Resolving the Two-Electron Process for the Couple $[(C_5Me_5)M(N^{\wedge}N)Cl]^+/[(C_5Me_5)M(N^{\wedge}N)]$ (M = Rh, Ir) into **Two One-Electron Steps Using the 2,2**′**-Azobis(pyridine) N**∧**N Ligand, Fast Scan Cyclovoltammetry, and Spectroelectrochemistry: Detection of Radicals instead of MII Intermediates**

Wolfgang Kaim,* Ralf Reinhardt, and Stefan Greulich

Institut fu¨ *r Anorganische Chemie, Universita*¨*t Stuttgart, Pfaffenwaldring 55, D-70550 Stuttgart, Germany*

Jan Fiedler

*J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejs*ˇ*kova 3, CZ-18223 Prague, Czech Republic*

Received October 16, 2002

The complex cations $[(C_5Me_5)M(abpy)Cl]^+$ (M = Rh, Ir; abpy = 2,2'-azobis(pyridine)) are reduced to the coordinatively unsaturated compounds $[(C_5Me_5)M(abpy)]$ via the EPR and UV/vis spectroelectrochemically detectable radical intermediates $[(C_5Me_5)M^{\text{III}}(abpy^{-1})C!]$ •. Fast-scan cyclic voltammetry allowed us to establish the electrochemical potentials. This stepwise mechanism differs from the two-electron processes observed for the analogous systems $[(C_5Me_5)M(N^N)Cl]^+/[(C_5Me_5)M(N^N)]$ with $N^N = 2,2^r$ -bipyridines, bidiazines, 1,4-diaza-1,3-butadienes. In contrast to cobalt systems such as $[(C_5Me_5)Co(bpy)Cl]^+$ the oneelectron reduction does not involve the metal. The role of the abpy ligand as an intermediate one-electron storage component for a metal-centered two-electron process is discussed. Further reduction of $[(C_5Me_5)M(abpy)]$ to $[(C_5Me_5)M^{II}(abpy^{-II})]$ at very negative potentials illustrates the extremely strong π back-donation from the 14-valence-electron fragments $(C_5Me_5)M$ (M = Rh, Ir).

Introduction

Hydride transfer catalysis¹ is important for the generation of fuels (e.g. H_2 from H^+)² and for the regeneration of NADH from NAD⁺ during biotechnological processes.3 One such well-researched catalyst system has $[(C_5Me_5)Rh(bpy)Cl]^+$ as precursor, which is reductively converted in a two-electron step to the highly reactive $[(C_5Me_5)Rh(bpy)]^{2,4}$ That latter compound can react with H^+ to form the active hydride intermediate $[(C_5 - C_6)]$ Me5)Rh(bpy)H]+, which is the actual hydride-transferring species within the catalytic cycle of Scheme 1.1,2,4

The intermediates of Scheme 1 can be stabilized through replacement of Rh by Ir $(\rightarrow$ stable hydride form)5 and through changing the chelate ligand to sterically shielding 1,4-diaza-1,3-butadienes $(\rightarrow$ stable neutral form).⁶ In all instances (N^N = 2,2′-bipyridines,²⁻⁵ bidiazines,^{4c} 1,4-diaza-1,3-butadienes^{6,7}), however, the activation step is an ECE or EEC process (eq 1), as confirmed electrochemically, for which the second

$$
[(C_5Me_5)M(N^{\wedge}N)Cl]^+ + 2e^- \rightleftharpoons
$$

\n
$$
[(C_5Me_5)M(N^{\wedge}N)] + Cl^-(1)
$$

\n
$$
[(C_5Me_5)Co^{III}(bpy)Cl]^+ + e^- \rightleftharpoons
$$

\n
$$
[(C_5Me_5)Co^{II}(bpy)]^+ + Cl^-(2)
$$

$$
[(C_5Me_5)CoH(bpy)]+ + e- \rightleftharpoons [(C_5Me_5)CoI(bpy)]
$$
 (3)

reduction occurs at a more positive potential than the first one, resulting in an overall 2e transfer. Only with cobalt instead of rhodium or iridium was a one-electron, i.e., a cobalt(II), intermediate established within an EC $+ E$ sequence (eqs 2 and 3).⁸

⁽¹⁾ Ko¨lle, U. *New J. Chem.* **1992**, *16*, 157.

⁽²⁾ Caix, C.; Chardon-Noblat, S.; Deronzier, A.; Moutet, J.-C.; Tingry, S. *J. Organomet. Chem.* **1997**, *540*, 105.

⁽³⁾ Westerhausen, D.; Hermann, S.; Hummel, W.; Steckhan, E. *Angew. Chem.* **1992**, *104*, 1496; *Angew. Chem., Int. Ed. Engl.* **1992**, *31*, 1529.

^{(4) (}a) Koelle, U.; Grätzel, M. *Angew. Chem.* **1987**, *99*, 572; *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 568. (b) Koelle, U.; Kang, B.-S.; Infelta, P.; Comte, P.; Grätzel, M. *Chem. Ber.* **1989**, *122*, 1869. (c) Lad Kaim, W. *J. Organomet. Chem.* **1991**, *419*, 233. (d) Kaim, W.; Reinhardt, R.; Sieger, M. *Inorg. Chem.* **1994**, *33*, 4453. (e) Chardon-Noblat, S.; Cosnier, S.; Deronzier, A.; Vlachopoulos, N. *J. Electroanal. Chem.* **1993**, *352*, 213.

^{(5) (}a) Ziessel, R. *J. Chem. Soc., Chem. Commun.* **1988**, 16. (b)
Youinou, M.-T.; Ziessel, R. *J. Organomet. Chem.* **1989**, 363, 197. (c)
Ladwig, M.; Kaim, W. *J. Organomet. Chem.* **1992**, 439, 79. (d) Caix, C.; Chardon, N. S.; Deronzier, A.; Ziessel, R. *J. Electroanal. Chem.* **1993**, *362*, 301. (e) Ziessel, R. *J. Am. Chem. Soc.* **1993**, *115*, 118.

⁽⁶⁾ Ladwig, M.; Kaim, W. *J. Organomet. Chem.* **1992**, *439*, 79. (7) (a) Reinhardt, R.; Kaim, W. *Z. Anorg. Allg. Chem.* **1993**, *619*,

^{1998. (}b) Berger, S.; Baumann, F.; Scheiring, T.; Kaim, W. *Z. Anorg. Allg. Chem.* **2001**, *627*, 620.

 a^a Cp^{*} = n^5 -C₅Me₅.

In this work we demonstrate how the choice of the particularly strong π acceptor ligand N^N = 2,2[']azobis(pyridine) $(aby)^9$ leads to a splitting of the twoelectron process, even for rhodium and iridium complexes. The abpy ligand forms mononuclear and dinuclear

metal complexes with unusual properties, including very long wavelength charge-transfer bands, efficient metalmetal interaction, and stable radical states.⁹ The wellknown reluctance of rhodium or iridium to form a divalent state is thus circumvented by providing a very strong *π* acceptor ligand for one-electron storage in the corresponding intermediate $[(C_5Me_5)M^{III}(abpy^{-I})Cl]$ * containing the abpy radical anion (abpy $^{-1}$).

Experimental Section

Instrumentation. EPR spectra were recorded in the Xband on a Bruker System ESP 300 equipped with a Bruker ER035M gauss meter and a HP 5350B microwave counter. 1H NMR spectra were taken on a Bruker AC 250 spectrometer. UV/vis/near-IR absorption spectra were recorded on Shimadzu UV160 and Bruins Instruments Omega 10 spectrophotometers. Cyclic voltammetry was carried out in acetonitrile/0.1 M Bu₄NPF₆ using a three-electrode configuration (glassycarbon working electrode, Pt counter electrode, Ag/AgCl refer-

ence) and a PAR 273 potentiostat and function generator. The ferrocene/ferrocenium couple (Fc+/0) served as internal reference. Fast-scan cyclic voltammetry was performed using a custom-built potentiostat modeled after instruments from the Ecole Normale Superieure (Paris, France; Prof. C. Amatore). Gold or platinum ultramicroelectrodes (25, 50, or 125 *µ*m) were used in this instance; the data were collected with a Nicolet 410 oscilloscope. Spectroelectrochemical measurements were performed using an optically transparent thin-layer electrolysis (OTTLE) cell¹⁰ for UV/vis spectra and a two-electrode capillary for EPR studies.¹¹

[(C5Me5)Rh(abpy)Cl](Cl). A suspension of 74 mg (0.120 mmol) of $[(C_5Me_5)Rh(\mu\text{-}Cl)Cl]_2^{12}$ in 40 mL of acetone was stirred for 3 days with 44 mg (0.239 mmol) of abpy.¹³ The orange product was filtered off, washed with diethyl ether, and dried under vacuum to yield 80 mg (70%) of product. Anal. Calcd for $C_{20}H_{23}Cl_2N_4Rh$ (493.25): C, 48.70; H, 4.70; N, 11.36. Found: C, 48.45; H, 4.78; N, 11.12%. 1H NMR (CD3CN): *δ* 1.65 (s, 15H; Cp^{*}), 7.79 (ddd, 1H; H⁵), 8.05 (Dddd, 1H; H⁵), 8.12 (dt, 1H; H³), 8.717 (td, 1H; H⁴), 8.49 (td, 1H; H⁴), 8.80 (dd, 1H; H³), 8.88 (ddd, 1H; H⁶), 8.99 (dd, 1H; H⁶); ³ J(H³,H⁴) $= 7.8$ Hz, 3 *J*(H^{3'},H⁴) $= 8.4$, 3 *J*(H⁴,H⁵) $= 7.8$, 3 *J*(H^{4'},H^{5'}) $= 7.1$,
 3 *J*(H⁵,H⁶) $= 5.4$, 3 *J*(H^{5'},H^{6'}) $= 4.7$ Hz.
I(C M₂)I₂(**Abax)CU(DE)** A suspansian of 156 $(H⁶) = 4.7$ Hz.
U(DE) A sust

 $[(C_5Me_5)Ir(abpy)Cl](PF_6).$ A suspension of 156 mg $(0.196$ mmol) of [(C₅Me₅)Ir(µ-Cl)Cl]₂¹⁴ in 40 mL of CH₃OH was reacted with 90 mg (0.489 mmol) of abpy for 3 h. The greenish solution was reduced to about 10 mL and treated with ca. 3 equiv of Bu₄NPF₆ in methanol. The olive green precipitate was filtered, washed with methanol and diethyl ether, and dried under vacuum. Yield: 255 mg (95%). Anal. Calcd for $C_{20}H_{23}ClF_6IrN_4P$ (692.08): C, 34.71; H, 3.35; N, 8.10. Found: C, 34.63; H, 3.42; N, 7.99. 1H NMR (CD3CN): *δ* 1.72 (s, 15H, CH3Cp*), 7.76 (ddd, 1H, $H^{5'}(R)$), 8.05 (m, 1H, $H^{5}(R)$), 8.09 (t, 1H, $H^{3'}(R)$), 8.17 (dt, 1H, $H^{4'}(R)$), 8.41 (dt, 1H, $H^{4}(R)$), 8.83 (ddd, 1H, $H^{6'}(R)$), 8.89 (ddd, 1H, $H^6(R)$), 8.96 (ddd, 1H, $H^{3'}(R)$) ppm; $3J(H^3,H^4) = 8$, (ddd, 1H, H⁶(R)), 8.96 (ddd, 1H, H³(R)) ppm; ³J(H³,H⁴) = 8,
³J(H⁴,H⁵) = 7.7, ³J(H⁵,H⁶) = 5.6, ³J(H³,H⁴) = 8.1, ³J(H⁵,H⁶)
= 5 Hz $=$ 5 Hz.

 $[(C_5Me_5)Rh(abpy)].$ A suspension of 30 mg $(0.061$ mmol) of [(C₅Me₅)Rh(abpy)Cl](Cl) in 20 mL of THF was reacted under argon with a potassium mirror generated from 50 mg (1.3 mmol) of potassium. After 5 min the solution was filtered and reduced to dryness. Extraction with C_6H_6 and removal of the solvent gave 17 mg (65%) of a very air-sensitive dark blue material (no analysis). 1H NMR ([D6]acetone): *δ* 1.91 (s, 15H; Cp^{*}), 6.40 (ddd, 1H; H⁵), 7.00 (ddd, 1H; H⁴), 7.14 (ddd, 1H; H⁵'), 7.58 (d, 1H; H³), 7.67 (ddd, 1H; H⁴'), 7.81 (d, 1H; H³'), 8.54 (ddd, 1H; H⁶), 8.73 (d, 1H; H⁶); ³ $J(H^6, H^5) = 6.6$, ³ $J(H^6, H^5) = 4$ 8 3 $J(H^4 + H^3) = 5$ 5 3 $J(H^5 + H^4) = 7$ 0 3 $J(H^4 + H^3) = 8$ 8 4.8 , $3J(H^5,H^4) = 5.5$, $3J(H^5,H^4) = 7.0$, $3J(H^4,H^3) = 8.8$,
 $3J(H^4,H^3) = 8.3$ Hz. $(H^3) = 8.3$ Hz.
Me *In(obny*)

 $[(C_5Me_5)Ir(abpy)].$ A suspension of 33.2 mg (0.048 mmol) $[(C_5Me_5)Ir(abpy)Cl](PF_6)$ in 10 mL CH₃CH₂OH and 2.5 mL H₂O was treated at -10 °C with 18.5 mg (0.072 mmol) Bu₄NBH₄. The orange solution was reduced in volume until an orangered precipitate formed which was then filtered, washed with water and dried under vacum. Extraction with toluene/*n*hexane and removal of the solvent mixture gave a very airsensitive red material (no analysis). ¹H NMR (C_6D_6): δ 1.65 (s, 15H; CH₃(Cp^{*})), 5.99 (dt, ³ $J = 6.6$ Hz, H⁵(R)), 6.62 (ddd, 1H, H⁴), 6.7 (ddd, 1H, H⁵'(R)), 7.25 (ddd, 1H, H^{4'}(R)), 7.99 (td, 1H, H³), 8.32 (ddd, 1H, H³), 8.52 (d, 1H, H6), 8.54 (q, 1H, H⁶) ppm; ${}^{3}J(H^{3},H^{4}) = 7.8$ Hz, ${}^{3}J(H^{4},H^{5}) = 6.6$ Hz, ${}^{3}J(H^{5},H^{6}) = 4$ Hz, ³J(H^{3′},H⁴) = 7.3 Hz, ³J(H^{4′},H⁵) = 5 Hz, ³J(H^{5′},H⁶) = 2.1
Нz Hz.

- (13) Kirpal, A.; Reiter, L. *Ber. Dtsch. Chem. Ges.* **1927**, *60*, 664. (14) White, C.; Yates, A.; Maitlis, P. M. *Inorg. Synth.* **1992**, *29*, 228.
-

⁽⁸⁾ Kaim, W.; Reinhardt, R.; Waldho¨r, E.; Fiedler, J. *J. Organomet. Chem.* **1996**, *524*, 195.

⁽⁹⁾ Kaim, W. *Coord. Chem. Rev.* **²⁰⁰¹**, *²¹⁹*-*221*, 463.

⁽¹⁰⁾ Krejcik, M.; Danek, M.; Hartl, F. *J. Electroanal. Chem.* **1991**, *317*, 179.

⁽¹¹⁾ Kaim, W.; Ernst, S.; Kasack, V. *J. Am. Chem. Soc.* **1990**, *112*, 173.

⁽¹²⁾ Booth, B. L.; Hazeldine, R. N.; Hill, M. *J. Chem. Soc. A* **1969**, 1299.

Figure 1. Cyclic voltammograms of $[(C_5Me_5)Rh(abpy)Cl](Cl)$ in $CH_3CN/0.1$ M Bu₄NPF₆ at 1, 3, 5, and 10 V/s scan rate

Results and Discussion

Synthesis and Identification. The precursor complexes $[(C_5Me_5)M(abpy)Cl](X)$ (M = Rh, X = Cl; M = Ir, $X = PF_6$) were obtained from $[(C_5Me_5)M(\mu\text{-}Cl)Cl]_2^{12,14}$
by following established procedures ⁴⁻⁶ The activated by following established procedures. $4-6$ The activated neutral compounds [(C₅Me₅)M(abpy)] could be obtained as very air-sensitive substances by reduction with potassium or with certain hydrides.^{5c, 6,15} Their identity was established by ¹H NMR via the significant^{4c,5c} highfield shifts of $H⁴$ and $H⁵$ and confirmed by UV/vis/near-IR spectroscopy in connection with the spectroelectrochemical studies (see below). Remarkably, the iridium complex reacted to give diamagnetic $(C_5Me_5)Ir(abpy)$ with $(Bu_4N)(BH_4)$ in aqueous ethanol but gave mainly EPR-active $[(C_5Me_5)Ir(abpy)Cl]$ ^{*} on reaction with Na- $[BH_3(CN)]$ (see below).

Electrochemistry. Irreversible oxidation was observed for the iridium complex, in agreement with previous reports.^{5,6,15} The high value of $E_{p,a} = +1.48$ V vs $Fc^{+/0}$ reflects the lower basicity of abpy⁹ in comparison to, for example, bpy $(E_{p,a} = +0.7 \text{ V}$ for $[(C_5Me_5)Ir(bpy)Cl]^{2+/+}$;^{5c} high values similar to those for the abpy complex were obtained for analogous compounds with 1,4-diaza-1,3-butadienes.6,15 The complex reduction behavior of the compounds was investigated using variable-scan-rate cyclic voltammetry.

At slow scan rates <500 mV/s the cyclic voltammograms appeared like those of other systems $[(C_5Me_5)M -$ (N∧N)Cl]+, showing an irreversible two-electron conversion to $[(C_5Me_5)M(N^N)]$ with widely separated peak potentials E_1 and E_1 ^{, 4,5} In agreeement with previous observations4c,5c,8 the neutral compounds are reversibly reduced to $[(C_5Me_5)M(N^{\wedge}N)]^-$ at E_3/E_3 . At scan rates greater than 1 V/s the cyclic voltammograms exhibit additional features: a second cathodic peak emerges at *E*² and the anodic counter peak of the first wave at *E*¹ appears as a shoulder at the potential E_1 ['] (Figure 1).

When cyclic voltammetry is performed in an excess of chloride (Bu₄NCl), the peak signal E_2 appears at even lower scan rates and the current intensity of E_1 is decreased.

The results for both the rhodium and iridium complexes are very similar. The latter system was studied in further detail by rapid-scan voltammetry using

(increasing current). **Figure 2.** Cyclic voltammogram of $[(C_5Me_5)Ir(abpy)C]$ (PF₆) in CH₃CN/0.1 M Bu₄NPF₆ at 10 V/s scan rate (125 *µ*m Pt electrode).

ultramicroelectrodes (Figure 2). These studies showed both the anodic counter peak E_1 ' to E_1 and the cathodic counter peak E_1 ^{*'''*} to E_1 ^{''}.

Obviously, the chloride release after the first electron uptake is rather slow, allowing to detect intermediates by rapid scan voltammetry and spectroscopy (cf. below). After reduction by a second electron at E_2 there is rapid loss of Cl⁻ and an anodic counter peak could not be detected even at scan rates up to 5000 V/s. The presence of excess Cl^- stabilized the intermediate $[(C_5Me_5)M$ -(abpy)Cl]• , which was later used in the spectroelectrochemical investigation (see below).

The electrochemical potentials are summarized in Table 1; eqs 4-9 define the different processes.

$$
\begin{aligned} [{(C_5Me_5)M}^{\text{III}}(\text{abpy})\text{Cl}]^{+} + \text{e}^{-\frac{E_1}{\overline{E_1}}}\\ [{(C_5Me_5)M}^{\text{III}}(\text{abpy}^{-1})\text{Cl}]^{*} \end{aligned} \quad (4)
$$

high v limit:

$$
\begin{aligned} [(C_5Me_5)M^{III}(abpy^{-1})Cl]^* + e^{-\frac{E_2}{\longrightarrow}} \\ [(C_5Me_5)M^n(abpy^{1-n})] + Cl^- (5) \end{aligned}
$$

low v limit:

$$
\begin{aligned} [(C_5Me_5)M^{III}(abpy^{-I})Cl]^{\bullet} &\xrightarrow{\mathcal{L}} \\ [(C_5Me_5)M^{III}(abpy^{-I})L]^+ + Cl^- \end{aligned} \tag{6}
$$

$$
[(C_5Me_5)M^{III}(\text{abpy}^{-I})L]^+ + e^- \xrightarrow{E_1} [(C_5Me_5)M^n(\text{abpy}^{I-n})] + L \quad (7)
$$

$$
L = \text{solvent}
$$

₅)
$$
M^{n}(\text{abpy}^{I-n})] - 2e^{-\frac{E_{1^{\prime\prime}}}{E_{1^{\prime\prime\prime}}}} \left[(C_{5}\text{Me}_{5})M^{III}(\text{abpy}) \right]
$$

 $[(C_5Me_5]$

$$
\left[(C_5Me_5)M^{III}(abpy)\right]^{2+} (8)
$$

$$
[(C_5Me_5)M^n(abpy^{1-n})] + e^- \frac{1}{\sum_{S_3}}[(C_5Me_5)M^n(abpy^{-n})]^- (9)
$$

While the *E*¹ potentials are slightly less negative for the iridium analogue in comparison to the rhodium system, the *^E*³ potentials are much more negative in (15) Greulich, S.; Klein, A.; Knoedler, A.; Kaim, W. *Organometallics*

²⁰⁰², *21*, 765.

Table 1. Redox Potentials According to Eqs 4-**⁸ from Cyclic Voltammetry**

	E_{1} -	M E_1 E_2 $(1/2)$ E_3 E_4 E_5 E_2 E_3		$E_{3'}$	F2- (1/2)
		Rh -0.59 -0.53 -0.56 -0.49 n.o. -1.08 -2.07 -2.00 -2.04 Ir -0.55 -0.46 -0.51 -0.35 -0.42^b -1.11 -2.41 -2.35 -2.38			

^a Potentials in V vs Fc+/0, standard scan rate 1 V/s. *^b* Value measured at 10 V/s scan rate.

Figure 3. EPR spectrum of $[(C_5Me_5)Ir(abpy)Cl]$ ⁺ from brief in situ reduction (1 e) of $[(C_5Me_5)Ir(abpy)Cl](PF_6)$ in CH₃-CN/0.1 M $Et₄NPF₆$ at 110 K.

the case of $M = Ir$. This observation reflects the stronger π donating capacity of (C₅Me₅)Ir relative to (C₅Me₅)Rh. Remarkably, both *E*3(1/2) values lie much *more negative* (by more than 0.6 V!) than the reduction potential of free abpy at -1.37 V,⁹ indicating that the π backdonation from $(C_5Me_5)M$ far overcompensates the metalligand *σ* polarizing effect. With other *π*-electrondonating metal complex fragments such as $Re(CO)_{3}Cl$, $Mo(CO)₄$, and $[Ru(bpy)₂]$ ²⁺ the reduction potentials are shifted by about 0.5 V to *less negative* values.16

Spectroelectrochemistry. EPR. Identification of the electrochemical intermediates, including their proper oxidation state assignment, has been achieved by using EPR spectroscopy for paramagnetic states and UV/vis/ near-IR spectroscopy. In situ electrolysis provided the primary reduction products $[(C_5Me_5)M^{\rm III}(abpy^{-I})C!]$ for EPR analysis. The rhodium complex showed only an unresolved line of 2.4 mT width at $g_{\rm iso} = 1.998$, at both 298 and 4 K. Similar values were reported for ruthenium(II) complexes of abpy*⁻.¹¹ The iridium analogue (which could also be obtained via single-electron transfer15,17 in the reaction with Na[BH3(CN)]) showed *g*iso $=$ 1.983 at 298 K. In frozen solution at 110 K the signal split into $g_{1,2} = 1.995$ and $g_3 = 1.966$ (Figure 3). This splitting and the sizable deviation from the free-electron value of $g_e = 2.0023$ are attributable to the large spinorbit coupling contributions from the 5d element iridium;¹⁸ however, an increased spin transfer from abpy^{•-} to Ir relative to Rh cannot be ruled out. The lowered *g* values in comparison to *g*^e point to a situation with close-lying unoccupied MOs, possibly the empty metal d orbitals which get involved in the chloride ligand labilization.

For the rhodium system it was possible to obtain an EPR spectrum of the three electron-reduced species

Figure 4. EPR spectrum of $[(C_5Me_5)Rh(abpy)]$ ⁺⁻ obtained after long-time in situ reduction (3 e) of $[(C_5Me_5)$ -Rh(abpy)Cl](Cl) in $CH_3CN/0.1$ M Bu_4NPF_6 at 4 K.

Figure 5. UV-vis spectral changes on reduction of $[(C_5 - C_5)]$ $Me₅$)Rh(abpy)Cl](Cl) in CH₃CN/0.1 M Bu₄NCl at -0.7 V vs $Fc^{+/0}$: during the first 1 min (top) and after 1 min until formation of $(C_5Me_5)Rh(abpy)$ (bottom).

 $[(C_5Me_5)Rh^n(abpy^{-n})]$ ⁻ (Figure 4) after continued electrolysis beyond the EPR-silent neutral state. Both the isotropic *g* value of 2.042 and the components at g_1 = 2.161, $g_2 = 2.002$, and $g_3 = 1.945$ indicate a paramagnetic species with largely metal-centered spin. For the oxidation state distribution a rhodium(0) formulation with neutral abpy $(n = 0)$ or a rhodium(II) alternative $(n=2)$ with the organohydrazido $(2-)$ ligand abpy²⁻ can be discussed. In light of arguments from electrochemistry (very negative $E_3(1/2)$) and spectroscopy (see below) as well as structural and theoretical results for corresponding diazabutadiene complexes $6,19$ we favor the Rh^{II} alternative. The iridium analogue could not be observed by EPR either because of rapid relaxation or due to diminished stability at the even more negative potential.

UV-Vis. The spectroelectrochemical studies with an
OTTLE cell¹⁰ had to be performed in the presence of excess chloride in order to counteract the Cl⁻ dissocia-

^{(16) (}a) Hartmann, H.; Scheiring, T.; Fiedler, J.; Kaim, W. *J. Organomet. Chem.* **2000**, *604*, 267. (b) Kaim, W.; Kohlmann, S. *Inorg. Chem.* **1987**, *26*, 68. (c) Ernst, S. D.; Kaim, W. *Inorg. Chem.* **1989**, *28*, 1520.

⁽¹⁷⁾ Kaim, W. *Top. Curr. Chem.* **1994**, *169*, 231.

^{(18) (}a) Kaim, W.; Berger, S.; Greulich, S.; Reinhardt, R.; Fiedler, J. *J. Organomet. Chem.* **1999**, 582, 153. (b) Berger, S.; Klein, A.; Wanner, M.; Fiedler, J.; Kaim, W. *Inorg. Chem.* **2000**, 39, 2516.

⁽¹⁹⁾ Zališ, S.; Sieger, M.; Greulich, S.; Stoll, H.; Kaim, W. Submitted for publication.

200 300 400 500 600 700 800 900 1000 1100 1200 nm

Figure 6. UV-vis spectral changes on reduction of $[(C_5 - C_6)]$ Me_5)Rh(abpy)] in CH₃CN/0.1 M Bu₄NPF₆.

Table 2. UV-vis Absorption Maxima λ_{max} (ϵ)^{*a*} of **Complexes in Acetonitrile***^b*

complex	м	λ_{max} (10 ⁻³ ϵ)
$[(C_5Me_5)M(abpy)Cl]^+$	Rh Ir	450 sh, 345 (13.0)
$[(C_5Me_5)M(abpy)Cl]$ [*]	Rh	617 (0.5), 462 (3.6), 344 (10.6) 550 sh, 380 (14.0)
	Ir Rh	500 sh, 385
$[(C_5Me_5)M(abpy)]$	Ir	585 (10.0) , c 284 (17.0) 488 (17.0), 355 sh, 282 (18.9)
$[(C_5Me_5)M(abpy)]^-$	Rh	636 sh, 579 sh, 540 (6.0), 335 (16.0)
	Ir	630 sh, 567 (7.1), 535 sh, 476 sh, 345 (15.3)

 a λ_{max} in nm, molar extinction coefficients ϵ in M⁻¹ cm⁻¹. *^b* From spectroelectrochemistry in $CH_3CN/0.1$ M Bu_4NPF_6 , Et_4NPF_6 , or $\overline{B}u_4$ NCl (cf. text). $c \lambda_{\text{max}} = 600$ nm in THF solution of synthesized complex.

tion (eqs 5 and 6). The spectral changes for eq 4 ($M =$ Rh) are shown in Figure 5 (top), which also depicts the formation of $[(C_5Me_5)Rh(abpy)]$ (eq 5). Further reduction to the rhodium(II)-containing anion is illustrated in Figure 6; Table 2 summarizes the absorption data.

The absorption data from spectroelectrochemistry support the oxidation state assignments in eqs $4-9$. The cationic precursors have long-wavelength bands attributable to $\sigma(M-CI)$ -to- $\pi^*(abpy)$ transitions.¹⁹ The weak band at 617 nm for the iridium complex may be assigned to a partially allowed triplet transition, enhanced in intensity through spin-orbit coupling. Bands at about 550 and 400 nm are typical for a bpy^{*-} and its complexes.^{9,16} The neutral compounds [(C5Me5)M*ⁿ*(N∧N1-*ⁿ*)] are distinguished by intense bands at long wavelengths, assigned to allowed CT transitions between d_{π} orbitals of the metal and $\pi^*(N^{\wedge}N)$.^{4c,5c,8,19} Depending on the oxidation state formulation, these are MLCT $(n = 1)$ or LMCT processes $(n = 3)$. In fact,

experiments and calculations for different ligands N∧N suggest strong mixing between these *π* orbitals with highly variable contributions from either the metal or the N^N ligand side. 19 The spectroelectrochemical results were complemented by measurements on chemically prepared compounds $[(C_5Me_5)M(N^N)]$. On further reduction the long-wavelength band is replaced by broader, less intense, and partially structured features, some extending into the near-infrared region (Figure 6).

Conclusions

Using the special⁹ N^N chelate ligand abpy, we could demonstrate for the first time for mononuclear complexes20 how such an electron reservoir ligand can store a first electron before the combination with the second electron leads to chemical reactivity: here the reversible dissociation of Cl^- in a catalytically relevant activation step. This study is thus complementary to the many investigations on the separation of *reversible* 2e waves into one-electron processes.21 The facile radical anion formation of the abpy ligand due its low-lying *π** orbital helps to circumvent unfavorable Rh^H or Ir^{II} intermediates. However, a Rh^{II} species has been identified by EPR spectroscopy for $[(C_5Me_5)Rh(abpy)]$ ^{$-$}. As for the iridium analogue, this anion is formed at a far more negative potential than the free abpy ligand, thereby illustrating the extraordinary capacity of the fragments $(C_5Me_5)M$, especially of (C_5Me_5) Ir with its established unusual chemistry,²² for π back-donation.

Acknowledgment. We thank Professors C. Amatore and G. Simoneau (ENS Paris) for invaluable support in the construction of a fast-scan potentiostat and Priv.- Doz. Dr. R. Winter for helpful discussions. Financial support from the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie is also gratefully acknowledged.

OM020860J

⁽²⁰⁾ For dinuclear complexes cf. ref 18 and: (a) Kaim, W.; Reinhardt, R.; Fiedler, J. *Angew. Chem.* **1997**, *109*, 2600; *Angew. Chem., Int. Ed.* **1997**, *36*, 2493*.* (b) Scheiring, T.; Fiedler, J.; Kaim, W. *Organometallics* **2001**, *20*, 1437, 3209.

⁽²¹⁾ Pierce, D. T.; Geiger, W. E. *J. Am. Chem. Soc.* **1992**, *114*, 6063. (22) See, for example: (a) Ogo, S.; Nakai, H.; Watanabe, Y. *J. Am. Chem. Soc.* **2002**, *124*, 597. (b) Tellers, D. M.; Yung, C. M.; Arndtsen, B. A.; Adamson, D. R.; Bergman, R. G. *J. Am. Chem. Soc.* **2002**, *124*, 1400.