}$, 4H, $m\text{-C}_{6}H_{5}$); 6.90 (t, ${}^{3}J_{HH} = 7$ Hz, 2H, p-C₆H₅); 5.89 (s, 5H, Cp); 2.85 (d, $^{2}J_{HH} = 9$ Hz, 2H, $CH_{2}Ph$); 2.62 (d, 2H, $CH_{2}Ph$); 1.63 (m, 3H, $PCHMe_2$); 0.86 (dd, ${}^{3}J_{PH} = 13 Hz$, ${}^{3}J_{HH} = 5 Hz$, 18H, $PCHMe_2$). $^{13}C\{^{1}H\}$ NMR: 153.0 (*ipso-C*₆H₅); 128.1, 126.5, 120.4 (*C*₆H₅); 112.9 (*Cp*); 69.9 (*CH*₂Ph); 26.7 (d, ${}^{1}J_{PC} = 57$ Hz, P*C*HMe₂); 16.9 (PCHMe₂). Anal. Calcd for C₂₈H₄₀NPTi: C, 71.63; H, 8.59; N, 2.98. Found: C, 71.38; H, 8.42; N, 2.71. **48** (94%): ³¹P{¹H} NMR: 36.1. ¹H NMR: 7.25 (t, ${}^{3}J_{HH} = 8$ Hz, 4H, o-C₆H₅); 7.05 (d, ${}^{3}J_{HH} = 7 \text{ Hz } 4H$, $m - C_{6}H_{5}$); 6.92 (t, ${}^{3}J_{HH} = 7 \text{ Hz}$, 2H, $p - C_{6}H_{5}$); 5.93 (s, 5H, Cp); 2.88 (d, ${}^{2}J_{HH} = 9$ Hz, 2H, C H_{2} Ph); 2.71 (d, 2H, C H_2 Ph); 1.16 (d, ${}^3J_{PH} = 13$ Hz, 27H, PCMe₃). ${}^{13}C\{{}^{1}H\}$ NMR: 153.4 (*ipso-C*₆H₅); 128.5, 126.1, 120.7 (C₆H₅) 113.6 (Cp); 70.0 (CH_2Ph); 41.3 (d, ${}^{1}J_{PC} = 45$ Hz, $PCMe_3$); 29.6 ($PCMe_3$). Anal. Calcd for C₃₁H₄₆NPTi: C, 72.79; H, 9.06; N, 2.74. Found: C, 71.91; H, 9.70; N, 2.78. 49: 31P{1H} NMR: -2.8. ¹H NMR: 7.48 (m, 6H, Ph); 7.02 (m, 17H, Ph); 6.83 (t, 2H, ${}^{3}J_{HH} = 6$ Hz, p-C₆ H_{5} CH₂); 5.82 (s, 5H, Cp); 3.16 (d, ${}^{2}J_{HH} = 9$ Hz, 2H, CH₂Ph); 2.60 (d, 2H, CH₂Ph). ¹³C{¹H} NMR: 151.9 $(ipso-CH_2C_6H_5)$; 132.6 (d, ${}^2J_{PC} = 10$ Hz, Ph); 128.7 (d, ${}^2J_{PC} =$ 12 Hz, Ph); 133.4, 132.0, 131.7 (P C_6H_5); 128.1, 120.4 (CH₂ C_6H_5); 113.2 (*Cp*); 73.1 (*C*H₂Ph). Anal. Calcd for C₃₇H₃₄NPTi; C, 77.76; H, 6.00; N, 2.45. Found: C, 77.41; H, 5.49; N, 2.09. **50** (61%): $^{31}P\{^{1}H\}$ NMR: -2.7. ^{1}H NMR: 7.52 (dd, $^{3}J_{HH} = 8$ Hz, $^{2}J_{PH} =$ 12 Hz, 6H, C_6H_4); 7.10 (m, 8H, C_6H_4); 6.92 (dd, $^3J_{PH} = 2$ Hz, 6H, C₆H₄); 6.85 (m, 2H, C₆H₄); 5.89 (s, 5H, Cp); 3.24 (d, 2H, $^{2}J_{HH} = 9$ Hz, CH₂Ph); 2.62 (d, 2H, CH₂Ph); 2.04 (s, 9H, C_6H_4Me). ¹³ $C\{^1H\}$ NMR: 152.1 (*ipso*-CH₂ C_6H_5), 145.1 (d, $^3J_{PC}$ = 3 Hz, $m\text{-P}C_6H_4$); 132.7 (d, ${}^2J_{PC}$ = 10 Hz, $o\text{-P}C_6H_4$); 129.9, 129.4 (d, ${}^{1}J_{PC} = 12 \text{ Hz}$, $ipso\text{-P }C_{6}H_{4}$); 127.9, 127.1, 120.3 ($C_{6}H_{5}$); 113.1 (Cp); 75.5 (CH₂Ph); 21.3 (Ph-Me). Anal. Calcd for C₄₀H₄₀-NPTi; C, 78.30; H, 6.57; N, 2.28. Found: C, 78.05; H, 6.36; N, 1.98. **51** (86%): ${}^{31}P\{{}^{1}H\}$ NMR: -9.1. ${}^{1}H$ NMR: 7.30 (dd, ${}^{3}J_{HH}$ = 8 Hz, ${}^{3}J_{PH}$ = 2 Hz, 6H, PC₆H₄); 7.19 (dd, ${}^{3}J_{HH}$ = 8 Hz, ${}^{2}J_{PH}$ = 12 Hz, 6H, PC₆ H_4); 6.95 Ph(t, ${}^3J_{HH}$ = 7 Hz, 4H, m-CH₂C₆ H_5);

6.88 (d, ${}^{3}J_{HH} = 7$ Hz, 4H, o-CH₂C₆H₅); 6.75 (t, ${}^{3}J_{HH} = 7$ Hz, 2H, p-CH₂C₆H₅); 5.78 (s, 5H, Cp); 3.01 (d, ${}^2J_{HH} = 9$ Hz, 2H, CH_2Ph); 2.61 (d, 2H, CH_2Ph). ¹³ $C\{^1H\}$ NMR: 151.3 (*ipso-* $CH_2C_6H_5$), 135.7 (d, ${}^{1}J_{PC} = 97$ Hz, $ipso-PC_6H_5$); 133.9 (d, ${}^{2}J_{PC}$ = 32 Hz, o-P C_6 H₅); 132.7 (d, ${}^3J_{PC}$ = 11 Hz, m-P C_6 H₅); 128.2, 126.9, 125.8, 121.1 (Ar); 113.6 (Cp), 75.9 (CH₂Ph). ¹⁹F NMR: 14.8. Anal. Calcd for C₄₀H₃₁F₉NPTi: C, 61.95; H, 4.03; N, 1.81. Found: C, 61.56; H, 3.94; N, 1.71. **52** (50%): ³¹P{¹H} NMR: -6.6. ¹H NMR: 7.15 (m, 8H, Ar); 6.98 (m, 8H, Ar); 7.16 (m, 6H, Ar); 5.80 (s, 5H, Cp); 3.02 (d, ${}^{2}J_{HH} = 9$ Hz, 2H, CH₂Ph); 2.57 (d, ${}^{2}J_{HH} = 9$ Hz, $\hat{2}H$, $CH_{2}Ph$). ${}^{13}C\{{}^{1}H\}$ NMR: 165.2 (d, ${}^{1}J_{FC} = 255 \text{ Hz}, C_{6}H_{4}F); 151.8 (ipso-CH_{2}C_{6}H_{5}); 134.8 \text{ (dd, } {}^{2}J_{PC}$ = 12 Hz, ${}^{3}J_{FC}$ = 9 Hz, o-PC₆H₄F); 128.4, 126.9, 120.7 (Ar); 116.1 (dd, ${}^{3}J_{PC} = 14 \text{ Hz}$, ${}^{2}J_{FC} = 22 \text{ Hz}$, $m\text{-P}C_{6}H_{4}F$); 113.2 (*Cp*); 74.0 $(CH_2C_6H_5)$. ¹⁹F NMR: -28.5. Anal. Calcd for $C_{37}H_{31}F_3NPTi$: C, 71.05; H, 5.00; N, 2.24. Found: C, 70.76; H, 4.73; N, 2.07. **53** (71%): ${}^{31}P\{{}^{1}H\}$ NMR: -3.4. ${}^{1}H$ NMR: 7.52 (dd, ${}^{3}J_{HH} = 8$ Hz, ${}^{3}J_{PH} = 12$ Hz, 6H, $o\text{-PC}_{6}H_{4}\text{OMe}$); 7.10 (d, ${}^{3}J_{HH} = 7$ Hz, 4H, o-CH₂C₆H₅); 6.84 (m, 6H, CH₂C₆H₅); 6.72 (dd, ${}^{3}J_{HH} = 8$ Hz, ${}^{4}J_{PH} = 2$ Hz, 6H, $m\text{-PC}_{6}H_{4}\text{OMe}$); 5.93 (5H, Cp); 3.26 (d, ${}^{2}J_{HH} = 9 \text{ Hz}, 2H, CH_{2}Ph); 3.19 (9H, OMe); 2.65 (d, {}^{2}J_{HH} = 9)$ Hz, 2H, CH₂Ph). ¹³C{¹H} NMR: 162.6 (p-PC₆H₄OMe), 152.2 (*ipso*-CH₂ C_6 H₅); 134.5 (d, ${}^3J_{PC} = 12$ Hz, m- C_6 H₄OMe); 128.1, 127.1, 124.5, 120.3 (Ar); 114.3 (d, ${}^{2}J_{PC} = 13$ Hz, o-CH₂ $C_{6}H_{5}$); 113.1 (*Cp*); 72.1 (s, *C*H₂Ph); 54.9 (O*Me*). Anal. Calcd for C₄₀H₄₀-NO₃PTi: C, 72.62; H, 6.09; N, 2.12. Found: C, 72.27; H, 5.79; N, 2.01. **54** (56%): ${}^{31}P\{{}^{1}H\}$ NMR: 18.9. ${}^{1}H$ NMR: 7.80 (d, ${}^{3}J_{HH}$ = 7 Hz, 4H, o-C₆H₅); 7.22 (t, ${}^{3}J_{HH}$ = 7 Hz, 4H, m-C₆H₅); 7.13 (t, ${}^{3}J_{HH} = 7$ Hz, 2H, Ph); 6.40 (s, 5H, Cp); 1.82–1.00 (bm, 33H, Cy). $^{13}C\{^{1}H\}$ NMR: 190.6 (s, $ipso-C_{6}H_{5}$); 136.7, 126.2, 125.7 (s, Ph); 112.6 (*Cp*); 36.4(d, ${}^{1}J_{PC} = 56$ Hz, P*C*H), 27.1, 26.9, 26.3 (Cy). Anal. Calcd for C₃₅H₄₈NPTi: C, 74.85; H, 8.61; N, 2.49. Found: C, 74.32; H, 8.39; N, 2.22. **55** (94%): ³¹P{¹H} NMR: 26.3. ¹H NMR: 7.78 (dd, ${}^{3}J_{HH} = 7$ Hz, ${}^{4}J_{HH} = 2$ Hz, 4H, o-C₆ H_{5}); 7.22 (t, ${}^{3}J_{HH} = 7$ Hz, 4H, m-C₆ H_{5}); 7.13 (t, ${}^{3}J_{HH} = 7$ Hz, 2H, p-C₆H₅); 6.35 (s, 5H, Cp); 1.60 (m, 3H, PCHMe₂); 0.80 (dd, ³J_{HH} = 7 Hz, ${}^{3}J_{PH}$ = 14 Hz, 18H, PCH Me_{2}). ${}^{13}C\{{}^{1}H\}$ NMR: 190.5 (ipso-C₆H₅); 136.6, 126.2, 125.8 (C₆H₅); 112.6 (s, Cp); 25.8 (d, ${}^{1}J_{PC} = 51 \text{ Hz}, PCHMe_{2}$; 16.8 (PCHMe₂). Anal. Calcd for C₂₆H₃₆-NPTi: C, 70.75; H, 8.22; N, 3.17. Found: C, 70.29; H, 8.14; N, 3.11. **56** (80%): ³¹P{¹H} NMR: 35.9. ¹H NMR: 7.75 (d, ³J_{HH} = 8 Hz, 4H, o-C₆H₅); 7.23 (t, ${}^{3}J_{HH}$ = 8 Hz, 4H, m-C₆H₅); 7.13 (t, ${}^{3}J_{HH} = 7$ Hz, 2H, p-C₆ H_{5}); 6.35 (s, 5H, Cp); 1.06 (d, ${}^{3}J_{PH} =$ 13 Hz, 27H, PCMe₃). ¹³C{¹H} NMR: 190.2 (*ipso-C*₆H₅); 136.1, 126.3, 125.5 (C_6H_5); 113.1 (Cp); 41.8 (d, ${}^{1}J_{PC} = 46$ Hz, $PCMe_3$); 29.5 (PCMe₃). Anal. Calcd for C₂₉H₄₂NPTi: C, 72.04; H, 8.76; N, 2.90. Found: C, 71.65; H, 8.65; N, 2.91. **57**: ³¹P{¹H} NMR: -4.6. ¹H NMR: 7.93 (dd, ${}^{3}J_{HH} = 7$ Hz, ${}^{3}J_{PH} = 2$ Hz, 6H, $o\text{-PC}_{6}H_{5}$); 7.70 (m, 4H, $o\text{-C}_{6}H_{5}$); 7.13 (t, ${}^{3}J_{HH} = 7$ Hz, 4H, m-C₆H₅); 6.96 (m, 11H, Ar); 6.23 (s, 5H, Cp). ¹³C{¹H} NMR: 192.4 (ipso- C_6H_5); 137.0, 132.7 (C_6H_5); 132.1 (d, ${}^1J_{PC} = 60$ Hz, *ipso-PC*₆H₅); 128.7 (d, ${}^{2}J_{PC} = 11$ Hz, $o-C_{6}H_{5}$); 128.5, 128.3 (C_6H_5) , 126.4 (d, ${}^3J_{PC} = 9$ Hz, m-P C_6H_5); 113.0 (*Cp*). Anal. Calcd for C₃₅H₃₀NPTi: C, 77.35; H, 5.56; N, 2.58. Found: C, 77.22; H, 5.38; N, 2.32. **58** (73%): ³¹P{¹H} NMR: 25.4. ¹H NMR: 8.13 (4H, o-C₆H₃); 7.70 (2H, p-C₆H₃); 6.09 (5H, Cp); 1.64-1.00 (m, 33H, Cy). ¹³C{¹H} NMR: 188.1 (*ipso-C*₆H₃); 136.5, 128.7 (C₆H₃); 121.4 (q, ${}^{1}J_{FC} = 287 \text{ Hz}$, Ph CF₃); 113.7 (Cp); 36.0 (d, ${}^{2}J_{PC} = 55$ Hz, PCH); 26.8, 26.3, 25.9 (Cy). ¹⁹F{¹H} NMR: 15.4. Anal. Calcd for C₃₉H₄₄F₁₂NPTi: C, 56.19; H, 5.32; N, 1.68. Found: C, 55.87; H, 5.19; N, 1.32. **59** (80%): ³¹P{¹H} NMR: 2.08. ¹H NMR: 8.22 (s, 4H, o-C₆H₃); 7.65 (s, 2H, p-C₆H₃); 7.47 (m, 6H, o-PC₆H₅); 7.01 (m, 9H, PC₆H₅); 5.95 (s, 5H, Cp). 13 C{ 1 H} NMR: 188.6 (*ipso-C*₆H₅); 132.4 (d, ${}^{2}J_{PC} = 30$ Hz, $o\text{-PC}_{6}H_{5}$); 136.7, 132.1, 130.9, 129.6, 129.1, 119.9 (C_6H_5); 124.9 (q, ${}^1J_{FC}$ = 273 Hz, $PhCF_3$); 114.2 (Cp). ¹⁹F{¹H} NMR: 15.4. Anal. Calcd for C₃₉H₂₆F₁₂NPTi: C, 57.44; H, 3.21; N, 1.72. Found: C, 56.98; H, 3.07; N, 1.74. 60 (82%): ³¹P{¹H} NMR: 2.9. ¹H NMR: 7.51 $(dd, {}^{3}J_{HH} = 8 Hz, {}^{3}J_{PH} = 2 Hz, 6H, o-PC_{6}H_{5}); 7.21 (dd, {}^{3}J_{HF} =$ 15 Hz, ${}^{4}J_{HF} = 2$ Hz, 2H, $C_{6}F_{4}H$); 6.97 (m, 9H, $PC_{6}H_{5}$); 6.16 (5H, Cp). ¹³C{¹H} NMR (partial): 132.7-127.5 (br-m, Ar);

114.0 (*Cp*). ¹⁹F NMR: -36.0 (dd, $^3J_{\rm FF}=30$ Hz, $^4J_{\rm HF}=16$ Hz, $^2-C_6HF_4$); -63.7 (m, $5-C_6HF_4$); -80.6 (m, $3,4-C_6HF_4$). Anal. Calcd for $C_{35}H_{22}F_8NPTi$: C, 61.16; H, 3.22; N, 2.04. Found: C, 61.00; H, 2.98; N, 1.87.

Synthesis of CpTi(NPR₃)(CH₂SiMe₃)₂ (R = t-Bu₃ 61, Ph **62).** These compounds were prepared employing similar procedures using the appropriate starting material. A solution of Me₃SiCH₂Li (1.8 mmol, 1.0 M in pentane) in Et₂O was added dropwise at 25 °C to a slurry of 13 (0.32 g, 0.80 mmol) in the same solvent (30 mL). The heterogeneous mixture was stirred for 15 h, after which time the solvent was removed in vacuo. The product was extracted with hexanes (3 \times 20 mL) and filtered through Celite. Removal of the solvent afforded a white solid (0.34 g, 83%). **61**: ³¹P{¹H} NMR: 32.5. ¹H NMR: 6.31 (s, 5H, Cp); 1.19 (d, ${}^{3}J_{PH} = 13$ Hz, 27H, PCMe₃); 1.12 (d, ${}^{2}J_{HH} =$ 11 Hz, 2H, CH_2Si); 0.90 (d, ${}^2J_{HH}$ = 11 Hz, 2H, CH_2Si); 0.25 (s, 18H, SiMe₃). ¹³C{¹H} NMR: 109.5 (Cp); 42.5 (CH₂Si); 40.4 (d, ${}^{1}J_{PC} = 47 \text{ Hz}, PCMe_{3}; 29.6 (PCMe_{3}); 4.3 (SiMe_{3}). Anal. Calcd$ for C₂₅H₅₄NPSi₂Ti: C, 59.61; H, 10.81; N, 2.78. Found: C, 59.23; H, 10.50; N, 2.09. **62** (98%, red oil): ³¹P{¹H} NMR: -5.7. ¹H NMR: 7.71 (m, 6H, Ph); 7.05 (m, 9H, Ph); 6.09 (s, 5H, Cp); 1.32 (s, 1 H, CH_2SiMe_3); 0.21 (s, 18 H, CH_2SiMe_3). $^{13}C\{^{1}H\}$ NMR: 134.0 (s, C_6H_5); 129.0 (d, ${}^{1}J_{CP} = 15$ Hz, C_6H_5); 132.1 (s, C_6H_5); 129.0 (s, C_6H_5); 128.9 (s, C_6H_5), 111.2 (Cp); 61.6 (s, CH_2 -SiMe₃); 3.6 (s, CH₂SiMe₃). Anal. Calcd for C₃₁H₄₅NPSi₂Ti: C, 65.70; H, 8.00; N, 2.47. Found: C, 65.41; H, 7.80; N, 2.13.

Synthesis of CpTi(NP*t***-Bu₃)Cl(O-2,6-***i***-Pr₂C₆H₃) (63).** To 1 g (2.5 mmol) of **13** was added 600 mg (2.8 mmol) of Na[O-2,6-(*i*-Pr)₂C₆H₃] and 50 mL of benzene. The dark yellow-orange mixture was stirred for 2 days at room temperature, after which the NaCl was filtered off, yielding a dark yellow-orange solution. Removal of volatiles in vacuo gave 1.30 g (96%) of the dark yellow product. 31 P{ 1 H} NMR: 40.1. 1 H NMR: 7.22 (d, 2H, 3 J_{HH} = 7 Hz, m-C₆H₃); 7.05 (t, 3 J_{HH} = 7 Hz, 1H, p-C₆H₃); 6.35 (s, 5H, Cp); 3.92 (sept, 2H, CHMe₂); 1.41 (d, 3 J_{HH} = 7 Hz, 6H, CHMe₂); 1.35 (d, 3 J_{HH} = 7 Hz, 6H, CHMe₂); 1.18 (d, 2 J_{PH} = 13 Hz, 27H, PCMe₃). 13 C{ 1 H} NMR (partial): 163.7 (OC₆H₃); 123.5, 120.6 (C₆H₃); 113.8 (*Cp*); 41.6 (d, 1 J_{PC} = 45 Hz, PCMe₃); 29.4 (PCMe₃); 26.3 (CHMe₂); 24.6 (CHMe₂). Anal. Calcd for C₂₉H₄₉ClNOPTi: C, 64.26; H, 9.11; N, 2.58. Found: C, 63.88; H, 8.95; N, 2.55.

Ethylene Polymerization. (i) Schlenk line polymerization: A solution of $6-10~\mu mol$ of catalyst precursor in 2.0 mL of dry toluene was added to a flask containing 2.0 mL of dry toluene. Five hundred equivalents of a 10 wt % toluene solution of MAO was added to the flask. Alternatively, the catalyst precursors were combined with [Ph₃C][B(C₆F₅)₄] under an ethylene atmosphere at 25 °C. The flask was attached to a Schlenk line with a cold trap, a stopwatch was started, and the flask was evacuated three times for 5 s and refilled with predried 99.9% ethylene gas. The solution was rapidly stirred under 1 atm of ethylene at room temperature. The polymerization was quenched by the injection of a 1.0 M HCl/MeOH solution. The total reaction time was noted, and the polymer was isolated. (ii) Büchi reactor: A typical experiment is as follows: a 1 L autoclave was dried under vacuum (10⁻² mmHg) for several hours. Toluene (500 mL) was transferred into the vessel under a positive pressure of N2 and was heated to 30 °C. The temperature was controlled (to ca. ± 2 °C) with an external heating/cooling bath and was monitored by a thermocouple that extended into the polymerization vessel. A solution of MAO (500 equiv) in toluene was injected, and the mixture was stirred for 3 min at 150 rpm. The precatalyst in a solution of toluene was then injected, and the reaction mixture was stirred for an additional 3 min at the same rate. The rate of stirring was increased to 1000 rpm, and the vessel was vented of N_2 and pressurized with ethylene (33 psi). Any recorded exotherm was within the allowed temperature differential of the heating/cooling system. The solution was stirred for 1 h, after which time the reaction was quenched with 1 M HCl in MeOH. The precipitated polymer was

Table 1. Compound Numbering

compound type	Cp'	R
R ₃ PNSiMe ₃		Et 1, Cy 2, <i>i</i> -Pr 3, <i>t</i> -Bu 4, Ph 5, <i>p</i> -MeC ₆ H ₄ 6, <i>p</i> -CF ₃ C ₆ H ₄ 7, <i>p</i> -FC ₆ H ₄ 8, <i>p</i> -CH ₃ OC ₆ H ₄ 9
Cp'Ti(NPR ₃)Cl ₂	C_5H_5	Et 10 , Cy 11 , i-Pr 12 , t-Bu 13 , Ph 14 , p-MeC ₆ H ₄ 15 , p-CF ₃ C ₆ H ₄ 16 , p-FC ₆ H ₄ 17 , p-CH ₃ OC ₆ H ₄ 18
	Me ₃ SiC ₅ H ₄	<i>i</i> -Pr 19 , <i>t</i> -Bu 20
	C_5Me_5	<i>i</i> -Pr 21 , <i>t</i> -Bu 22
	Indenyl	<i>i</i> -Pr 23 , <i>t</i> -Bu 24
	t -Bu $ ilde{\mathrm{C}}_5^{\circ}\mathrm{H}_4$	Cy 25 , <i>i</i> -Pr 26 , <i>t</i> -Bu 27
	n -Bu C_5H_4	<i>t</i> -Bu 28
	Ph_4C_5H	<i>t</i> -Bu 29
Cp'Ti(NPR ₃)Me ₂	C_5H_5	Cy 30 , <i>i</i> -Pr 31 , <i>t</i> -Bu 32 , Ph 33 , <i>p</i> -MeC ₆ H ₄ 34 , <i>p</i> -CF ₃ C ₆ H ₄ 35 ,
	C Ma	<i>p</i> -FC ₆ H ₄ 36 , <i>p</i> -CH ₃ OC ₆ H ₄ 37
	C ₅ Me ₅	<i>i</i> -Pr 38 , <i>t</i> -Bu 39 <i>i</i> -Pr 40 , <i>t</i> -Bu 41
	Indenyl <i>t-</i> BuC₅H₄	Cy 42 , <i>i</i> -Pr 43 , <i>t</i> -Bu 44
	Ph₄C ₅ H	t-Bu 45
$CpTi(NPR_3)Bn_2$	1 1140511	Cy 46 , <i>i</i> -Pr 47 , <i>t</i> -Bu 48 , Ph 49 , <i>p</i> -MeC ₆ H ₄ 50 , <i>p</i> -CF ₃ C ₆ H ₄ 51 ,
G FI(AIDD \DI		<i>p</i> -FC ₆ H ₄ 52 , <i>p</i> -CH ₃ OC ₆ H ₄ 53
CpTi(NPR ₃)Ph ₂		Cy 54 , <i>i</i> -Pr 55 , <i>t</i> -Bu 56 , Ph 57
$CpTi(NPR_3)(C_6H_3-3,5-(CF_3)_2)_2$		Cy 58 , Ph 59
$CpTi(NPR_3)(C_6H-2,3,4,5-F_4)_2$		Ph 60
CpTi(NPR ₃)(CH ₂ Si(CH ₃) ₃) ₂		<i>t</i> -Bu 61 Ph 62
$CpTi(NPR_3)Cl(O-2,6-i-Pr_2C_6H_3)$		<i>t</i> -Bu 63

subsequently washed with MeOH and dried at $100~^{\circ}\text{C}$ for at least 24~h prior to weighing.

X-ray Data Collection and Reduction. X-ray quality crystals were obtained directly from the preparations as described above. The crystals were manipulated and mounted in capillaries in a glovebox, thus maintaining a dry, O₂-free environment for each crystal. Diffraction experiments were performed on a Siemens SMART System CCD diffractometer. The data were collected for a hemisphere of data in 1329 frames with 10 s exposure times. Crystal data are summarized in Table 2. The observed extinctions were consistent with the space groups in each case. A measure of decay was obtained by re-collecting the first 50 frames of each data set. The intensities of reflections within these frames showed no statistically significant change over the duration of the data collections. An empirical absorption correction based on redundant data was applied to each data set. Subsequent solution and refinement was performed using the SHELXTL solution package.

Structure Solution and Refinement. Non-hydrogen atomic scattering factors were taken from the literature tabulations. 53 The heavy atom positions were determined using direct methods. The remaining non-hydrogen atoms were located from successive difference Fourier map calculations. The refinements were carried out by using full-matrix leastsquares techniques on F, minimizing the function $w(F_0 - F_c)^2$ where the weight w is defined as $4F_0^2/2\sigma(F_0^2)$ and F_0 and F_0 are the observed and calculated structure factor amplitudes. For non-centrosymmetric space groups, the correct enantiomorph was confirmed by data inversion and refinement. In the final cycles of each refinement, all non-hydrogen atoms were assigned anisotropic temperature factors. Carbon-bound hydrogen atom positions were calculated and allowed to ride on the carbon to which they are bonded assuming a C−H bond length of 0.95 Å. Hydrogen atom temperature factors were fixed at 1.10 times the isotropic temperature factor of the carbon atom to which they are bonded. The hydrogen atom contributions were calculated, but not refined. The final values of refinement parameters are given in Table 2. Positional parameters, hydrogen atom parameters, thermal parameters, and bond distances and angles have been deposited as Supporting Information.

R' = Me, Bn

Results and Discussion

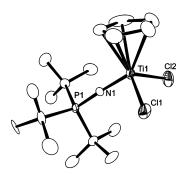
 $Ar = C_6H_5, C_6H_3(CF_3)_2$

Synthesis and Characterization. Numerous phosphines can be oxidized to the corresponding phosphinimine derivative by reaction with Me₃SiN₃.46 In this manner, the series of compounds R₃PNSiMe₃ (Table 1) have been prepared. Several of these phosphinimines have been previously prepared,46 although the present report provides full NMR spectroscopic data for these ligand precursors. Subsequent reaction with CpTiCl₃ provides facile access to the corresponding series of complexes of the form CpTi(NPR₃)Cl₂ (Table 1). Employing the appropriate precursors, this family of compounds can be readily extended to include substitution on the cyclopentadienyl ligand or Cp alternatives. In this fashion the species (Cp')Ti(NPR3)Cl2 (Table 1) were also readily prepared. The synthetic routes are generalized in Scheme 1. All of these species are obtained in high yield and are readily purified by recrystallization.

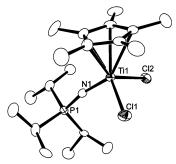
Compounds 11–13, 21–23, 27, and 28 have been characterized crystallographically. Representative structures of the dichloride derivatives are presented in Figures 1–5. In all cases the Ti adopts a pseudotetrahedral geometry with the cyclopentadienyl ligand or its analogue, the two chlorides and the phosphinimide nitrogen completing the coordination sphere. It is noteworthy that the indenyl group in 23 and the

⁽⁵³⁾ Cromer, D. T.; Mann, J. B. *Acta Crystallogr. A* **1968**, *A24*, 321–324.

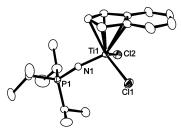
Table 2. Crystallographic Parameters^a


	Table 2. Crysta	allographic P	arameters ^a		
	11	12	13	21	
formula	C ₂₃ H ₃₈ Cl ₂ NPTi	C ₁₄ H ₂₆ Cl ₂ NPTi	C _{20.5} H _{35.5} Cl ₂ NPTi	C ₁₉ H ₃₆ Cl ₂ NPT	
fw	478.31	358.13	445.77	428.26	
a (Å)	8.8309(6)	14.4159(8	33.537(10)	13.064(3)	
b (Å)	18.8687(12)	16.1783(9)	8.532(3)	12.971(3)	
c(A)	14.8404(10)	15.8076(9)	17.963(5)	13.928(3)	
β (deg)	90.7500(10)	91.4547(11)	110.349(7)	102.29(2)	
				. ,	
cryst syst	monoclinic	monoclinic	monoclinic	monoclinic	
space group	P2(1)/c	P2(1)/c	C2/c	P2(1)/n	
vol (Å ³)	2472.6(3)	3685.5(4)	4819(2)	2306.1(9)	
$D_{\rm calcd}$ (g cm ⁻¹)	1.285	1.291	1.229	1.234	
Z	4	8	8	4	
abs coeff, μ , mm ⁻¹	0.636	0.830	0.648	0.674	
no. of data collected	9328	14139	1695	1862	
no. of data $F_0^2 > 3\sigma(F_0^2)$	3524	6258	1634	1262	
no. of variables	253	343	215	217	
R (%)	0.0462	0.0472	0.1239	0.0363	
$R_{\rm w}$ (%)	0.1110	0.0902	0.2727	0.0938	
goodness of fit	1.036	0.832	1.341	0.757	
goodness of fit	1.030	0.832	1.341	0.757	
	22		23	27	
formula	$C_{22}H_{42}Cl_2NPTi$		$C_{18}H_{28}Cl_2NPTi$	$C_{21}H_{40}Cl_2NPTi$	
fw	470.34		408.18	456.31	
a (Å)	11.6734(6)		17.160(2)	8.4136(2)	
b (Å)	16.6150(9)		13.119(2)	15.8989(2)	
c (Å)	13.614(7)		18.646(4)	19.3131(4)	
β (deg)	98.2953(11)	10.040(4)		96.8610(10)	
cryst syst	monoclinic	orthorhombic		monoclinic	
				P2(1)/c	
space group	P2(1)/n	Pca2(1)			
vol (ų)	2612.9(14)	4197.5(12)		2564.95(9)	
$D_{ m calcd}$ (g cm $^{-1}$)	1.196	1.292		1.182	
\boldsymbol{Z}	4		8	4	
abs coeff, μ , mm ⁻¹	0.601	0.738		0.610	
no. of data collected	12 914	20 359		12 749	
data $F_0^2 > 3\sigma(F_0^2)$	4553	7302		4447	
no. of variables	244	415		235	
R (%)	0.0598		0.0394	0.0530	
$R_{\rm w}$ (%)	0.1604	0.0620		0.1531	
goodness of fit	1.061		0.764	1.030	
C 1	$\frac{28}{C_{21}H_{40}Cl_2NPTi}$	56	62	63	
formula fw	Co. H.o Clo VPII	$C_{29}H_{42}NPTi$	$C_{31}H_{42}NPSi_2Ti$	$C_{29}H_{49}CINOPT$	
	456.31	483.51	563.71	542.01	
a (Å)	456.31 15.472(4)	483.51 18.54800	563.71 11.069(5)	542.01 17.777(6)	
a (Å) b (Å)	456.31 15.472(4) 8.5317(13)	483.51 18.54800 15.0094	563.71 11.069(5) 12.798(6)	542.01 17.777(6) 10.7647(15)	
a (Å) b (Å) c (Å)	456.31 15.472(4)	483.51 18.54800	563.71 11.069(5) 12.798(6) 12.887(6	542.01 17.777(6)	
a (Å) b (Å) c (Å) α (deg)	456.31 15.472(4) 8.5317(13) 18.928(4)	483.51 18.54800 15.0094	563.71 11.069(5) 12.798(6) 12.887(6 100.195(9)	542.01 17.777(6) 10.7647(15)	
a (Å) b (Å) c (Å) α (deg) β (deg)	456.31 15.472(4) 8.5317(13)	483.51 18.54800 15.0094	563.71 11.069(5) 12.798(6) 12.887(6 100.195(9) 100.894(9)	542.01 17.777(6) 10.7647(15)	
a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12)	483.51 18.54800 15.0094 19.65940(10)	563.71 11.069(5) 12.798(6) 12.887(6 100.195(9) 100.894(9) 105.726(9)	542.01 17.777(6) 10.7647(15) 32.068(7)	
a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) cryst syst	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic	483.51 18.54800 15.0094 19.65940(10) orthorhombic	563.71 11.069(5) 12.798(6) 12.887(6 100.195(9) 100.894(9) 105.726(9) triclinic	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic	
a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) cryst syst space group	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12)	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i>	563.71 11.069(5) 12.798(6) 12.887(6) 100.195(9) 100.894(9) 105.726(9) triclinic PI	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1)	
a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) cryst syst space group vol (Å 3)	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic	483.51 18.54800 15.0094 19.65940(10) orthorhombic	563.71 11.069(5) 12.798(6) 12.887(6 100.195(9) 100.894(9) 105.726(9) triclinic	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic	
a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) cryst syst space group vol (Å 3) $D_{\rm calcd}$ (g cm $^{-1}$)	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i> 5473.07(8) 1.174	563.71 $11.069(5)$ $12.798(6)$ $12.887(6)$ $100.195(9)$ $100.894(9)$ $105.726(9)$ triclinic $P\overline{1}$ $1674.5(14)$ 1.118	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173	
$\begin{array}{l} a \ (\mathring{\rm A}) \\ b \ (\mathring{\rm A}) \\ c \ (\mathring{\rm A}) \\ \alpha \ ({\rm deg}) \\ \beta \ ({\rm deg}) \\ \gamma \ ({\rm deg}) \\ cryst \ syst \\ space \ group \\ {\rm vol} \ (\mathring{\rm A}^3) \\ D_{\rm calcd} \ ({\rm g \ cm^{-1}}) \\ Z \end{array}$	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236 4	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i> 5473.07(8) 1.174	563.71 11.069(5) 12.798(6) 12.887(6 100.195(9) 100.894(9) 105.726(9) triclinic <i>P</i> 1 1674.5(14 1.118	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173	
$\begin{array}{l} a\ (\mathring{\mathbb{A}})\\ b\ (\mathring{\mathbb{A}})\\ c\ (\mathring{\mathbb{A}})\\ c\ (\mathring{\mathbb{A}})\\ \alpha\ (\deg)\\ \beta\ (\deg)\\ \gamma\ (\deg)\\ \gamma\ (\deg)\\ cryst\ syst\\ space\ group\\ vol\ (\mathring{\mathbb{A}}^3)\\ D_{calcd}\ (g\ cm^{-1})\\ Z\\ abs\ coeff,\ \mu,\ mm^{-1} \end{array}$	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236 4 0.638	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i> 5473.07(8) 1.174 8 0.387	563.71 11.069(5) 12.798(6) 12.887(6 100.195(9) 100.894(9) 105.726(9) triclinic PĪ 1674.5(14 1.118 2 0.393	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173 8 0.439	
$\begin{array}{l} a(\mathring{\mathbb{A}})\\ b(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ \alpha(\mathrm{deg})\\ \beta(\mathrm{deg})\\ \gamma(\mathrm{deg})\\ \gamma(\mathrm{deg})\\ \mathrm{cryst}\mathrm{syst}\\ \mathrm{space}\mathrm{group}\\ \mathrm{vol}(\mathring{\mathbb{A}}^3)\\ D_{\mathrm{calcd}}(\mathrm{g}\mathrm{cm}^{-1})\\ Z\\ \mathrm{abs}\mathrm{coeff},\mu,\mathrm{mm}^{-1}\\ \mathrm{no}.\mathrm{of}\mathrm{data}\mathrm{collected} \end{array}$	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236 4 0.638 12 066	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i> 5473.07(8) 1.174 8 0.387 25 063	563.71 $11.069(5)$ $12.798(6)$ $12.887(6)$ $100.195(9)$ $100.894(9)$ $105.726(9)$ triclinic $P\bar{1}$ $1674.5(14)$ 1.118 2 0.393 7166	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173 8 0.439 11 100	
$\begin{array}{l} a(\mathring{\mathbb{A}})\\ b(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ \alpha(\mathrm{deg})\\ \beta(\mathrm{deg})\\ \gamma(\mathrm{deg})\\ \gamma(\mathrm{deg})\\ \mathrm{cryst}\mathrm{syst}\\ \mathrm{space}\mathrm{group}\\ \mathrm{vol}(\mathring{\mathbb{A}}^3)\\ D_{\mathrm{calcd}}(\mathrm{g}\mathrm{cm}^{-1})\\ Z\\ \mathrm{abs}\mathrm{coeff},\mu,\mathrm{mm}^{-1}\\ \mathrm{no.}\mathrm{of}\mathrm{data}\mathrm{collected}\\ \mathrm{no.}\mathrm{of}\mathrm{data}F_{\mathrm{o}}^2 > 3\sigma(F_{\mathrm{o}}^2) \end{array}$	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236 4 0.638 12 066 4284	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i> 5473.07(8) 1.174 8 0.387 25 063 4794	563.71 11.069(5) 12.798(6) 12.887(6) 100.195(9) 100.894(9) 105.726(9) triclinic P 1674.5(14 1.118 2 0.393 7166 4749	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173 8 0.439 11 100 6168	
$\begin{array}{l} a(\mathring{\mathbb{A}})\\ b(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ \alpha(\mathrm{deg})\\ \beta(\mathrm{deg})\\ \beta(\mathrm{deg})\\ \gamma(\mathrm{deg})\\ \mathrm{cryst}\mathrm{syst}\\ \mathrm{space}\mathrm{group}\\ \mathrm{vol}(\mathring{\mathbb{A}}^3)\\ D_{\mathrm{calcd}}(\mathrm{g}\mathrm{cm}^{-1})\\ Z\\ \mathrm{abs}\mathrm{coeff},\mu,\mathrm{mm}^{-1}\\ \mathrm{no}.\mathrm{of}\mathrm{data}\mathrm{collected}\\ \mathrm{no}.\mathrm{of}\mathrm{data}F_{\mathrm{o}}^2>3\sigma(F_{\mathrm{o}}^2)\\ \mathrm{no}.\mathrm{of}\mathrm{variables} \end{array}$	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236 4 0.638 12 066 4284 235	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i> 5473.07(8) 1.174 8 0.387 25 063 4794 289	563.71 11.069(5) 12.798(6) 12.887(6) 100.195(9) 100.894(9) 105.726(9) triclinic PI 1674.5(14) 1.118 2 0.393 7166 4749 325	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173 8 0.439 11 100 6168 608	
$\begin{array}{l} a(\mathring{\mathbb{A}})\\ b(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ \alpha(\mathrm{deg})\\ \beta(\mathrm{deg})\\ \gamma(\mathrm{deg})\\ \mathrm{cryst}\mathrm{syst}\\ \mathrm{space}\mathrm{group}\\ \mathrm{vol}(\mathring{\mathbb{A}}^3)\\ D_{\mathrm{calcd}}(\mathrm{g}\mathrm{cm}^{-1})\\ Z\\ \mathrm{abs}\mathrm{coeff},\mu,\mathrm{mm}^{-1}\\ \mathrm{no.}\mathrm{of}\mathrm{data}c\mathrm{ollected}\\ \mathrm{no.}\mathrm{of}\mathrm{data}F_{\mathrm{o}}^{2} > 3\sigma(F_{\mathrm{o}}^{2})\\ \mathrm{no.}\mathrm{of}\mathrm{variables}\\ R(\%) \end{array}$	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236 4 0.638 12 066 4284 235 0.0375	483.51 18.54800 15.0094 19.65940(10) orthorhombic Pbca 5473.07(8) 1.174 8 0.387 25 063 4794 289 0.0874	563.71 11.069(5) 12.798(6) 12.887(6) 100.195(9) 100.894(9) 105.726(9) triclinic P 1674.5(14 1.118 2 0.393 7166 4749	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173 8 0.439 11 100 6168	
$\begin{array}{l} a(\mathring{\mathbb{A}})\\ b(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ c(\mathring{\mathbb{A}})\\ \alpha(\mathrm{deg})\\ \beta(\mathrm{deg})\\ \beta(\mathrm{deg})\\ \gamma(\mathrm{deg})\\ \mathrm{cryst}\mathrm{syst}\\ \mathrm{space}\mathrm{group}\\ \mathrm{vol}(\mathring{\mathbb{A}}^3)\\ D_{\mathrm{calcd}}(\mathrm{g}\mathrm{cm}^{-1})\\ Z\\ \mathrm{abs}\mathrm{coeff},\mu,\mathrm{mm}^{-1}\\ \mathrm{no}.\mathrm{of}\mathrm{data}\mathrm{collected}\\ \mathrm{no}.\mathrm{of}\mathrm{data}F_{\mathrm{o}}^2>3\sigma(F_{\mathrm{o}}^2)\\ \mathrm{no}.\mathrm{of}\mathrm{variables} \end{array}$	456.31 15.472(4) 8.5317(13) 18.928(4) 100.973(12) monoclinic P2(1)/n 2452.8(8 1.236 4 0.638 12 066 4284 235	483.51 18.54800 15.0094 19.65940(10) orthorhombic <i>Pbca</i> 5473.07(8) 1.174 8 0.387 25 063 4794 289	563.71 11.069(5) 12.798(6) 12.887(6) 100.195(9) 100.894(9) 105.726(9) triclinic PI 1674.5(14) 1.118 2 0.393 7166 4749 325	542.01 17.777(6) 10.7647(15) 32.068(7) orthorhombic Pca2(1) 6136(3) 1.173 8 0.439 11 100 6168 608	

^a All data collected at 24 °C with Mo Kα radiation ($\lambda = 0.71069$ Å), $R = \Sigma ||F_0| - |F_c||/\Sigma |F_0|$, $R_w = [\Sigma [w(F_0^2 - F_c^2)^2]/\Sigma [wF_0^2)^2]]^{0.5}$.


cyclopentadienyl substitutents in **27** and **28** are oriented away from the phosphinimide ligand, presumably reflecting a preferred geometry in which steric conflicts are minimized.

The key metric parameters for these structures are presented in Table 3. In each case, the geometry about the N atom is approximately linear with the P-N-Ti angles ranging between $159.6(2)^{\circ}$ and $176.6(4)^{\circ}$. The P-N and Ti-N distances are very similar in all these compounds, averaging 1.606(7) and 1.758(14) Å, respectively. Similarly, the Cl-Ti-Cl and N-Ti-Cl angles


vary only slightly, averaging $102.6(10)^\circ$ and $102.4(8)^\circ$, respectively. The angles at Ti between the centroid of the η^5 -carbons of the Cp-type ligands and N appear to reflect the steric demands of both ligands. For compounds 11-13 the N-Ti-Cp angles range from 116.1° for the *i*-Pr₃PN derivative to 122.0° for the *t*-Bu₃PN species. For compounds 27 and 28 this angle is similar to that seen for 13; however it increases to 125.3° for compound 22, consistent with the steric influence of the substituted cyclopentadienyl ligand. Similarly, the N-Ti-Cp angle in 23 of 120.3° is significantly higher

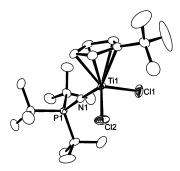
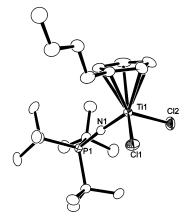
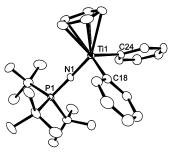

Figure 1. ORTEP drawing of **13**, 30% thermal ellipsoids, H atoms omitted for clarity.

Figure 2. ORTEP drawing of **21**, 30% thermal ellipsoids, H atoms omitted for clarity.


Figure 3. ORTEP drawing of **23**, 30% thermal ellipsoids, H atoms omitted for clarity.


Figure 4. ORTEP drawing of **27**, 30% thermal ellipsoids, H atoms omitted for clarity.

than that found in **12** (116.1°), again reflecting what is predominantly a steric influence of indenyl versus cyclopentadienyl ligands.

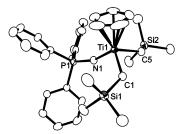
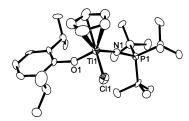

The reactions of the above precursors with 2 equiv of MeLi proceed, in general, in high yields, providing a facile route to the series of compounds of the form CpTi-(NPR₃)Me₂ and Cp[†]Ti(NPR₃)Me₂ (Table 1). In a similar fashion, reactions with benzyl-Grignard reagents afford *bis*-benzyl derivatives, CpTi(NPR₃)Bn₂ (R = Cy **46**, *i*-Pr **47**, *t*-Bu **48**, Ph **49**, *p*-MeC₆H₄ **50**, *p*-CF₃C₆H₄ **51**, *p*-FC₆H₄ **52**, *p*-MeOC₆H₄ **53**) in high yield. Arylation using PhLi or related substituted Grignard reagents also proceeds efficiently to give the compounds **54**–**60**

Figure 5. ORTEP drawing of **28**, 30% thermal ellipsoids, H atoms omitted for clarity.

Figure 6. ORTEP drawing of **56**, 30% thermal ellipsoids, H atoms omitted for clarity. Ti(1)-N(1) 1.783(3) Å, Ti(1)-C(24) 2.128(5) Å, Ti(1)-C(18) 2.170(5) Å, N(1)-P(1) 1.602(4) Å; Ti(1)-N(1)-P(1) 169.4(3)°, N(1)-Ti(1)-C(24) 105.27(18)°, N(1)-Ti(1)-C(18) 99.87(18)°.

Figure 7. ORTEP drawing of **62**, 30% thermal ellipsoids, H atoms omitted for clarity. Ti(1)-N(1) 1.814(2) Å, Ti(1)-C(5) 2.128(3) Å, Ti(1)-C(1) 2.139(3) Å, P(1)-N(1) 1.581(2) Å, N(1)-Ti(1)-C(1) 104.05(11)°, C(5)-Ti(1)-C(1) 97.34(12)°, P(1)-N(1)-Ti(1) 160.44(15)°.


(Table 1, Scheme 1). As a final example, the species $CpTi(NPR_3)(CH_2SiMe_3)_2$ (R = t-Bu₃ **61**, Ph **62**) was readily obtained in 83% yield via the reaction of **13** and **14** with the alkylating agent $(CH_3)_3SiCH_2MgCl$. For all of alkyl/aryl derivatives, full spectroscopic characterizations were consistent with the formulations.

X-ray crystallographic data were also obtained for compounds **56** (Figure 6) and **61** (Figure 7). The structures of compounds **56** and **62** are as expected. The Ti–N distance in **56** of 1.783(3) Å is only slightly longer than that seen in **13**, whereas the corresponding distance in **62** is significantly longer (1.814(2) Å). This reflects the differing donor abilities of both the alkyl and aryl groups as well as that of the phosphinimide ligands. The P–N–Ti angle in **56**, 169.4(2)°, falls in the range observed for the complexes above. On the other hand, the smaller P–N–Ti angle (160.44(15)°) and the shorter P–N distance (1.581(2) Å) in **62** reflect the poorer donor

Table 5. Metric rarameters for compounds of the Form (cp) 11(Nr N ₃)C ₁₂							
cmpd	Ti-Cl	Ti-N	N-P	Cl-Ti-Cl	$N-Ti-Cl_{av}$	Ti-N-P	$N-Ti-Cp^b$
11	2.3074(9)	1.755(2)	1.606(2)	102.12(4)	103.43(8)	172.02(15)	121.3
	2.3098(9)				102.55(8)		
12	2.2928(14)	1.750(3)	1.609(3)	102.07(6)	102.79(10)	169.84(19)	116.1
	2.3015(13)				102.67(10)		
	2.2945(13)	1.750(3)	1.616(3)	101.66(5)	103.39(10)	167.24(19)	
	2.3020(12)				103.73(10)		
13	2.309(3)	1.775(11)	1.593(10)	102.69(12)	102.6(2)	176.6(4)	122.0
	2.313(12)				102.7(2)		
21	2.299(3)	1.759(4)	1.608(4)	102.14(10)	102.8(2)	167.8(4)	122.6
	2.314(2)				101.86(17)		
22	2.3050(18)	1.794(3)	1.595(3)	100.70(7)	101.68(11)	165.5(2)	125.3
	2.3204(15)				102.56(10)		
23	2.2932(14)	1.741(4)	1.611(4)	102.96(6)	104.20(13)	159.6(2)	120.3
	2.3067(12)				101.61(11)		
	2.2968(13)	1.746(4)	1.600(4)	103.68(5)	103.73(12)	163.9(2)	
	2.3021(13)				101.31(11)		
27	2.3096(10)	1.761(2)	1.612(2)	103.42(5)	101.72(8)	176.28(15)	122.3
	2.3148(11)				101.84(8)		
28	2.3114(8)	1.7587(18)	1.6033(19)	102.13(3)	101.65(6)	175.91(12)	122.3
	2.3162(9)				102.55(7)		

Table 3. Metric Parameters^a for Compounds of the Form (Cp')Ti(NPR₃)Cl₂

 a Where two set of parameters are reported, the structural data reveal two molecules in the asymmetric unit; errors in parentheses are the standard deviations computed on the basis of the five bond lengths. ^bN-Ti-Cp angles refer to the angle at Ti between N and the centroid of the five η^5 -carbons.

Figure 8. ORTEP drawing **63** (one of the two molecules in the asymmetric unit), 30% thermal ellipsoids, H atoms omitted for clarity. Ti(1)-N(1) 1.775(9) A, Ti(1)-O(1)1.846(8) Å, Ti(1)-Čl(1) 2.339(4) Å, P(1)-N(1) 1.588(10) Å, N(1)-Ti(1)-O(1) 104.1(4)°, N(1)-Ti(1)-Cl(1) 101.5(3)°, O(1)-Ti(1)-Cl(1) 101.9(3)°, P(1)-N(1)-Ti(1) 170.9(7)°, C(6)-O(1)-Ti(1) 153.3(8)°.

ability of the Ph₃PN ligand. The C(18)-Ti-C(24) angle of 101.48(19)° in **56** and the C(5)-Ti-C(1) angle of 97.34(12)° in **61** are smaller than the Cl–Ti–Cl angles described above. The Ti-C bond lengths (2.128(5), 2.170(5) Å) in **56** are significantly shorter than those seen in Cp₂TiPh₂ (2.272(14) Å)⁵⁴ but similar to those seen in **61** (2.128(3), 2.139(3) Å). This presumably reflects the electron-deficient nature of the Ti center in these compounds relative to that in the corresponding titanocene.

Substitution of one of the chloride ligands of 13 was also achieved by direct reaction with the bulky aryloxide salt Na $[O-2,6-(i-Pr)_2C_6H_3]$. In this manner, the species $CpTi(NP(t-Bu)_3)Cl(O-2,6-i-Pr_2C_6H_3)$, **63**, was obtained in 96% yield. The spectroscopic data confirmed the formulation as well as the diastereotopic nature of the isopropyl methyl groups. A crystallographic study of 63 (Figure 8) revealed Ti-N and Ti-O distances of 1.775(9) and 1.846(8) A, respectively, with P-N-Ti and C-O-Ti angles of 170.9(7)° and 153.3(8)°, suggesting that phosphinimide is a stronger π -donor than the arvloxide.

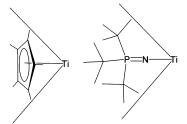
Ethylene Polymerization. The synthetic chemistry above provides facile access to a large series of related Ti complexes. This offers an opportunity to probe structure—activity correlations in olefin polymerization. Polymerization of ethylene was examined initially in small-scale Schlenk line catalyst screening experiments.

Compounds 11–31 were employed as catalyst precursors using 500 equiv of methylalumoxane (MAO) as the activator (Table 4). In general, these catalysts exhibit single site activity, as evidenced by the relatively narrow polydispersities of the resulting polyethylene (PE). However, the PE derived from compounds **11**, **12**, **25**, and 26 show bimodal distributions of molecular weights, suggesting the presence of more than one active site. It is noteworthy that in these cases although these catalysts have reduced activity, $M_{\rm w}$'s of PE as high as 9 \times 10⁵ g/mol were observed.

The catalysts derived from compounds 14-18 permit examination of electronic factors, as these species are essentially isosteric. The observed differences in activity are relatively small, but the trend suggests that electrondonating substituents favor somewhat higher activities. On the other hand, the catalysts derived from **10–13** are electronically similar, although the steric demands of the ancillary phosphinimide ligand vary significantly. The observed activities in these cases infer marked dependence on steric factors, as all of the tri-tertbutylphosphimide complexes 13, 20, 27, 44, and 62 showed activities that are comparable to those observed for Cp₂ZrCl₂ and the constrained geometry catalyst [(C₅-Me₄SiMe₂N-t-Bu)TiCl₂ (CGC). Also, they are significantly higher than those observed for Cp₂TiCl₂ or CpTiCl₃ using the same apparatus and conditions. In contrast the catalysts derived from the smaller phosphinimide ligands exhibit markedly reduced activity. GPC data for the PE derived for the active systems reveal average $M_{\rm w}$ from 55 000 to 203 500 with polydispersities of 1.6-2.4.

Initial small-scale Schlenk line screenings were performed employing dimethyl complexes 30-32 and 42-44 as catalyst precursors and using [Ph₃C][B(C₆F₅)₄] as the activator. These phosphinimide-based catalysts rapidly generate high molecular weight, highly linear (by NMR) polyethylene. The polymer generated from complexes **30–32** range in $M_{\rm w}$ from 135 000 to 165 000

pre-cat.	co-cat.a	activity ^a	$M_{\!\scriptscriptstyle m W}{}^b$	PDI^e	pre-cat.	co-cat.a	activity ^a	$M_{ m w}{}^b$	PDI^e
10	MAO/a	13			23	MAO/a	28		
11	MAO/a	42	3590	1.8	24	MAO/a	425		
			336 000	2.2					
12	MAO/a	49	18 700	2.8	25	MAO/a	46	7410	2.1
			578 500	2.4				893 500	3.4
13	MAO/a	652	89 900	1.6	26	MAO/a	16	7580	1.9
								910 200	2.5
14	MAO/a	34	109 200	2.6	27	MAO/a	881	65 400	2.4
15	MAO/a	35			28	MAO/a	2000		
16	MAO/a	31			44	MAO/a	853	55 600	2.3
17	MAO/a	34			61	MAO/b	300	81 400	3.6
18	MAO/a	47			62	MAO/a	765	203 500	1.9
19	MAO/a	16			Cp_2ZrCl_2	MAO/a	895	116 353	2.8
20	MAO/a	494	135 800	1.7	$\dot{\mathrm{CGC}^d}$	MAO/a	630		
21	MAO/a	30			Cp_2TiCl_2	MAO/a	415		
22	MAO/a	1400			$\dot{CpTiCl_3}$	MAO/a	<10		
30	TB/a	231	134 600	2.8	Cp_2ZrCl_2	MAO/c	670	340 800	2.1
31	TB/a	225	163 800	3.9	42	TB/a	1807	310 200	7.5^{c}
32	TB/a	401	165 800	3.4	43	TB/a	1193	259 200	9.9^c
32	MAO/c	830	812 000	1.7	44	TB/a	1296	321 300	12.3^{c}
32	TMA/c	<1			13	MAO/c	1485		


^a MAO, methylalumoxane (500 equiv); TB, trityl tetrakispentafluorphenylborate (2 equiv); TMA, trimethylaluminum. Activity reported in g/mmol/h/atm. Conditions: (a) Schlenk line, 1 atm pressure of ethylene and 25 °C, 5 min. (b) Schlenk line, 1 atm pressure of ethylene and 25 °C, 30 min. (c) Buchi reactor, 1.8 atm pressure of ethylene, 30 °C, 30 min. b Molecular weight data were recorded against polyethylene standards. The high activity of these systems together with the observation of polydispersities in the range 7-12 suggest that these polymerizations rapidly become diffusion-controlled reactions. d CGC = [(C₅Me₄SiMe₂N-t-Bu)TiCl₂. e Where two MWs are reported, GPC curves were clearly bimodal and the quoted polydispersities were derived from a computational fit.

g/mol with polydispersities in the range of 2.4-3.8. The catalysts derived from analogous tert-butylcyclopentadienyl complexes 42-44 and trityl-borate activation gave even higher molecular weight polyethylene $(M_{\rm w}:~260-320~000)$. Moreover it was very encouraging to note that the activities of the latter systems were as much as twice that derived from Cp₂ZrCl₂ and three times that derived from the CGC, under similar conditions.

Selected cases were scaled up for testing on a Büchi reactor. In this system, typically 600-700 mL of solvent was employed with catalyst concentrations of approximately 50 μ mol/L while the ethylene pressure was around 1.8 atm. The trials reported here are 30 min, and the active catalysts produce 10−20 g of PE. In this manner, catalysts derived from compounds 13 and 32 with MAO activation showed activity of 1485 and 830 g PE/mmol/h/atm, respectively. Interestingly, changes to the Al activator had dramatic effects. Replacing MAO with AlMe₃ results in a dramatic plummet in activity. We have recently described reactions of CpTi(NPR₃)-Me₂ with AlMe₃ which proceed through a series of C-H activation reactions, ultimately affording Ti-Al-carbide aggregates. 49,55-58 This chemistry may account for the dramatic reduction in activity of these catalysts in the presence of AlMe₃.

Catalyst Design Considerations. The results above demonstrate that the family of compounds of the form (Cp[†])TiX₂(NPR₃) are effective catalyst precursors for olefin polymerization. The original concept on which these developments were based was the notion of a steric analogy between cyclopentadienyl and phosphin-

Scheme 2

imide ligands, though clearly this notion is fraught with limitations. However, from the above structural data, the maximum angle subtended at Ti or the "cone angle"59,60 for the phosphinimide ligand, t-Bu₃PN, was determined to be approximately 87°, similar to that observed for a metal-bound cyclopentadienyl ligand (83°) (Scheme 2). This suggests that these ligands occupy approximately similar volumes about the Ti center. On the other hand, it is clear that the steric bulk of a phosphinimide ligand is considerably removed from the metal as the Ti-P distance is over 3 Å, whereas the Ti-Cp-centroid distance is about 2.2 Å. The polymerization data also suggest that steric factors play a significant role in determining the effectiveness of a catalyst. For example, those catalysts incorporating tertbutylphosphinimide ligands as in 13, 20, 22, 24, 27, and 28 are in general quite active. On the other hand, for the systems where additional substitution on the cyclopentadienyl ligand contributes to the definition of the active site, sterically less demanding phosphinimide ligands still provide for high activity. Examples of this latter situation are the catalysts derived from compounds 42 and 43. These polymerization data suggest that the general strategy of employing ancillary ligands with similar steric bulk to cyclopentadienyl ligands has some viability. On the other hand, it also reveals

⁽⁵⁵⁾ Guerin, F.; Stephan, D. W. Angew. Chem., Int. Ed. 1999, 38,

⁽⁵⁶⁾ Kickham, J. E.; Guerin, F.; Stewart, J. C.; Stephan, D. W.

Angew. Chem., Int. Ed. **2000**, 39, 3263–3266. (57) Kickham, J. E.; Guerin, F.; Stewart, J. C.; Urbanska, E.; Ong, C. M.; Stephan, D. W. Organometallics **2001**, 20, 1175–1182.

⁽⁵⁸⁾ Yue, N.; Hollink, E.; Guérin, F.; Stephan, D. W. Organometallics **2001**, 20, 4424-4433.

⁽⁵⁹⁾ Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956-2965.

⁽⁶⁰⁾ Tolman, C. A. Chem. Rev. 1977, 77, 313-348.

limitations of this approach, in that the very subtle changes to the steric demands result in major changes in activity. Although these subtleties are not well understood, it is thought that the role of steric congestion is to preclude deactivation pathways, including cation dimerization and interaction with Lewis acids leading to C–H activation. We have identified these pathways in related phosphinimide complex systems. 56,58,61,62

It is perhaps surprising that the complexes described herein are highly effective catalysts, given the similar success associated with the CGC. While both systems provide a cyclopentadienyl- and N-based ligand to the Ti center, the Cp-centroid—Ti—N angles (Table 3) in the present phosphinimide complexes are significantly greater than that found in the CGC (107.6°).⁴³ This seems to counter the notion that increased exposure of the Ti center is required for heightened reactivity.

The electronic character of phosphinimide ligands has been previously probed by Dehnicke and co-workers. $^{45-48}$ The σ - π^2 nature of the interaction with a metal center suggests an electronic analogy to a cyclopentadienyl ligand as well. Nonetheless the present polymerization data demonstrate that minor perturbations to the donor ability of the phosphinimide alter the activity of the resulting catalysts to a small extent. However, it is noteworthy that this comparison is made among cata-

lysts that operate in a low-activity regime. It may be that electronic effects would be more dramatic for higher activity systems. This aspect is the subject of ongoing synthetic efforts.

In summary, the feasibility of an approach to catalyst design based on the steric analogy between phosphinimide and cyclopentadienyl ligands is supported by the family of titanium phosphinimide complexes (Cp^{\dagger}) TiX₂- (NPR_3) . Both the demonstrated activity of these species in olefin polymerization and the metric parameters of the titanium-phosphinimide complexes support the view that such ligands provide a metal environment that mimics metallocenes to some extent. Among the present systems, it appears that steric rather than electronic factors are key to the generation of highly active systems. The optimization of the catalyst structure for activity continues to be one focus of our efforts. Efforts to apply these systems to a variety of other processes are also the subjects of ongoing studies.

Acknowledgment. Financial support from the NSERC of Canada and NOVA Chemicals Corporation is gratefully acknowledged. Thanks to Keith Christall for the synthesis of **28**. D.W.S. is grateful to the Alexander von Humboldt Stiftung for the award of a Forschungpreis.

Supporting Information Available: Crystallographic information tables as well as ORTEP drawings of all structures reported herein. This material is available free of charge via the Internet at http://pubs.acs.org.

OM020954T

⁽⁶¹⁾ Yue, N. L. S.; Stephan, D. W. *Organometallics* **2001**, *20*, 2303–2308

^{2308. (62)} Kickham, J. E.; Guerin, F.; Stewart, J. C.; Urbanska, E.; Ong, C. M.; Stephan, D. W. *Organometallics* **2001**, *20*, 3209.