Carbon-Carbon Bond Formation between Adjacent Alkenyl Ligands: η³-Allyl Iridium(III) and η⁴-Butadiene Iridium(I) Complexes from a *cis*-Bis(alkenyl) Iridium(III) Complex

Chong Shik Chin,* Hyungeui Lee, Soyoung Noh, Hyeyun Park, and Mieock Kim

Chemistry Department, Sogang University, Seoul 121-742, Korea

Received February 7, 2003

A carbon–carbon bond is formed between the α -carbons of the alkenyl ligands of the *cis*bis(ethenyl)iridium complex [Ir($-CH=CH_2$)₂(CH₃CN)₂(PPh₃)₂]⁺ (**2**) to produce the η^3 -allyl complex [Ir(η^3 -CH₃CHCHCH₂)(NCCH₃)₂(PPh₃)₂]²⁺ (**4**) in the reaction of **2** with H⁺, and η^4 butadiene complexes Ir(η^4 -CH₂=CHCH=CH₂)(A)(PPh₃)₂ (A = -CH=CH-+NEt₃ (**6**), $-C\equiv$ CR (**7**)) in reactions of **2** with terminal alkynes (RC=CH; R = H, Ph, and *p*-C₆H₄CH₃) in the presence of NEt₃. The deuterium labeling experiments suggest an initial attack of H⁺ on the β -carbon of an ethenyl ligand to lead to the C–C bond formation between the α -carbons of the two alkenyl groups of **2** to produce **4**.

Introduction

Transition metal-mediated C–C bond formation between alkynes has been extensively investigated since it is probably the most useful transformation in synthetic chemistry.¹ It is likely that metal-hydrocarbyls such as metal-alkyls, -alkenyls, -alkynyls, -carbenes, and -vinylidenes are the intermediates formed during the C–C coupling.^{1,2}

We have recently reported that some alkynyl-iridium complexes are utilized as precursors for the C–C bond formation to give polyenes such as di-, tri-, and tetraenes.² Iridium-alkynyls $(Ir-C_{\alpha} \equiv C_{\beta}-R)^2$ are readily protonated at the electrophilic β -carbon to give iridium-vinylidenes (Ir= $C_{\alpha} \equiv C_{\beta}HR$) that undergo carbon–carbon coupling reactions with adjacent hydrocarbyl ligands (Iralkyl,^{2a,d,e} Ir-alkenyl,^{2a–c} and Ir-allyl^{2a,f}) to produce those polyenes.

We now wish to report a proton-initiated C–C bond formation between *cis*-bis(alkenyl) ligands of iridiumalkenyls (Ir–CH=CH₂)^{2b,3} to produce 2-butene and 1,3butadiene via iridium-carbene (Ir=CHCH₃) intermediates.

 $\begin{array}{l} {\sf L} = {\sf PPh}_3, {\sf R} = {\sf C}_6{\sf H}_5 \left({\rm a} \right), \, \rho {\sf -C}_6{\sf H}_4{\sf CH}_3 \left({\rm b} \right) \\ {\rm (i)} \; {\sf H}^+, \, {\rm (ii)} \;\; 60 \; ^\circ {\sf C}, \; {\sf -CH}_3{\sf CN}, \, {\rm (iii)} \;\; {\sf -H}^+, \; {\sf -CH}_3{\sf CN} \\ {\rm (iv)} \; {\sf HC} {\equiv} {\sf CH}, \; {\sf NEt}_3/ \; {\sf -2CH}_3{\sf CN}, {\rm (v)} \; {\sf HC} {\equiv} {\sf CR}, \; {\sf NEt}_3/ \; {\sf -2CH}_3{\sf CN}, \; {\sf -H}^+ {\sf NEt}_3 \\ \end{array}$

Results and Discussion

Reaction of the cis-bis(ethenyl) Ir(III) complex [Ir(- $CH=CH_{2}_{2}(CH_{3}CN)_{2}(PPh_{3})_{2}^{+}$ (2)^{2b,3} with H⁺ readily gives the η^3 -allyl complex [Ir(η^3 -CH₃CHCHCH₂)(CH₃- $(CN)_2(PPh_3)_2|^{2+}$ (4), which slowly undergoes reductive deprotonation at room temperature to give the η^4 butadiene complex $[Ir(\eta^4-CH_2=CHCH=CH_2)(CH_3CN) (PPh_3)_2$ ⁺ (5) (Scheme 1). Complex 5 is also obtained directly by heating 2 in CHCl₃ at 60 °C (Scheme 1). In the presence of NEt_3 , complex **2** reacts with alkynes HC=CH and RC=CH ($R = C_6H_5$ and $p-C_6H_4CH_3$) to give the alkenvl η^4 -butadiene complex Ir(-CH=CH-+NEt₃)- $(\eta^4$ -CH₂=CHCH=CH₂)(PPh₃)₂ (**6**) and alkynyl η^4 -butadiene complexes $Ir(-C \equiv CR)(\eta^4 - CH_2 = CHCH = CH_2)$ - $(PPh_3)_2$ (7, R = C₆H₅ (**a**), *p*-C₆H₄CH₃ (**b**)),^{2b} respectively, in high yields (Scheme 1). These 18-electron Ir(I) complexes (5, 6, and 7) are very stable both in the solid state and in solution at 25 °C even in air for several

 ^{(1) (}a) Esteruelas, M. A.; García-Yebra, C.; Oliván, M.; Oñate, E.; Tajada, M. A. Organometallics **2000**, *19*, 5098. (b) Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Kainosho, M.; Ono, A.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1999**, *121*, 12035. (c) Shirakawa, E.; Yoshida, H.; Nakao, Y.; Hiyama, T. J. Am. Chem. Soc. **1999**, *121*, 4290. (d) Haskel, A.; Straub, T.; Dash, A. K.; Eisen, M. S. J. Am. Chem. Soc. **1999**, *121*, 3014. (e) Burrows, A. D.; Green, M.; Jeffery, J. C.; Lynam, J. M.; Mahon, M. F. Angew. Chem., Int. Ed. **1999**, *38*, 3043. (f) Werner, H.; Schäfer, M.; Wolf, J.; Peters, K.; von Schnering, H. G. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 191. (g) St. Clair, M.; Schaefer, W. P.; Bercaw, J. E. Organometallics **1991**, *10*, 525. (h) Schrock, R. R.; Luo, S.; Lee, J. C., Jr.; Zanetti, N. C.; Davis, W. M. J. Am. Chem. Soc. **1996**, *118*, 3883.

^{(2) (}a) Chin, C. S.; Won, G.; Chong, D.; Kim, M.; Lee, H. Acc. Chem.
(2) (a) Chin, C. S.; Won, G.; Chong, D.; Kim, M.; Lee, H. Acc. Chem.
Res. 2002, 35, 218. (b) Chin, C. S.; Lee, H.; Park, H.; Kim, M.
Organometallics 2002, 21, 3889. (c) Chin, C. S.; Kim, M.; Lee, H.; Noh,
S.; Ok, K. M. Organometallics 2002, 21. 4785. (d) Chin, C. S.; Kim,
M.; Lee, H. Organometallics 2002, 21, 1679. (e) Chin, C. S.; Kim,
Won, G.; Oh, M.; Ok, K. M. Organometallics 1999, 18, 4810. (f) Chin,
C. S.; Maeng, W.; Chong, D.; Won, G.; Lee, B.; Park, Y. J.; Shin, J. M.
Organometallics 1999, 18, 2210.

⁽³⁾ Iridium-alkenyls, *cis*-bis(ethenyl) Ir(III) complexes $[Ir(-CH=CH_2)_2L'_2(PPh_3)_2]^+$ ($L' = CH_3CN$ (**2**), CO (**3**)) have been prepared by the insertion of HC=CH into Ir–H bonds of the *cis*-dihydrido Ir(III) complex $[Ir(H)_2(NCCH_3)_2(PPh_3)_2]^+$ (**1**). See Experimental Section in ref 2b.

hours. Complex 4 reacts with H_2 to give 2-butene (mixture of *cis* and *trans*), butane, and *cis*, *cis*-[Ir(H)₂- $(NCCH_3)_2(PPh_3)_2^+$ (1), while 1,3-butadiene is liberated from 7 by reactions with CO, which affords $Ir(C \equiv CR)$ - $(CO)(PPh_3)_2$.

There are a few examples of proton-initiated C-C bond formation between adjacent alkenyl ligands to give η^3 -allyl complexes⁴ and of reductive C-C coupling between two *cis*-alkenyl ligands by thermal activation to give η^4 -butadiene complexes.⁵ Hardly does the conversion of η^3 -butenyl complex to η^4 -butadiene complex occur under normal conditions except one by photolysis.⁶

Neither the C-C coupling reaction between cisethenyl groups nor protonation has been observed for the cis, cis-dicarbonylbis(ethenyl) complex [Ir(-CH= $(CH_2)_2(CO)_2(PPh_3)_2]^+$ (3)^{2b,3} to give an η^4 -butadiene or η^3 -allyl complex. Instead, tris(alkenyl) Ir(III) complex 8 and alkynyl bis(alkenyl) Ir(III) complexes 9^{2b} are obtained from reaction with alkynes in high yields (eq 1). Both **8** and **9** are stable both in the solid state and in solution at 25 °C even in air for several hours. Attempts to observe C-C bond formation between the two cis-alkenyl ligands of 8 have been unsuccessful thus far, while complexes 9 undergo proton-initiated C-C coupling reaction between the alkynyl and two cisalkenyl ligands to produce cross-conjugated hexatrienes (RCH=C(CH=CH₂)₂, R-HEX).^{2b}

i) HCECH, Me₃NO/ -CO₂ ii) HCECR, Me₃NO/ -CO₂, -H⁺NMe₃ L = PPh₃, R = C₆H₅ (a), p-C₆H₄CH₃ (b), cyclohex-1-enyl (c)

Newly prepared compounds 4, 5, 6, and 8 have been unambiguously identified by detailed spectral (¹H, ¹³C, ¹H, ¹H-2D COSY, ¹H, ¹³C-2D HETCOR, and ³¹P NMR) and elemental analysis data (see Experimental Section). Characterization of 4 is rather straightforward by comparing the spectral data with those for related allylic metal compounds.^{4,7} The ¹³C NMR spectrum of **4** shows all four carbons for the allyl ligand at 16.4–116.6 ppm (see Experimental Section).

Assignments of ¹H NMR signals to Ir- $CH_{\alpha} = CH_{\beta}$ - $^{+}NR_{3}$ (R = Et (6), Me (8)) are also straightforward by comparing the data with those for the related wellcharacterized complexes containing Ir-CH=CH-+NR₃ and other related metal alkenyls.^{2e,8} ¹³C NMR spectra of 5 and 6 show the signals due to the inner carbons of

the 1,3-butadiene of $Ir(\eta^4-CH_2=CHCH=CH_2)$ at δ 72.1-89.1 and those due to the outer carbons of $Ir(\eta^4 - CH_2)$ CHCH= CH_2) at δ 31.3–42.0. ³¹P NMR spectra of these complexes show two signals at δ 5.6–15.3 and δ –7.1 to -8.0, respectively (see Experimental Section), as does the related η^4 -1,3-butadiene complex (PPh₃)₂ClRh(η^4 -CH₂=CHC(Ph)=CH₂),⁹ whose crystal structure shows the two PPh₃ being nonequivalent.

To obtain more information on the reaction pathway for the proton-initiated C-C coupling reaction between the two *cis*-ethenyl ligands $(2 \rightarrow 4)$, deuterium labeling experiments (see eq 2 and Scheme 2) have been carried out. The d_1 isotopomer [Ir(η^3 -CH₂DCHCHCH₂)(NCCH₃)₂- $(PPh_3)_2]^{2+}$ (4- d_1) is obtained from the reaction of 2 with D^+ and found to react with NR'₃ (NC₅H₅ (**a**), NEt₃ (**b**)) to produce trans-2-butenylammonium cations trans- $CH_2DCH=CHCH_2N^+R'_3$ (10-d₁) (eq 2). This nucleophilic attack of NR'₃ on the terminal C_{α} carbon of the η^3 butenyl (η^3 -CH₃C_{γ}HC_{β}HC_{α}H₂) group of **4** is somewhat expected since allylic ligands are known to be readily attacked by nucleophiles to form C-C and C-heteroatom bonds.⁷ Isolated metal complexes ([Ir] in eq 2) from the reactions of 2 with D^+ have not been fully characterized.

^{(7) (}a) Takeuchi, R.; Ue, N.; Tanebo, K.; Yamashita, K.; Shiga, N. J. Am. Chem. Soc. 2001, 123, 9525. (b) Delbecq, F.; Lapouge, C. Organometallics 2000, 19, 2716. (c) Evans, P. A.; Robinson, J. E.; Nelson, J. D. J. Am. Chem. Soc. 1999, 121, 6761. (d) Takeuchi, R.; Kashio, M. J. Am. Chem. Soc. 1998, 120, 8647. (e) Johannsen, M.; Jørgensen, K. A. Chem. Rev. **1998**, 98, 1689. (f) Evans, P. A.; J. E.; Nelson, J. D. J. Am. Chem. Soc. **1998**, 120, 5581. (g) Trost, B. M.; Bunt, R. C. J. Am. Chem. Soc. 1998, 120, 70. (h) Kondo, T.; Ono, H.; Satake, N.; Mitsudo, T.; Watanabe, Y. Organometallics 1995, 14, 1945. (i)
 Sjögren, M. P. T.; Hansson, S.; Åkermark, B. Organometallics 1994, 13, 1963. (j) Casey, C. P.; Yi, C. S. Organometallics 1990, 9, 2413. (k)
 Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.; Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301. (l) Åkermark, B.; Hansson, S.; Krakenberger, B.; Vltagliano, A.; Zetterberg, K. Organometallics **1984**, *3*, 679. (m) Åkermark, B.; Åkermark, G.; Hegedus, L. S.; Zetterberg, K. J. Am. Chem. Soc. 1981, 103, 3037.

^{(4) (}a) Zhen, H.; Wang, C.; Hu, Y.; Flood, T. C. Organometallics 1998, 17, 5397. (b) Esteruelas, M. A.; Liu, F.; Oñate, E.; Sola, E.; Zeier, B. Organometallics 1997, 16, 2919.

^{(5) (}a) Bohanna, C.; Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, A.; Sola, E. Organometallics 1995, 14, 4825. (b) Czisch, P.; Erker, G.; Korth, H.-G.; Sustmann, R. Organometallics 1984, 3, 945.

^{(6) (}a) Padilla-Martínez, I. I.; Poveda, M. L.; Carmona, E. Organo-metallics **2002**, *21*, 93. (b) Nicasio, M. C.; Paneque, M.; Pérez, P. J.; *metallics* **2002**, *21*, 93. (b) Ničaslo, M. C.; Paneque, M.; Perez, P. J.; Pizzano, A.; Poveda, M. L.; Rey, L.; Sirol, S.; Taboada, S.; Trujillo, M.; Monge, A.; Ruiz, C.; Carmona, E. *Inorg. Chem.* **2000**, *39*, 180. (c) Paneque, M.; Pérez, P. J.; Pizzano, A.; Poveda, M. L.; Taboada, S.; Trujillo, M.; Carmona, E. *Organometallics* **1999**, *18*, 4304. (d) Tada, K.-i.; Oishi, M.; Suzuki, H. *Organometallics* **1996**, *15*, 2422. (e) Suzuki, H. *Organometallics* **1994**, *13*, 1129. (f) Boutry, O.; Gutiérrez, E.; Monge, A.; Nicasio, M. C.; Pérez, P. J.; Carmona, E *J. Am. Chem. Soc.* **1992**, *114*, 7288 114, 7288.

^{(8) (}a) Chin, C. S.; Lee, H.; Oh, M. Organometallics 1997, 16, 816.
(b) Chin, C. S.; Park, Y.; Kim, J.; Lee, B. J. Chem. Soc., Chem. Commun. 1995, 1495. (c) Yang, K.; Bott, S. G.; Richmond, M. G. Organometallics 1994, 13, 3767. (d) Hoffman, D. M.; Huffman, J. C.; (9) Osakada, K.; Takimoto, H.; Yamamoto, T. Organometallics 1998, 12, 4312.

^{17, 4532.}

Scheme 2 summarizes the reactions of $[Ir(CH=CHD)_2 (CH_3CN)_2(PPh_3)_2]^+$ (2- d_2)^{2b} (Scheme 2). Isotopomers 4- d_1 , 4- d_2 ($[Ir(\eta^3-CH2_DCHCHCHD)(NCCH_3)_2(PPh_3)_2]^{2+}$), 4- d_3 ($[Ir(\eta^3-CHD_2CHCHCHD)(NCCH_3)_2(PPh_3)_2]^{2+}$), 5- d_2 ($[Ir(\eta^4-CHD=CHCH=CHD)(NCCH_3)(PPh_3)_2]^+$), 5- d_x (1 < x < 2), 10, and 10- d_1 have been unequivocally identified by ¹H NMR (4- d_1 , 4- d_2 , 4- d_3 , 5- d_2 , and 5- d_x) and mass spectral data (10 and 10- d_1) (see Experimental Section).

Metal-carbenes (M⁺=CHCH₂R) are frequently observed and suggested in reactions of metal-alkenyls (M-CH=CHR) with the proton,¹⁰ and the α -carbon (M⁺= *C*HCH₂R) of the electrophilic alkylidene group readily interacts with the α -carbon of a neighboring hydrocarbyl ligand to form a new C-C bond.4,11 Scheme 3 is accordingly suggested for the C-C bond formation between adjacent alkenyl groups of $2 (2 \rightarrow 4)$. The formation of $4 \cdot d_2$ from the reaction of $2 \cdot d_2$ with H⁺ suggests the attack of H⁺ on the β -carbon of an alkenyl group to give the intermediate \mathbf{A} - d_2 , which undergoes a C–C coupling reaction between α -carbons of the carbene (Ir=*C*HCH₂D) and *cis*-ethenyl (Ir-*C*H=CHD) ligands to produce another intermediate, \mathbf{B} - d_2 . The complex $4 - d_2$ is then produced by the isomerization of complex B-d₂, which also slowly undergoes reductive deprotonation to produce the stable 18-electron Ir(I) complex 5- d_x (1 < x < 2).

In conclusion, we have observed two different types of C–C bond forming reactions between the *cis* alkenyl groups of **2**: (i) proton-initiated C–C bond formation to produce η^3 -allyl complexes via proton attack on the

 β -carbon of an ethenyl group and (ii) reductive C–C coupling to produce η^4 -1,3-butadiene complexes.

Experimental Section

General Information. A standard vacuum system and Schlenk type glassware were used in most of the experiments in handling metal complexes, although most of the compounds are stable enough to be handled in air.

HOTf and DOTf were purchased from Aldrich. $[Ir(H)_2-(NCCH_3)_2(PPh_3)_2]OTf$ (1),¹² $[Ir(-CH=CH_2)_2(NCCH_3)_2(PPh_3)_2]-OTf$ (2),^{2b} $[Ir(-CH=CHD)_2(NCCH_3)_2(PPh_3)_2]OTf$ (2,^{2b} and $[Ir(-CH=CH_2)_2(CO)_2(PPh_3)_2]OTf$ (3)^{2b} were prepared by literature methods.

Instrumentation. NMR spectra were recorded on a Varian 200 or 500 MHz spectrometer for ¹H, 125.7 MHz for ¹³C, and 81 or 121.3 MHz for ³¹P. Infrared spectra were obtained on a Nicolet 205. Elemental analyses were carried out with a Carlo Erba EA1108 at the Organic Chemistry Research Center, Sogang University. FD mass measurements were carried out with a Micro Mass Co. Autospec-Q at the SK research center.

Synthesis of [Ir(η^3 -CH₃-CHCHCH₂)(CH₃CN)₂(PPh₃)₂]-(OTf)₂ (4). A reaction mixture of 2 (0.10 g, 0.1 mmol) and HOTf (11 µL, 0.12 mmol) in CHCl₃ (10 mL) was stirred for 1 h at 25 °C before diethyl ether (30 mL) was added to precipitate beige microcrystals, which were collected by filtration, washed with diethyl ether (3 \times 10 mL), and dried under vacuum. The yield was 0.11 g and 95% based on [Ir(n³-CH₃CHCHCH₂)(CH₃CN)₂- $(PPh_3)_2$ (OTf)₂ (4). ¹H NMR (500 MHz, CDCl₃): δ 7.2–7.6 (m, P(C₆H₅)₃, 30H), 5.82 (m, Ir-η³-CH₃CHCHCH₂, 1H), 4.47 (m, $Ir-\eta^{3}-CH_{3}CH_{2}CH_{2}$, 1H), 4.30 and 3.37 (both br m, $Ir-\eta^{3}-CH_{3}-CH_{3}$ -CHCHCH2, 2H), 2.20 and 2.15 (both br s, 2CH3CN, 6H), 1.19 (quartet like, Ir-η³-CH₃CHCHCH₂, 3H). ¹³C NMR (125.7 MHz, CDCl₃): δ 122.6 and 121.2 (s, 2CH₃*C*N), 116.6 (s, Ir- η^3 -CH₃-CHCHCH₂), 84.2 (br s, Ir- η^3 -CH₃CHCHCH₂), 62.5 (br s, Ir- η^3 -CH₃CHCHCH₂), 16.4 (s, Ir-η³-CH₃CHCHCH₂), 4.7 (br s, 2CH₃-CN), 133.4, 132.3, 129.4 and 127.8. (P(C₆H₅)₃). HETCOR (¹H $(500 \text{ MHz}) \rightarrow {}^{13}\text{C} (125.7 \text{ MHz})): \delta 5.82 \rightarrow 116.6; 4.47 \rightarrow 84.2;$ 4.30, $3.37 \rightarrow 62.5$; 2.20, $2.15 \rightarrow 4.7$; $1.19 \rightarrow 16.4$. HOMOCOSY (¹H (500 MHz) \rightarrow ¹H (500 MHz)): δ 5.82 \rightarrow 4.47, 4.30, 3.37; $4.47 \rightarrow 5.82, 1.19; 4.30 \rightarrow 5.82; 3.37 \rightarrow 5.82, 1.19; 1.19 \rightarrow 4.47,$ 3.37. ³¹P{¹H} NMR (81 MHz, CDCl₃): δ -9.59 (s, *P*Ph₃). IR (KBr, cm⁻¹): 1261, 1158, and 1031 (s, OTf⁻). Anal. Calcd for $Ir_1P_2O_6S_2F_6N_2C_{46}H_{43}$: C, 47.95; N, 2.43; H, 3.76. Found: C, 47.96; N, 2.27; H, 3.70.

Synthesis of $[Ir(\eta^3 - CH_2DCHCHCH_2)(CH_3CN)_2(PPh_3)_2]$ -(OTf)₂ (4-*d*₁). Reaction with deutrated acid, DOTf, was carried out in the same manner as described above for that of **2** with HOTf. ¹H NMR (500 MHz, CDCl₃): δ 7.2–7.6 (m, P(C₆H₅)₃, 30H), 5.82 (m, Ir- η^3 -CH₂D-CHCHCH₂, 1H), 4.47 (m, Ir- η^3 -CH₂D-CHCHCH₂, 1H), 4.30 and 3.37 (both br m, Ir- η^3 -CH₂-DCHCHCH₂, 2H), 2.20 and 2.15 (both br s, 2CH₃CN, 6H), 1.19 (quartet like, Ir- η^3 -CH₂DCHCHCH₂, 2H).

Synthesis of $[Ir(\eta^3-CH_2DCHCHCHD)(CH_3CN)_2(PPh_3)_2]$ -(OTf)₂ (4-*d*₂). Reaction of 2-*d*₂ with HOTf was carried out in the same manner as described above for that of 2 with HOTf. ¹H NMR (500 MHz, CDCl₃): δ 7.2–7.6 (m, P(C₆H₅)₃, 30H), 5.82 (br m, Ir- η^3 -CH₂DCHC*H*CHD, 1H), 4.47 (m, Ir- η^3 -CH₂DCH-CHCHD, 1H), 4.30 and 3.37 (both br m, Ir- η^3 -CH₂DCHCHCHD, 1H), 2.20 and 2.15 (both br s, 2CH₃CN, 6H), 1.19 (br s, Ir- η^3 -CH₂DCHCHCHD, 2H).

Synthesis of $[Ir(\eta^3-CHD_2CHCHCHD)(CH_3CN)_2(PPh_3)_2]$ -(OTf)₂ (4-*d*₃). Reaction of 2-*d*₂ with DOTf was carried out in the same manner as described above for that of 2 with HOTf. ¹H NMR (500 MHz, CDCl₃): δ 7.2–7.6 (m, P(C₆*H*₅)₃, 30H), 5.82 (m, Ir- η^3 -CHD₂CHC*H*CHD, 1H), 4.47 (m, Ir- η^3 -CHD₂C-*H*CH-CHD, 1H), 4.30 and 3.37 (both br m, Ir- η^3 -CHD₂CHCHC*H*D,

^{(10) (}a) Baya, M.; Esteruelas, M. A. Organometallics 2002, 21, 2332.
(b) Jung, S.; Ilg, K.; Wolf, J.; Werner, H. Organometallics 2001, 20, 2121. (c) Bohanna, C.; Buil, M. L.; Esteruelas, M. A.; Oñate, E.; Valero, C. Organometallics 1999, 18, 5176. (d) Buil, M. L.; Esteruelas, M. A.; Organometallics 1999, 18, 1798. (e) Crochet, P.; Esteruelas, M. A.; Lopéz, A. M.; Martínez, M. P.; Oliván, M.; Oñate, E.; Ruiz, N. Organometallics 1998, 17, 4500. (f) Gamasa, M. P.; Gimeno, J.; Martín-Vaca, B. M. Organometallics 1998, 17, 3707. (g) Esteruelas, M. A.; Lahoz, F. J.; Oñate, E.; Oro, L. A.; Valero, C.; Zeier, B. J. Am. Chem. Soc. 1995, 117, 7935.

^{(11) (}a) Werner, H.; Wiedemann, R.; Laubender, M.; Windmüller, B.; Steinert, P.; Gevert, O.; Wolf, J. J. Am. Chem. Soc. 2002, 124, 6966.
(b) Aumann, R.; Fu, X.; Vogt, D.; Frohlich, R.; Kataeva, O. Organometallics 2002, 21, 2736. (c) Cadierno, V.; Gamasa, M. P.; Gimeno, J.; Martín-Vaca, B. M. J. Organomet. Chem. 2001, 617-618, 261. (d) Doherty, S.; Hogarth, G.; Waugh, M.; Clegg, W.; Elsegood, M. R. J. Organometallics 2000, 19, 4557. (e) Werner, H.; Stüer, W.; Wolf, J.; Laubender, M.; Weberndörfer, B.; Herbst-Irmer, R.; Lehmann, C. Eur. J. Inorg. Chem. 1999, 1889. (f) Bergamini, P.; Costa, E. Organometallics 1994, 13, 1058. (g) Bly, R. S.; Bly, R. K.; Hossain, M. M.; Lebioda, L.; Raja, M. J. Am. Chem. Soc. 1988, 110, 7723. (h) Bly, R. S.; Hossain, M. M.; Lebioda, L. J. Am. Chem. Soc. 1985, 107, 5549. (i) Bly, R. S.; Sllverman, G. S. Organometallics 1984, 3, 1765. (j) Thorn, D. L.; Tulip, T. H. J. Am. Chem. Soc. 1981, 103, 5984.

^{(12) (}a) Schrock, R. R.; Osborn, J. A. J. Am. Chem. Soc. **1976**, 98, 2134. (b) Crabtree, R. H. Acc. Chem. Res. **1979**, 12, 331.

1H), 2.20 and 2.15 (both br s, $2CH_3CN$, 6H), 1.19 (br s, $Ir-\eta^3-CHD_2CHCHCHD$, 1H).

Synthesis of [Ir(η^4 -CH₂=CHCH=CH₂)(CH₃CN)(PPh₃)₂]-OTf (5). Method A. A CHCl₃ solution of 2 (0.1 g, 0.1 mmol) was heated at 60 °C for 48 h before *n*-pentane (30 mL) was added to precipitate beige microcrystals, which were collected by filtration, washed with *n*-pentane (3 × 10 mL), and dried under vacuum. The yield was 0.082 g and 85% based on [Ir-(η^4 -CH₂=CHCH=CH₂)(CH₃CN)(PPh₃)₂]OTf (5).

Method B. A CHCl₃ solution of 4 (0.12 g, 0.1 mmol) was stirred at 25 °C for 48 h before n-pentane (30 mL) was added to precipitate beige microcrystals, which were collected by filtration, washed with *n*-pentane (3×10 mL), and dried under vacuum. The yield was 0.064 g and 67% based on compound **5.** ¹H NMR (500 MHz, CDCl₃): δ 7.0–7.8 (m, P(C₆H₅)₃, 30H), 6.15 and 5.15 (m, Ir-η⁴-CH₂=CHCH=CH₂, 2H), 3.14 and 1.81 (m, Ir-η⁴-CH_{syn}H_{anti}=CHCH=CH_{syn}H_{anti}, 2H), 2.03 (s, CH₃CN, 3H), -0.49 and -0.66 (m, Ir-η⁴-CH_{syn}H_{anti}=CHCH=CH_{syn}H_{anti}, 2H). ¹³C NMR (125.7 MHz, CDCl₃): δ 120.2 (s, Ir-NCCH₃), 92.3 (t, J(C-P) = 4.4 Hz) and 85.5 (d, J(C-P) = 4.8 Hz) (Ir- η^4 - $CH_2 = CHCH = CH_2$, 41.2 (d, J(C-P) = 39.0 Hz) and 20.1 (d, J(C-P) = 27.3 Hz (Ir- η^4 - CH_2 =CHCH= CH_2), 3.6 (s, Ir-NC*C*H₃). ³¹P{¹H} NMR (81 MHz, CDCl₃): δ 15.2 (d, *J*(P-P) = 8.3 Hz), -8.0 (d, J(P-P) = 8.3 Hz). IR (KBr, cm⁻¹): 1274, 1095, and 1033 (s, OTf⁻). Anal. Calcd for Ir₁P₂O₃S₁F₃N₁C₄₃H₃₉: C, 53.74; N, 1.46; H, 4.09. Found: C, 53.82; N, 1.39; H, 4.18.

Synthesis of [Ir(η^4 -CHD=CHCH=CHD)(CH₃CN)(PPh₃)₂]-OTf (5-*d*₂). Heating a CHCl₃ solution of 2-*d*₂ was carried out in the same manner as method A in the synthesis of complex 5. ¹H NMR (500 MHz, CDCl₃): δ 7.0–7.8 (m, P(C₆*H*₅)₃, 30H), 6.15 and 5.15 (m, Ir- η^4 -CHD=CHCH=CHD, 2H), 3.14, 1.81, -0.49 and -0.66 (m, Ir- η^4 -CHD=CHCH=CHD, 2H), 2.03 (s, CH₃CN, 3H).

Synthesis of [Ir(η^4 -CHD=CHCH=CHD)(CH₃CN)(PPh₃)₂]-OTf (5-*d*_x). Stirring a CHCl₃ solution of 4-*d*₂ was carried out in the same manner as method B in the synthesis of complex 5. ¹H NMR (500 MHz, CDCl₃): δ 7.0–7.8 (m, P(C₆*H*₅)₃, 30H), 6.15 and 5.15 (m, Ir- η^4 -CHD=CHCH=CHD, 2H), 3.14, 1.81, -0.49, and -0.66 (m, Ir- η^4 -CHD=CHCH=CHD, *x*H (1 < *x* < 2)), 2.03 (s, CH₃CN, 3H).

Synthesis of [Ir(-CH=CH-+NEt₃)(η^4 -CH₂=CHCH=CH₂)-(PPh₃)₂]OTf (6). A CHCl₃ solution of 2 (0.1 g, 0.1 mmol) and NEt₃ (0.015 g, 0.15 mmol) was stirred under HC≡CH (1 atm) at 25 °C for 1 h before the pale yellow solution turned light brown. An excess of NEt₃ was removed by extraction with H₂O (5 \times 10 mL). Addition of *n*-pentane (10 mL) resulted in precipitation of beige microcrystals, which were collected by filtration, washed with cold *n*-pentane (3×10 mL), and dried under vacuum. The yield was 0.103 g and 98% based on [Ir- $(-CH=CH^{+}NEt_3)(\eta^4-CH_2=CHCH=CH_2)(PPh_3)_2$ OTf (6). ¹H NMR (500 MHz, CDCl₃): δ 7.0-7.4 (m, P(C₆H₅)₃ and Ir-CH= CH-NEt₃, 31H), 5.39 and 5.20 (m, Ir-η⁴-CH₂=CHCH=CH₂, 2H), 4.94 (d, J(H-H) = 15.0 Hz, Ir-CH=CH-NEt₃, 1H), 2.84 $(q, J(H-H) = 7.0 \text{ Hz}, \text{ Ir-CH}=CH-N(CH_2CH_3)_3, 6H), 2.23, \text{ and}$ 1.93 (m, Ir-η⁴-CH_{syn}H_{anti}=CHCH=CH_{syn}H_{anti}, 2H), 0.84 (t, J(H-H) = 7.0 Hz, Ir-CH=CH-N(CH₂CH₃)₃, 9H), -0.63, and -0.75(m, Ir- η^4 -CH_{syn}H_{anti}=CHCH=CH_{syn}H_{anti}, 2H). ¹³C NMR (125.7 MHz, CDCl₃): δ 128.3 (d, J(C-P) = 4.1 Hz, Ir-CH=CH-+NEt₃), 123.9 (dd, J(C-P) = 12.9 Hz, J(C-P) = 4.7 Hz, Ir-CH=CH-⁺NEt₃), 88.9 (d, J(C-P) = 4.5 Hz) and 80.5 (dd, J(C-P) = 7.9Hz, J(C-P) = 4.5 Hz) (Ir- η^4 -CH₂=CHCH=CH₂), 53.0 (s, Ir-CH=CH- $^+N(CH_2CH_3)_3$, 42.0 and 31.3 (s, Ir- η^4 - CH_2 =CHCH= *C*H₂), 7.3 (s, Ir-CH=CH-⁺N(CH₂*C*H₃)₃). HETCOR (¹H (500 MHz) \rightarrow ¹³C (125.7 MHz)): δ ca. 7.2 \rightarrow 123.9; 5.39 \rightarrow 80.5; $5.20 \rightarrow 88.9; 4.94 \rightarrow 128.3; 2.84 \rightarrow 53.0; 2.23 \rightarrow 42.0; 1.93 -$ 31.3; $0.84 \rightarrow 7.3$; $-0.63 \rightarrow 31.3$; $-0.75 \rightarrow 42.0$. ³¹P{¹H} NMR (121.3 MHz, CDCl₃): δ 5.62 (d, J(P-P) = 19.4 Hz), -7.12 (d, J(P-P) = 19.4 Hz). IR (KBr, cm⁻¹): 1120, 1092, and 1011 (s, OTf⁻). Anal. Calcd for Ir₁P₂O₃S₁F₃N₁C₄₉H₅₃: C, 56.20; N, 1.34; H, 5.10. Found: C, 56.26; N, 1.29; H, 5.14.

Synthesis of [Ir(-CH=CH-+NMe₃)(-CH=CH₂)₂(CO)-(PPh₃)₂]OTf (8). A solution of 3 (0.1 g, 0.1 mmol) and Me₃-NO (0.019 g, 0.25 mmol) in CHCl₃ (10 mL) was stirred under HC≡CH (1 atm) at 25 °C for 30 min before the pale yellow solution turned light brown. An excess of Me₃NO was removed by extraction with H₂O (10 mL). Addition of n-hexane (10 mL) resulted in precipitation of beige microcrystals, which were collected by filtration, washed with *n*-hexane (3×10 mL), and dried under vacuum. The yield was 0.09 g or 87% based on [Ir(-CH=CH-+NMe₃)(-CH=CH₂)₂(CO)(PPh₃)₂]OTf (8). ¹H NMR (500 MHz, CDCl₃): δ 7.3-7.4 (m, P(C₆H₅)₃ and Ir-CH=CH₂, 31H), 6.93 (dd, J(H-H) = 19.0 Hz, J(H-H) = 11.5 Hz, Ir-CH= CH₂, 1H), 6.45 (d, J(H–H) = 15.3 Hz, Ir-CH=CH–N(CH₃)₃, 1H), 6.19 (d, J(H-H) = 11.0 Hz) and 5.95 (d, J(H-H) = 11.5Hz) (Ir-CH=C H_{cis} H $_{trans}$, 2H), 5.38 (d, J(H–H) = 15.3 Hz, Ir-CH=CH-N(CH₃)₃, 1H), 5.04 (d, J(H-H) = 18.5 Hz) and 4.96 (d, J(H-H) = 19.0 Hz) (Ir-CH=CH_{cis}H_{trans}, 2H), 2.50 (s, N(CH₃)₃, 9H). ¹³C NMR (125.7 MHz, CDCl₃): δ 176.0 (t, Ir-CO, J(C-P) = 5.0 Hz), 137.5 (t, J(C-P) = 10.0 Hz) and 136.7 (t, J(C-P) = 13.3 Hz) (Ir- $CH=CH_2$), 135.2 (br s, Ir- $CH=CH_2$) $N(CH_3)_3$, 131.6 (t, J(C-P) = 4.5 Hz, $Ir-CH=CH-N(CH_3)_3$), 127.1 (br s) and 125.7 (t, J(C-P) = 4.5 Hz) (Ir-CH= CH_2), 52.6 (s, N(CH₃)₃), 127.8, 130.2, 130.6, 134.3 (P(C₆H₅)₃). HETCOR (¹H (500 MHz) \rightarrow ¹³C (125.7 MHz)): δ ca. 7.3 \rightarrow 136.7; 6.93 \rightarrow $137.5; 6.19, 5.04 \rightarrow 127.1; 5.95, 4.96 \rightarrow 125.7; 5.38 \rightarrow 135.2;$ 2.50 \rightarrow 52.6. $^{31}P\{^{1}H\}$ NMR (81 MHz, CDCl_3): δ –16.39 (s, *P*Ph₃). IR (KBr, cm⁻¹): 2027 (s, ν_{CO}), 1581 (m, $\nu_{C=C}$), 1264, 1159 and 1031 (s, OTf⁻). Anal. Calcd for $Ir_1N_1F_3S_1O_4P_2C_{47}H_{47}$: C, 54.64; H, 4.59; N, 1.36. Found: C, 54.13; H, 4.49; N, 1.29.

Reaction of [Ir(η³-CH₃CHCHCH₂)(CH₃CN)₂(PPh₃)₂]-(OTf)₂ (4) with H₂: Formation of CH₃CH=CHCH₃ (mixture of cis and trans), CH₃CH₂CH₂CH₃, and [Ir(H)₂-(CH₃CN)₂(PPh₃)₂]OTf (1). A CDCl₃ (5 mL) solution of 4 (0.3 g, 0.26 mmol) was stirred under H_2 (1 atm) at 25 °C for 12 h in a bomb reactor before the reaction mixture was distilled under vacuum to collect 2-butene (mixture of cis and trans) and butane in the cold trap of a dry ice/isopropyl alcohol bath. A CDCl₃ solution of 2-butene and butane was measured by ¹H NMR. The residue in the bomb reactor was dissolved in CHCl₃ (10 mL). HOTf was removed by extraction with H₂O (2 \times 10 mL) before *n*-pentane (10 mL) was added to precipitate beige microcrystals of [Ir(H)₂(NCCH₃)₂(PPh₃)₂]OTf (1), which were collected by filtration, washed with *n*-pentane (3 \times 10 mL), and dried under vacuum. The yield was 0.24 g or 97% based on compound 1.

Reactions of Ir $(-C \equiv CR)(\eta^4 - CH_2 = CHCH = CH_2)(PPh_3)_2$ (7, $\mathbf{R} = \mathbf{Ph}$ (a), p-C₆H₄CH₃ (b)) with CO (1 atm): Formation of CH₂=CHCH=CH₂ and Ir(-C=CR)(CO)(PPh₃)₂. A CDCl₃ (5 mL) solution of 7a (0.3 g, 0.34 mmol) was stirred under CO (1 atm) at 25 °C for 1 h in a bomb reactor before the reaction mixture was distilled under vacuum to collect 1,3butadiene in the cold trap of a dry ice/isopropyl alcohol bath. The 1,3-butadiene was measured by ¹H NMR. The residue in the bomb reactor was dissolved in CHCl₃ (5 mL), and npentane (10 mL) was added to precipitate yellow microcrystals of $Ir(-C \equiv CPh)(CO)(PPh_3)_2$, which were collected by filtration, washed with *n*-pentane (3×10 mL), and dried under vacuum. The yield was 0.28 g or 94% based on Ir(−C≡CPh)(CO)(PPh₃)₂. Compounds $Ir(-C \equiv CR)(CO)(PPh_3)_2^{13}$ (R = Ph, p-C₆H₄CH₃) have been identified by ¹H NMR and IR spectral measurements.

Reactions of [Ir(η^3 -CH₃CHCHCH₂)(CH₃CN)₂(PPh₃)₂]-(OTf)₂ (4) with NR'₃ (NR'₃ = NC₅H₅ (a), NEt₃ (b)): Formation of [*trans*-CH₃CH=CHCH₂NR'₃]OTf (10). These reactions were carried out in the same manner as described below for 4 with NC₅H₅. A light brown solution of 4 (0.35 g, 0.30 mmol) and NC₅H₅ (0.023 g, 0.30 mmol) in CHCl₃ (10 mL) was

^{(13) (}a) Brown, C. K.; Georgiou, D.; Wilkinson, G. *J. Chem. Soc. (A)* **1971**, 3120. (b) Chin, C. S.; Oh, M.; Won, G.; Cho, H.; Shin, D. *Bull. Korean Chem. Soc.* **1999**, *20*, 85.

stirred at 25 °C under N₂ for 1 h before H₂O (5 mL) was added to the reaction mixture. The unidentified metal complexes were removed by extraction with CHCl₃ (3 × 10 mL), and a colorless oil was obtained from the distillation of the layer of H₂O at 50 °C under vacuum. The yield was 0.29 mmol and 97% based on [*trans*-CH₃CH=CHCH₂NC₅H₅]OTf (**10a**) measured by ¹H NMR.

[*trans*-CH₃CH=CHCH₂NC₅H₅]OTf (10a). ¹H NMR (500 MHz, CDCl₃): δ 8.03 − 8.93 (m, NC₅H₅, 5H), 6.19 (m, CH₃-CH=CH-CH₂⁺NC₅H₅, 1H), 5.74 (m, CH₃CH=CH-CH₂⁺NC₅H₅, 1H), 5.22 (d, *J*(H−H) = 7.0 Hz, CH₃CH=CH-CH₂⁻⁺NC₅H₅, 2H) 1.80 (d, *J*(H−H) = 6.5 Hz, CH₃CH=CHCH₂⁺NC₅H₅, 3H). ¹³C NMR (125.7 MHz, CDCl₃): δ 145.4, 144.3, and 128.4 (s, NC₃H₅), 138.2 (s, CH₃CH=CHCH₂⁺NC₅H₅), 122.2 (s, CH₃CH=CHCH₂⁺NC₅H₅), 63.7 (s, CH₃CH=CHCH₂⁺NC₅H₅), 17.9 (s, CH₃CH=CHCH₂⁺NC₅H₅). HETCOR (¹H (500 MHz) → ¹³C (125.7 MHz)): δ 6.19 → 138.2; 5.74 → 122.2; 5.22 → 63.7; 1.80 → 17.9. IR (KBr, cm⁻¹): 1262, 1163, and 1033 (s, OTf⁻). MS (FD): *m*/*z* 134 (M − OTf). No NOE enhancement are observed between olefinic protons (CH₃CH=CHCH₂⁺NC₅H₅).

[*trans*-CH₃CH=CHCH₂-NEt₃]OTf (10b). ¹H NMR (200 MHz, CDCl₃): δ 6.13 (m, CH₃CH=CHCH₂⁺NEt, 1H), 5.48 (m, CH₃CH=CHCH₂⁺NEt, 1H), 3.72 (d, J(H-H) = 7.4 Hz, CH₃-CH=CHCH₂⁺NEt₃, 2H), 3.20 (q, J(H-H) = 7.4 Hz, N(CH₂-CH₃)₃, 2H), 1.80 (d, J = 7.4 Hz, CH₃CH=CHCH₂⁺NEt₃, 3H), 1.30 (t, J(H-H) = 7.4 Hz, N(CH₂CH₃)₃, 3H). MS (FD): m/z 156 (M - OTf).

Reaction of $[Ir(\eta^3-CH_2DCHCHCH_2)(CH_3CN)_2(PPh_3)_2]$ -(OTf)₂ (4-d₁) with NR'₃ (NR'₃ = NC₅H₅ (a), NEt₃ (b)). These reactions were carried out in the same manner as described above for the reactions of ${\bf 4}$ with $NC_5H_5.$

[*trans*-CH₂DCH=CHCH₂NC₅H₅]OTf (10a- d_1). ¹H NMR (500 MHz, CDCl₃): δ 8.00–8.83 (m, NC₅H₅, 5H), 6.14 (m, CH₂-DCH=CHCH₂+NC₅H₅, 1H), 5.70 (m, CH₂DCH=CHCH₂+-NC₅H₅, 1H), 5.17 (d, *J*(H-H) = 7.0 Hz, CH₂DCH=CHCH₂-+ NC₅H₅, 2H) 1.77 (d, *J*(H-H) = 6.5 Hz, CH₂DCH=CHCH₂-+ NC₅H₅, 2H). MS (FD): *m*/*z* 135 (M – OTf).

[*trans*-CH₂DCH=CHCH₂NEt₃]OTf (10b-*d*₁). ¹H NMR (200 MHz, CDCl₃): δ 6.13 (m, CH₂DC*H*=CHCH₂⁺NEt₃, 1H), 5.48 (m, CH₂DCH=C*H*CH₂⁺NEt₃, 1H), 3.72 (d, *J*(H-H) = 7.4 Hz, CH₂DCH=CHCH₂⁺NEt₃, 2H), 3.20 (q, *J*(H-H) = 7.4 Hz, N(CH₂CH₃)₃, 2H), 1.80 (d, *J*(H-H) = 7.4 Hz, CH₂DCH= CHCH₂⁺NEt₃, 2H), 1.30 (t, *J*(H-H) = 7.4 Hz, N(CH₂CH₃)₃, 3H). MS (FD): *m*/*z* 157 (M - OTf).

Acknowledgment. The authors wish to thank the Korea Research Foundation (KRF) for their financial support of this study through the Basic Science Research Institute program (Grant No. 2000-015-DP0224).

Supporting Information Available: ¹H NMR (for 4, 4- d_1 , 4- d_2 , 5, 6, 8, 10a, and 10a- d_1), ¹³C NMR (for 4, 5, 6, 8, and 10a), ¹H, ¹³C-2D HETCOR (for 4, 6, 8 and 10a), and ³¹P NMR (for 5 and 6) data. This material is available free of charge via the Internet at http://pubs.acs.org.

OM030090R