Downloaded by CARLI CONSORTIUM on June 29, 2009 Published on April 25, 2003 on http://pubs.acs.org | doi: 10.1021/om020860j

Resolving the Two-Electron Process for the Couple $[(C_5Me_5)M(N^N)Cl]^+/[(C_5Me_5)M(N^N)]$ (M = Rh, Ir) into Two One-Electron Steps Using the 2,2'-Azobis(pyridine) N^N Ligand, Fast Scan Cyclovoltammetry, and **Spectroelectrochemistry: Detection of Radicals instead** of M^{II} Intermediates

Wolfgang Kaim,* Ralf Reinhardt, and Stefan Greulich

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany

Jan Fiedler

J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, CZ-18223 Prague, Czech Republic

Received October 16, 2002

The complex cations $[(C_5Me_5)M(abpy)Cl]^+$ (M = Rh, Ir; abpy = 2,2'-azobis(pyridine)) are reduced to the coordinatively unsaturated compounds $[(C_5Me_5)M(abpy)]$ via the EPR and UV/vis spectroelectrochemically detectable radical intermediates $[(C_5Me_5)M^{III}(abpy^{-1})Cl]^{\bullet}$. Fast-scan cyclic voltammetry allowed us to establish the electrochemical potentials. This stepwise mechanism differs from the two-electron processes observed for the analogous systems $[(C_5Me_5)M(N^N)Cl]^+/[(C_5Me_5)M(N^N)]$ with $N^N = 2.2'$ -bipyridines, bidiazines, 1,4-diaza-1,3-butadienes. In contrast to cobalt systems such as $[(C_5Me_5)Co(bpy)Cl]^+$ the oneelectron reduction does not involve the metal. The role of the abpy ligand as an intermediate one-electron storage component for a metal-centered two-electron process is discussed. Further reduction of [(C₅Me₅)M(abpy)] to [(C₅Me₅)M^{II}(abpy^{-II})]⁻ at very negative potentials illustrates the extremely strong π back-donation from the 14-valence-electron fragments $(C_5Me_5)M (M = Rh, Ir).$

Introduction

Hydride transfer catalysis¹ is important for the generation of fuels (e.g. H₂ from H⁺)² and for the regeneration of NADH from NAD+ during biotechnological processes.³ One such well-researched catalyst system has $[(C_5Me_5)Rh(bpy)Cl]^+$ as precursor, which is reductively converted in a two-electron step to the highly reactive [(C₅Me₅)Rh(bpy)].^{2,4} That latter compound can react with H⁺ to form the active hydride intermediate [(C₅-Me₅)Rh(bpy)H]⁺, which is the actual hydride-transferring species within the catalytic cycle of Scheme 1.^{1,2,4}

The intermediates of Scheme 1 can be stabilized through replacement of Rh by Ir (\rightarrow stable hydride form)⁵ and through changing the chelate ligand to sterically shielding 1,4-diaza-1,3-butadienes (→ stable neutral form).⁶ In all instances ($N^{N} = 2,2'$ -bipyridines,²⁻⁵ bidiazines,^{4c} 1,4-diaza-1,3-butadienes^{6,7}), however, the activation step is an ECE or EEC process (eq 1), as confirmed electrochemically, for which the second

$$[(C_5Me_5)M(N^{\wedge}N)Cl]^+ + 2e^- \rightleftharpoons$$

$$[(C_5Me_5)M(N^{\wedge}N)] + Cl^- (1)$$

$$[(C_5Me_5)Co^{III}(bpy)Cl]^+ + e^- \rightleftharpoons$$

$$[(C_5Me_5)Co^{II}(bpy)]^+ + Cl^- (2)$$

$$[(C_5Me_5)Co^{II}(bpy)]^+ + e^- \rightleftharpoons [(C_5Me_5)Co^{I}(bpy)] \quad (3)$$

reduction occurs at a more positive potential than the first one, resulting in an overall 2e transfer. Only with cobalt instead of rhodium or iridium was a one-electron, i.e., a cobalt(II), intermediate established within an EC + E sequence (eqs 2 and 3).⁸

⁽¹⁾ Kölle, U. New J. Chem. 1992, 16, 157.

⁽²⁾ Caix, C.; Chardon-Noblat, S.; Deronzier, A.; Moutet, J.-C.; Tingry,

 ⁽²⁾ Cala, C., Chandon P. Cohn, S., Derohater, A., Houter, S. C., Tang, J.
 S. J. Organomet. Chem. **1997**, *540*, 105.
 (3) Westerhausen, D.; Hermann, S.; Hummel, W.; Steckhan, E. Angew. Chem. **1992**, *104*, 1496; Angew. Chem., Int. Ed. Engl. **1992**, 31. 1529.

^{(4) (}a) Koelle, U.; Grätzel, M. Angew. Chem. 1987, 99, 572; Angew.
(4) (a) Koelle, U.; Grätzel, M. Angew. Chem. 1987, 99, 572; Angew.
Chem., Int. Ed. Engl. 1987, 26, 568. (b) Koelle, U.; Kang, B.-S.; Infelta, P.; Comte, P.; Grätzel, M. Chem. Ber. 1989, 122, 1869. (c) Ladwig, M.; Kaim, W. J. Organomet. Chem. 1991, 419, 233. (d) Kaim, W.; Reinhardt, R.; Sieger, M. Inorg. Chem. 1994, 33, 4453. (e) Chardon-Noblat, S.; Cosnier, S.; Deronzier, A.; Vlachopoulos, N. J. Electroanal. Chem. 1993, 352 213 Chem. 1993, 352, 213.

^{(5) (}a) Ziessel, R. J. Chem. Soc., Chem. Commun. **1988**, 16. (b) Youinou, M.-T.; Ziessel, R. J. Organomet. Chem. **1989**, 363, 197. (c) Ladwig, M.; Kaim, W. J. Organomet. Chem. 1992, 439, 79. (d) Caix, C.; Chardon, N. S.; Deronzier, A.; Ziessel, R. J. Electroanal. Chem. **1993**, 362, 301. (e) Ziessel, R. J. Am. Chem. Soc. **1993**, 115, 118.

⁽⁶⁾ Ladwig, M.; Kaim, W. J. Arn. Chem. Soc. 1993, 115, 118.
(6) Ladwig, M.; Kaim, W. J. Organomet. Chem. 1992, 439, 79.
(7) (a) Reinhardt, R.; Kaim, W. Z. Anorg. Allg. Chem. 1993, 619, 1998. (b) Berger, S.; Baumann, F.; Scheiring, T.; Kaim, W. Z. Anorg. Allg. Chem. 2001, 627, 620.

 $^{\circ}\mathrm{Cp}^{*} = \eta^{\circ}\mathrm{C}_{51}\mathrm{Me}_{5}.$

In this work we demonstrate how the choice of the particularly strong π acceptor ligand N^N = 2,2'-azobis(pyridine) (abpy)⁹ leads to a splitting of the two-electron process, even for rhodium and iridium complexes. The abpy ligand forms mononuclear and dinuclear

metal complexes with unusual properties, including very long wavelength charge-transfer bands, efficient metal metal interaction, and stable radical states.⁹ The wellknown reluctance of rhodium or iridium to form a divalent state is thus circumvented by providing a very strong π acceptor ligand for one-electron storage in the corresponding intermediate [(C₅Me₅)M^{III}(abpy⁻¹)Cl][•] containing the abpy radical anion (abpy⁻¹).

Experimental Section

Instrumentation. EPR spectra were recorded in the Xband on a Bruker System ESP 300 equipped with a Bruker ER035M gauss meter and a HP 5350B microwave counter. ¹H NMR spectra were taken on a Bruker AC 250 spectrometer. UV/vis/near-IR absorption spectra were recorded on Shimadzu UV160 and Bruins Instruments Omega 10 spectrophotometers. Cyclic voltammetry was carried out in acetonitrile/0.1 M Bu₄NPF₆ using a three-electrode configuration (glassycarbon working electrode, Pt counter electrode, Ag/AgCl reference) and a PAR 273 potentiostat and function generator. The ferrocene/ferrocenium couple (Fc^{+/0}) served as internal reference. Fast-scan cyclic voltammetry was performed using a custom-built potentiostat modeled after instruments from the Ecole Normale Superieure (Paris, France; Prof. C. Amatore). Gold or platinum ultramicroelectrodes (25, 50, or 125 μ m) were used in this instance; the data were collected with a Nicolet 410 oscilloscope. Spectroelectrochemical measurements were performed using an optically transparent thin-layer electrolysis (OTTLE) cell¹⁰ for UV/vis spectra and a two-electrode capillary for EPR studies.¹¹

[(C₅Me₅)Rh(abpy)Cl](Cl). A suspension of 74 mg (0.120 mmol) of $[(C_5Me_5)Rh(\mu-Cl)Cl]_2^{12}$ in 40 mL of acetone was stirred for 3 days with 44 mg (0.239 mmol) of abpy.¹³ The orange product was filtered off, washed with diethyl ether, and dried under vacuum to yield 80 mg (70%) of product. Anal. Calcd for C₂₀H₂₃Cl₂N₄Rh (493.25): C, 48.70; H, 4.70; N, 11.36. Found: C, 48.45; H, 4.78; N, 11.12%. ¹H NMR (CD₃CN): δ 1.65 (s, 15H; Cp*), 7.79 (ddd, 1H; H⁵), 8.05 (Dddd, 1H; H⁵), 8.12 (dt, 1H; H³), 8.717 (td, 1H; H⁴), 8.49 (td, 1H; H⁴), 8.80 (dd, 1H; H³), 8.88 (ddd, 1H; H⁶), 8.99 (dd, 1H; H⁶); ³J(H³,H⁴) = 7.8 Hz, ³J(H³,H⁴) = 8.4, ³J(H⁴,H⁵) = 7.8, ³J(H^{4'},H^{5'}) = 7.1, ³J(H⁵,H⁶) = 5.4, ³J(H^{5'},H⁶) = 4.7 Hz.

[(C₅Me₅)Ir(abpy)Cl](PF₆). A suspension of 156 mg (0.196 mmol) of $[(C_5Me_5)Ir(\mu-Cl)Cl]_2^{14}$ in 40 mL of CH₃OH was reacted with 90 mg (0.489 mmol) of abpy for 3 h. The greenish solution was reduced to about 10 mL and treated with ca. 3 equiv of Bu₄NPF₆ in methanol. The olive green precipitate was filtered, washed with methanol and diethyl ether, and dried under vacuum. Yield: 255 mg (95%). Anal. Calcd for C₂₀H₂₃ClF₆IrN₄P (692.08): C, 34.71; H, 3.35; N, 8.10. Found: C, 34.63; H, 3.42; N, 7.99. ¹H NMR (CD₃CN): δ 1.72 (s, 15H, CH₃Cp^{*}), 7.76 (ddd, 1H, H⁵(R)), 8.05 (m, 1H, H⁵(R)), 8.09 (t, 1H, H³(R)), 8.17 (dt, 1H, H⁴(R)), 8.41 (dt, 1H, H⁴(R)), 8.83 (ddd, 1H, H⁶(R)), 8.89 (ddd, 1H, H⁶(R)), 8.96 (ddd, 1H, H³(R)) ppm; ³J(H³,H⁴) = 8, ³J(H⁴,H⁵) = 7.7, ³J(H⁵,H⁶) = 5.6, ³J(H³,H⁴) = 8.1, ³J(H⁵,H⁶) = 5 Hz.

[(C₅Me₅)Rh(abpy)]. A suspension of 30 mg (0.061 mmol) of [(C₅Me₅)Rh(abpy)Cl](Cl) in 20 mL of THF was reacted under argon with a potassium mirror generated from 50 mg (1.3 mmol) of potassium. After 5 min the solution was filtered and reduced to dryness. Extraction with C₆H₆ and removal of the solvent gave 17 mg (65%) of a very air-sensitive dark blue material (no analysis). ¹H NMR ([D₆]acetone): δ 1.91 (s, 15H; Cp^{*}), 6.40 (ddd, 1H; H⁵), 7.00 (ddd, 1H; H⁴), 7.14 (ddd, 1H; H⁵), 7.58 (d, 1H; H³), 7.67 (ddd, 1H; H⁴), 7.81 (d, 1H; H³), 8.54 (ddd, 1H; H⁶), 8.73 (d, 1H; H⁶); ³J(H⁶,H⁵) = 6.6, ³J(H⁶,H⁵) = 4.8, ³J(H⁵,H⁴) = 5.5, ³J(H⁵,H⁴) = 7.0, ³J(H⁴,H³) = 8.8, ³J(H⁴,H³) = 8.3 Hz.

[(C₅Me₅)Ir(abpy)]. A suspension of 33.2 mg (0.048 mmol) [(C₅Me₅)Ir(abpy)Cl](PF₆) in 10 mL CH₃CH₂OH and 2.5 mL H₂O was treated at -10 °C with 18.5 mg (0.072 mmol) Bu₄NBH₄. The orange solution was reduced in volume until an orange-red precipitate formed which was then filtered, washed with water and dried under vacum. Extraction with toluene/*n*-hexane and removal of the solvent mixture gave a very airsensitive red material (no analysis). ¹H NMR (C₆D₆): δ 1.65 (s, 15H; CH₃(Cp^{*})), 5.99 (dt, ³J = 6.6 Hz, H⁵(R)), 6.62 (ddd, 1H, H⁴), 6.7 (ddd, 1H, H⁵(R)), 7.25 (ddd, 1H, H⁴(R)), 7.99 (td, 1H, H³), 8.32 (ddd, 1H, H³), 8.52 (d, 1H, H6), 8.54 (q, 1H, H⁶) ppm; ³J(H³,H⁴) = 7.8 Hz, ³J(H⁴,H⁵) = 6.6 Hz, ³J(H⁵,H⁶) = 4 Hz, ³J(H³,H⁴) = 7.3 Hz, ³J(H⁴,H⁵) = 5 Hz, ³J(H⁵,H⁶) = 2.1 Hz.

- (13) Kirpal, A.; Reiter, L. Ber. Dtsch. Chem. Ges. 1927, 60, 664.
- (14) White, C.; Yates, A.; Maitlis, P. M. Inorg. Synth. 1992, 29, 228.

⁽⁸⁾ Kaim, W.; Reinhardt, R.; Waldhör, E.; Fiedler, J. J. Organomet. Chem. 1996, 524, 195.

⁽⁹⁾ Kaim, W. Coord. Chem. Rev. 2001, 219-221, 463.

⁽¹⁰⁾ Krejcik, M.; Danek, M.; Hartl, F. J. Electroanal. Chem. 1991, 317, 179.

⁽¹¹⁾ Kaim, W.; Ernst, S.; Kasack, V. *J. Am. Chem. Soc.* **1990**, *112*, 173.

⁽¹²⁾ Booth, B. L.; Hazeldine, R. N.; Hill, M. J. Chem. Soc. A 1969, 1299.

Figure 1. Cyclic voltammograms of $[(C_5Me_5)Rh(abpy)Cl](Cl)$ in CH₃CN/0.1 M Bu₄NPF₆ at 1, 3, 5, and 10 V/s scan rate (increasing current).

Results and Discussion

Synthesis and Identification. The precursor complexes $[(C_5Me_5)M(abpy)Cl](X)$ (M = Rh, X = Cl; M = Ir, X = PF₆) were obtained from $[(C_5Me_5)M(\mu-Cl)Cl]_2^{12,14}$ by following established procedures.^{4–6} The activated neutral compounds $[(C_5Me_5)M(abpy)]$ could be obtained as very air-sensitive substances by reduction with potassium or with certain hydrides.^{5c,6,15} Their identity was established by ¹H NMR via the significant^{4c,5c} high-field shifts of H⁴ and H⁵ and confirmed by UV/vis/near-IR spectroscopy in connection with the spectroelectrochemical studies (see below). Remarkably, the iridium complex reacted to give diamagnetic $(C_5Me_5)Ir(abpy)$ with (Bu₄N)(BH₄) in aqueous ethanol but gave mainly EPR-active [(C₅Me₅)Ir(abpy)Cl]• on reaction with Na-[BH₃(CN)] (see below).

Electrochemistry. Irreversible oxidation was observed for the iridium complex, in agreement with previous reports.^{5,6,15} The high value of $E_{p,a} = +1.48 \text{ V}$ vs Fc^{+/0} reflects the lower basicity of abpy⁹ in comparison to, for example, bpy ($E_{p,a} = +0.7 \text{ V}$ for [(C₅Me₅)Ir(bpy)Cl]^{2+/+});^{5c} high values similar to those for the abpy complex were obtained for analogous compounds with 1,4-diaza-1,3-butadienes.^{6,15} The complex reduction behavior of the compounds was investigated using variable-scan-rate cyclic voltammetry.

At slow scan rates <500 mV/s the cyclic voltammograms appeared like those of other systems [(C₅Me₅)M-(N^N)Cl]⁺, showing an irreversible two-electron conversion to [(C₅Me₅)M(N^N)] with widely separated peak potentials E_1 and $E_{1''}$.^{4,5} In agreeement with previous observations^{4c,5c,8} the neutral compounds are reversibly reduced to [(C₅Me₅)M(N^N)]⁻ at E₃/E_{3'}. At scan rates greater than 1 V/s the cyclic voltammograms exhibit additional features: a second cathodic peak emerges at E_2 and the anodic counter peak of the first wave at E_1 appears as a shoulder at the potential $E_{1'}$ (Figure 1).

When cyclic voltammetry is performed in an excess of chloride (Bu₄NCl), the peak signal E_2 appears at even lower scan rates and the current intensity of E_1 is decreased.

The results for both the rhodium and iridium complexes are very similar. The latter system was studied in further detail by rapid-scan voltammetry using

Figure 2. Cyclic voltammogram of $[(C_5Me_5)Ir(abpy)Cl]-(PF_6)$ in CH₃CN/0.1 M Bu₄NPF₆ at 10 V/s scan rate (125 μ m Pt electrode).

V vs. Fc+/0

0.0

ultramicroelectrodes (Figure 2). These studies showed both the anodic counter peak $E_{1'}$ to E_1 and the cathodic counter peak $E_{1'''}$ to E_1 .

Obviously, the chloride release after the first electron uptake is rather slow, allowing to detect intermediates by rapid scan voltammetry and spectroscopy (cf. below). After reduction by a second electron at E_2 there is rapid loss of Cl⁻ and an anodic counter peak could not be detected even at scan rates up to 5000 V/s. The presence of excess Cl⁻ stabilized the intermediate [(C₅Me₅)M-(abpy)Cl], which was later used in the spectroelectrochemical investigation (see below).

The electrochemical potentials are summarized in Table 1; eqs 4-9 define the different processes.

$$\begin{split} [(C_{5}Me_{5})M^{III}(abpy)Cl]^{+} + e^{-\frac{E_{1}}{E_{1'}}} \\ [(C_{5}Me_{5})M^{III}(abpy^{-I})Cl]^{\bullet} \ \ (4) \end{split}$$

high v limit:

$$[(C_5Me_5)M^{III}(abpy^{-I})Cl]^{\bullet} + e^{-} \xrightarrow{E_2} [(C_5Me_5)M^n(abpy^{1-n})] + Cl^{-} (5)$$

low v limit:

$$[(C_5Me_5)M^{III}(abpy^{-I})Cl]^{\bullet} \xrightarrow{L} [(C_5Me_5)M^{III}(abpy^{-I})L]^+ + Cl^- (6)$$

$$[(C_5Me_5)M^{III}(abpy^{-I})L]^+ + e^{- \xrightarrow{L_1}} [(C_5Me_5)M^n(abpy^{I-n})] + L (7)$$

$$L = solvent$$

$$[(C_{5}Me_{5})M^{n}(abpy^{I-n})] - 2e^{-\frac{E_{1''}}{E_{1'''}}} [(C_{5}Me_{5})M^{III}(abpy)]^{2+} (8)$$

$$[(C_5Me_5)M^n(abpy^{I-n})] + e^- \underset{E_3}{\longleftarrow} [(C_5Me_5)M^n(abpy^{-n})]^-$$
(9)

While the E_1 potentials are slightly less negative for the iridium analogue in comparison to the rhodium system, the E_3 potentials are much more negative in

⁽¹⁵⁾ Greulich, S.; Klein, A.; Knoedler, A.; Kaim, W. *Organometallics* **2002**, *21*, 765.

 Table 1. Redox Potentials According to Eqs 4–8 from Cyclic Voltammetry

М	E_1	$E_{1'}$	E1- (1/2)	$E_{1''}$	$E_{1'''}$	E_2	E_3	$E_{3'}$	E3- (1/2)
Rh	-0.59	-0.53	-0.56	-0.49	n.o.	-1.08	-2.07	-2.00	-2.04
Ir	-0.55	-0.46	-0.51	-0.35	-0.42^{b}	-1.11	-2.41	-2.35	-2.38

 a Potentials in V vs Fc $^{+/0},$ standard scan rate 1 V/s. b Value measured at 10 V/s scan rate.

Figure 3. EPR spectrum of $[(C_5Me_5)Ir(abpy)Cl]$ from brief in situ reduction (1 e) of $[(C_5Me_5)Ir(abpy)Cl](PF_6)$ in CH₃-CN/0.1 M Et₄NPF₆ at 110 K.

the case of M = Ir. This observation reflects the stronger π donating capacity of (C₅Me₅)Ir relative to (C₅Me₅)Rh. Remarkably, both $E_3(1/2)$ values lie much *more negative* (by more than 0.6 V!) than the reduction potential of free abpy at -1.37 V,⁹ indicating that the π back-donation from (C₅Me₅)M far overcompensates the metal–ligand σ polarizing effect. With other π -electron-donating metal complex fragments such as Re(CO)₃Cl, Mo(CO)₄, and [Ru(bpy)₂]²⁺ the reduction potentials are shifted by about 0.5 V to *less negative* values.¹⁶

Spectroelectrochemistry. EPR. Identification of the electrochemical intermediates, including their proper oxidation state assignment, has been achieved by using EPR spectroscopy for paramagnetic states and UV/vis/ near-IR spectroscopy. In situ electrolysis provided the primary reduction products [(C₅Me₅)M^{III}(abpy^{-I})Cl]• for EPR analysis. The rhodium complex showed only an unresolved line of 2.4 mT width at $g_{iso} = 1.998$, at both 298 and 4 K. Similar values were reported for ruthenium(II) complexes of abpy•-.11 The iridium analogue (which could also be obtained via single-electron transfer^{15,17} in the reaction with Na[BH₃(CN)]) showed g_{iso} = 1.983 at 298 K. In frozen solution at 110 K the signal split into $g_{1,2} = 1.995$ and $g_3 = 1.966$ (Figure 3). This splitting and the sizable deviation from the free-electron value of $g_e = 2.0023$ are attributable to the large spinorbit coupling contributions from the 5d element iridium;¹⁸ however, an increased spin transfer from abpy• to Ir relative to Rh cannot be ruled out. The lowered g values in comparison to $g_{\rm e}$ point to a situation with close-lying unoccupied MOs, possibly the empty metal d orbitals which get involved in the chloride ligand labilization.

For the rhodium system it was possible to obtain an EPR spectrum of the three electron-reduced species

Figure 4. EPR spectrum of $[(C_5Me_5)Rh(abpy)]^{-}$ obtained after long-time in situ reduction (3 e) of $[(C_5Me_5)-Rh(abpy)Cl](Cl)$ in CH₃CN/0.1 M Bu₄NPF₆ at 4 K.

Figure 5. UV–vis spectral changes on reduction of $[(C_5-Me_5)Rh(abpy)Cl](Cl)$ in CH₃CN/0.1 M Bu₄NCl at -0.7 V vs Fc^{+/0}: during the first 1 min (top) and after 1 min until formation of $(C_5Me_5)Rh(abpy)$ (bottom).

 $[(C_5Me_5)Rh^n(abpy^{-n})]^-$ (Figure 4) after continued electrolysis beyond the EPR-silent neutral state. Both the isotropic *g* value of 2.042 and the components at $g_1 = 2.161$, $g_2 = 2.002$, and $g_3 = 1.945$ indicate a paramagnetic species with largely metal-centered spin. For the oxidation state distribution a rhodium(0) formulation with neutral abpy (n = 0) or a rhodium(II) alternative (n = 2) with the organohydrazido(2–) ligand abpy^{2–} can be discussed. In light of arguments from electrochemistry (very negative $E_3(1/2)$) and spectroscopy (see below) as well as structural and theoretical results for corresponding diazabutadiene complexes^{6,19} we favor the Rh^{II} alternative. The iridium analogue could not be observed by EPR either because of rapid relaxation or due to diminished stability at the even more negative potential.

UV–Vis. The spectroelectrochemical studies with an OTTLE cell¹⁰ had to be performed in the presence of excess chloride in order to counteract the Cl⁻ dissocia-

^{(16) (}a) Hartmann, H.; Scheiring, T.; Fiedler, J.; Kaim, W. J. Organomet. Chem. **2000**, 604, 267. (b) Kaim, W.; Kohlmann, S. Inorg. Chem. **1987**, 26, 68. (c) Ernst, S. D.; Kaim, W. Inorg. Chem. **1989**, 28, 1520.

⁽¹⁷⁾ Kaim, W. Top. Curr. Chem. 1994, 169, 231.

^{(18) (}a) Kaim, W.; Berger, S.; Greulich, S.; Reinhardt, R.; Fiedler, J. *J. Organomet. Chem.* **1999**, *582*, 153. (b) Berger, S.; Klein, A.; Wanner, M.; Fiedler, J.; Kaim, W. Inorg. Chem. **2000**, *39*, 2516.

⁽¹⁹⁾ Zališ, S.; Sieger, M.; Greulich, S.; Stoll, H.; Kaim, W. Submitted for publication.

200 300 400 500 600 700 800 900 1000 1100 1200 nm

Figure 6. UV–vis spectral changes on reduction of [(C₅-Me₅)Rh(abpy)] in CH₃CN/0.1 M Bu₄NPF₆.

Table 2. UV-vis Absorption Maxima λ_{max} (ϵ)^a ofComplexes in Acetonitrile^b

complex	Μ	$\lambda_{ m max}~(10^{-3}\epsilon)$
[(C ₅ Me ₅)M(abpy)Cl] ⁺	Rh	450 sh, 345 (13.0)
[(*****)/***FJ/**1	Ir	617 (0.5), 462 (3.6), 344 (10.6)
[(C ₅ Me ₅)M(abpy)Cl]•	Rh	550 sh, 380 (14.0)
	Ir	500 sh, 385
$[(C_5Me_5)M(abpy)]$	Rh	585 (10.0), ^c 284 (17.0)
	Ir	488 (17.0), 355 sh, 282 (18.9)
[(C ₅ Me ₅)M(abpy)] ⁻	Rh	636 sh, 579 sh, 540 (6.0), 335 (16.0)
	Ir	630 sh, 567 (7.1), 535 sh, 476 sh,
		345 (15.3)

^{*a*} λ_{max} in nm, molar extinction coefficients ϵ in M⁻¹ cm⁻¹. ^{*b*} From spectroelectrochemistry in CH₃CN/0.1 M Bu₄NPF₆, Et₄NPF₆, or Bu₄NCl (cf. text). ^{*c*} $\lambda_{\text{max}} = 600$ nm in THF solution of synthesized complex.

tion (eqs 5 and 6). The spectral changes for eq 4 (M = Rh) are shown in Figure 5 (top), which also depicts the formation of $[(C_5Me_5)Rh(abpy)]$ (eq 5). Further reduction to the rhodium(II)-containing anion is illustrated in Figure 6; Table 2 summarizes the absorption data.

The absorption data from spectroelectrochemistry support the oxidation state assignments in eqs 4–9. The cationic precursors have long-wavelength bands attributable to $\sigma(M-Cl)$ -to- $\pi^*(abpy)$ transitions.¹⁹ The weak band at 617 nm for the iridium complex may be assigned to a partially allowed triplet transition, enhanced in intensity through spin–orbit coupling. Bands at about 550 and 400 nm are typical for abpy^{*–} and its complexes.^{9,16} The neutral compounds $[(C_5Me_5)M^n(N^{\Lambda}N^{1-n})]$ are distinguished by intense bands at long wavelengths, assigned to allowed CT transitions between d_{π} orbitals of the metal and $\pi^*(N^{\Lambda}N)$.^{4c,5c,8,19} Depending on the oxidation state formulation, these are MLCT (n = 1) or LMCT processes (n = 3). In fact,

experiments and calculations for different ligands N^N suggest strong mixing between these π orbitals with highly variable contributions from either the metal or the N^N ligand side.¹⁹ The spectroelectrochemical results were complemented by measurements on chemically prepared compounds [(C₅Me₅)M(N^N)]. On further reduction the long-wavelength band is replaced by broader, less intense, and partially structured features, some extending into the near-infrared region (Figure 6).

Conclusions

Using the special⁹ N^AN chelate ligand abpy, we could demonstrate for the first time for mononuclear complexes²⁰ how such an electron reservoir ligand can store a first electron before the combination with the second electron leads to chemical reactivity: here the reversible dissociation of Cl⁻ in a catalytically relevant activation step. This study is thus complementary to the many investigations on the separation of reversible 2e waves into one-electron processes.²¹ The facile radical anion formation of the abpy ligand due its low-lying π^* orbital helps to circumvent unfavorable Rh^{II} or Ir^{II} intermediates. However, a Rh^{II} species has been identified by EPR spectroscopy for [(C₅Me₅)Rh(abpy)]. As for the iridium analogue, this anion is formed at a far more negative potential than the free abpy ligand, thereby illustrating the extraordinary capacity of the fragments $(C_5Me_5)M$, especially of (C₅Me₅)Ir with its established unusual chemistry,²² for π back-donation.

Acknowledgment. We thank Professors C. Amatore and G. Simoneau (ENS Paris) for invaluable support in the construction of a fast-scan potentiostat and Priv.-Doz. Dr. R. Winter for helpful discussions. Financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is also gratefully acknowledged.

OM020860J

⁽²⁰⁾ For dinuclear complexes cf. ref 18 and: (a) Kaim, W.; Reinhardt, R.; Fiedler, J. *Angew. Chem.* **1997**, *109*, 2600; *Angew. Chem., Int. Ed.* **1997**, *36*, 2493. (b) Scheiring, T.; Fiedler, J.; Kaim, W. *Organometallics* **2001**, *20*, 1437, 3209.

⁽²¹⁾ Pierce, D. T.; Geiger, W. E. J. Am. Chem. Soc. 1992, 114, 6063.
(22) See, for example: (a) Ogo, S.; Nakai, H.; Watanabe, Y. J. Am. Chem. Soc. 2002, 124, 597. (b) Tellers, D. M.; Yung, C. M.; Arndtsen, B. A.; Adamson, D. R.; Bergman, R. G. J. Am. Chem. Soc. 2002, 124, 1400.