Photochemical Isomerization and X-ray Structure of Stable [Tris(trialkylsilyl)silyl]cyclotrisilene

Takeaki Iwamoto, Makoto Tamura, Chizuko Kabuto, and Mitsuo Kira*

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

Received November 5, 2002

Summary: Upon irradiation of a stable cyclotrisilene, 1,3,3-tris(tert-butyldimethylsilyl)-2-[tris(tert-butyldimethylsilyl)silyl]cyclotrisilene (5), in toluene with a lowpressure mercury-arc lamp, the isomerization of 5 to hexakis(tert-butyldimethylsilyl)bicyclo[1.1.0]tetrasilane (2) occurred in high yield; 2 isomerized further to the corresponding cyclotetrasilene 1 by a thermal process as previously reported. The distance of the siliconsilicon double bond in 5 determined by X-ray crystallography (2.132(2) Å) was similar to those of the known stable disilenes.

Introduction

Since the first synthesis of a stable silicon-silicon doubly bonded compound (disilene) in 1981, a number of interesting thermal reactions of disilenes have been reported.1 In contrast, very few photochemical reactions of disilenes have been known up to date. West and coworkers found the photochemical *E*,*Z*-isomerization of geometrical isomers of tetraaaryldisilenes.² We have reported recently a unique photochemical isomerization of hexakis(*tert*-butyldimethylsilyl)cyclotetrasilene (**1**) to its valence isomer, hexakis(*tert*-butyldimethylsilyl) bicyclo[1.1.0]tetrasilane (**2**), in addition to the reverse thermal isomerization of 2 to 1 (eq 1).³ Using deuteriumlabeled **1** and **2**, these two isomerizations were revealed to proceed via 1,2-silyl migration.^{3b} Sekiguchi and coworkers have recently reported that a tetrakis(trialkylsilyl)disilagermacycloprop-1-ene (**3**) undergoes photochemical isomerization to the corresponding disilagermacycloprop-2-ene (**4**) also via the 1,2-silyl migration (eq 2).4 Here, we report a novel photochemical isomerization of 1,3,3-tris(*tert*-butyldimethylsilyl)-2-[tris(*tert*-butyldimethylsilyl)silyl]cyclotrisilene (**5**), which was synthesized recently as the first stable cyclotrisilene, 5 to the corresponding bicyclo[1.1.0]tetrasilane **2**, together with the X-ray structural analysis of cyclotrisilene **5**.

Results and Discussion

When a dark red toluene-*d*₈ solution of cyclotrisilene **5** (2.4 \times 10⁻² M) in a quartz NMR tube was irradiated using a low-pressure mercury-arc lamp ($\lambda = 254$ nm) at 243 K, the solution turned gradually dark brown. After 70 min irradiation, the ¹H NMR spectrum of the mixture showed the complete consumption of cyclotrisilene **5** together with the formation of the corresponding bicyclo[1.1.0]tetrasilane **2** (ca. 90% yield) and a small amount of tris(*tert*-butyldimethylsilyl)silane (**6**, ca. 10% yield) (eq 3, Figure 1). Expectedly, when the product mixture was allowed to warm to room temperature, the 1H NMR signals due to bicyclotetrasilane **2** disappeared gradually and those due to cyclotetrasilene **1** appeared.3 In contrast to the clean photolysis of **5**, thermolysis of **5** at 423 K gave a mixture of unidentified products.

R	R	R		
Si	$h\nu$ (λ = 254 nm)	R		
Si = Si	R	followene-d ₈ , 243 K	2, 90% + H-Si-R	(3)
R	R	6, < 10%		
5	R	t -BuMe ₂ Si	6, < 10%	

As illustrated in Scheme 1, the photochemical isomerization of cyclotrisilene **5** is rationalized by a mechanism

^{*} Corresponding author.

⁽¹⁾ For reviews on $R_2M=MR_2$ ($M = Si$, Ge , Sn), see: (a) West, R. *Pure Appl. Chem.* **1984**, *56*, 163. (b) Raabe G.; Michl, J. *Chem. Rev.* **1985**, *85*, 419. (c) West, R. *Angew. Chem., Int. Ed. Engl.* **1987**, *26*, 1201.
(d) Raabe, G.; Michl, J. In *The Chemistry of Organic Silicon Com-*
pounds; Patai, S., Rappoport, Z., Eds.; John Wiley & Sons: New York, 1989; Chapter 17, p 1015. (e) Barrau, J.; Escudié, J.; Satgé, J. *Chem.
<i>Rev.* **1990**, *90*, 283. (f) Tsumuraya, T.; Batcheller, S. A.; Masamune, S. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 902. (g) Grev, R. S. *Adv. Organomet. Chem.* **1991**, *33*, 125. (h) Okazaki, R.; West, R. *Adv. Organomet. Chem.* **1996**, *39*, 231. (i) Kira, M.; Iwamoto, T. *J. Orga*nomet. Chem. **2000**, 611, 236. (j) Weidenbruch, M. In *The Chemistry*
of Organic Silicon Compounds Volume 3; Rappoport, Z., Apeloig, Y.,
Eds.; Wiley: New York, 2001; Chapter 5, p 391. (k) Weidenbruch, M. *J. Organomet. Chem.* **2002**, *646*, 39.

^{(2) (}a) Michalczyk, M. J.; West, R.; Michl, J. *Organometallics* **1985**, *4*, 826. (b) Shephered, B. D.; Powell, D. R.; West, R. *Organometallics* **1989**, *8*, 2664.

^{(3) (}a) Kira, M.; Iwamoto, T.; Kabuto, C. *J. Am. Chem. Soc.* **1996**, *118*, 10303. (b) Iwamoto, T.; Kira, M. *Chem. Lett.* **1998**, 277. For a recent review on silyl migrations, see: Kira, M.; Iwamoto, T. In *The Chemistry of Organic Silicon Compounds Volume 3*; Rappoport, Z., Apeloig, Y., Eds.; John Wiley & Sons: New York, 2001; Chapter 16, p 853.

⁽⁴⁾ Lee, V. Y.; Ichinohe, M.; Sekiguchi, A. *J. Am. Chem. Soc.* **2000**, *122*, 9034.

⁽⁵⁾ Iwamoto, T.; Kabuto, C.; Kira, M. *J. Am. Chem. Soc.* **1999**, *121*, 886.

Figure 1. Photochemical isomerization of cyclotrisilene **5** to bicyclotetrasilane **2** and thermal isomerzation of **2** to cyclotetrasilene **1** monitored by 1H NMR spectroscopy at 243 K. Top: before irradiation. Middle: after irradiation for 70 min at 243 K. Bottom: after annealing at ambient temperature in the dark for 1 day. Signals marked as "*" are due to impurity.

Figure 2. Molecular structure of cyclotrisilene **5**. Thermal ellipsoids are shown at the 30% probability level. Hydrogen atoms are omitted for clarity. Selected bond lengths (Å) and angles (deg): Si1-Si2 2.132(2), Si1-Si3 2.327(2), Si2-Si3 2.339(2), Si1-Si10 2.321(3), Si2-Si6 2.365(2), Si3-Si1- Si10 146.59(10), Si3-Si1-Si2 63.09(6), Si2-Si1-Si10 147.04(8), Si3-Si2-Si1 62.52(6), Si3-Si2-Si6 150.13(7), Si1-Si2-Si6 147.34(6), Si1-Si3- Si2 54.39(6), Si6-Si2- Si1-Si10 21.4(2).

including 1,2-silyl migration as proposed for the isomerization of cyclotetrasilene **1**³ and disilagermacycloprop-1-ene **3**. ⁴ Whereas there are three possible 1,2-silyl

migration pathways (paths **^a**-**c**) for **⁵**, only path **^a** leads to the observed product **2**; the formation of an intermediate 1,3-silyl biradical **7** via 1,2-migration of a trialkylsilyl group (\mathbb{R}^2) followed by intramolecular radical recombination affords **2**. Path **b**, involving the 1,2-silyl migration of an \mathbb{R}^3 group to an unsaturated silicon atom (Si¹), results in the identity reaction. Although another 1,2-silyl migration of an R3 group (path **c**) should lead to the formation of cyclotrisilene **8**, the pathway would be prohibited sterically; the minor product **6** may be obtained by this pathway.

Combining with our previous findings,³ we have realized transformation among the three Si_4R_6 isomers **1**, **2**, and **5** using thermal and photochemical reactions as shown in eqs 1 and 3. Cyclotrisilene **5** isomerizes photochemically to bicyclo[1.1.0]tetrasilane **2**, which converts thermally to cyclotetrasilene **1**; **1** isomerizes photochemically to **2**. However, no evidence was found for the intervention of the corresponding tetrasila-1,3 diene and tetrasila-1,2-diene in the Si_4R_6 interconversion. It is interesting to note that the fashion of interconversion among Si_4R_6 isomers is quite different from that among C_4R_6 isomers. Thus, alkylcyclopropenes are known to give ring-opening products such as allenes and/or butadienes during photolysis 6 and thermolysis of bicyclo[1.1.0]butane gives unsually 1,3-butadiene rather than cyclobutene.⁷ The absence of the 1,3and 1,2-dienes in the Si_4R_6 interconversion would be ascribed to their high thermal instability; *transoid*- and *cisoid*-tetrasila-1,3-dienes and tetrasila-1,2-diene were calculated to be 33.3, 34.2, and 21.7 kcal/mol higher in energy, respectively, than the parent bicyclo^[1.1.0]tetrasilane at the B3LYP/6-311+ $G(d,p)$ level with ZPE correction.8 Interestingly, the relative energy for 1-silylcyclotrisilene (21.6 kcal/mol) is rather high and comparable to that for tetrasila-1,2-diene at the same theoretical level. In contrast, among C_4H_6 isomers, buta-1,3-diene is the most stable isomer, which is 9.4, 23.0, and 21.7 kcal/mol lower in energy than 1-methylpropa-1,2-diene, 1-methylcyclopropene, and bicyclo[1.1.0]-

⁽⁶⁾ Fahie, B. J.; Leigh, W. J. *Can. J. Chem.* **1989**, *67*, 1859. (7) (a) Blanchard, R. P., Jr.; Cairncross, A. *J. Am. Chem. Soc.* **1966**, *88*, 487. (b) Wiberg, K. B.; Lavanish, J. M. *J. Am. Chem. Soc.* **1966**, *88*, 5272. (c) Closs, G. L.; Pfeffer, P. E. *J. Am. Chem. Soc.* **1968**, *90*, 2452.

⁽⁸⁾ Müller, T. In *Organosilicon Chemistry IV*; Auner, N., Weis, J., Eds.; Wiley-VCH: Weinheim, <code>p 110.</code> In this paper are given relative
energies and structures of many isomers of C $_4\mathrm{H}_6$ and Si $_4\mathrm{H}_6$ except for propa-1,2-diene type derivatives. For methylallene and its silicon analogues, we investigated at the same theoretical level.

butane, respectively, at the B3LYP/6-311+G(d,p) level with ZPE correction.⁸ The relative stabilities among $Si₄H₆$ isomers are remarkably different from those among C_4H_6 isomers, which should be responsible at least in part for the apparent differences in the interconversion mode between two sets of M_4R_6 isomers (M $= C$ and Si).⁹

Recrystallization of **5** from hexane at room temperature afforded orange prisms suitable for a single-crystal X-ray diffraction study. Data collection was carried out at 230 K because the single crylstal of **5** cracked below 230 K. The skeletal structure of **5** is similar to that of tetrakis(di-*tert*-butylmethylsilyl)cyclotrisilene (**9**) reported by Sekiguchi et al.,¹⁰ while the geometries around two unsaturated silicon atoms in **5** are different because of the two different substituents on the endocyclic Si-Si double bond. The unsaturated silicon atom $Si¹$ is slightly pyramidalized, while the geometry around Si² is planar; the sums of three bent angles around the unsaturated silicon atoms are 356.7° for Si¹ and 360.0° for Si², and the dihedral angle $Si^6-Si^2-Si^1-Si^{10}$ was 21.4(2)°. Since the optimized structure of a model tetrakis(trihydrosilyl)cyclotrisilene calculated at the B3LYP/6-31G(d) level has C_{2v} symmetry with a planar Si=Si double bond,¹¹ pyramidalization at Si¹ atoms in **5** would be mainly due to steric repulsion among substituents as observed in cyclotrisilene **9** (the corresponding dihedral angle Si-Si=Si-Si is $31.9(2)°$).¹⁰ The $Si = Si$ double-bond distance in **5** is 2.132(2) Å, which is similar to those of the known three-membered disilenes, cyclotrisilene 9 (2.138(4) Å),¹⁰ disilagermacycloprop-1ene **3** (2.146(1) Å),⁴ and tetrakis(tris(*tert*-butyldimethylsilyl)silyl)spiropentasiladiene $(2.186(3)$ Å).¹¹ In accord with heavier steric hindrance between substituents on $Si²$ and $Si³$ than that between substituents on $Si¹$ and $Si³$, the $Si²-Si³$ bond (2.339(2) Å) is a little longer than the Si^1-Si^3 bond (2.327(2) Å).

Experimental Section

All operations were performed in oven-dried or flame-dried glassware under a dry argon atmosphere. Toluene- d_8 was dried

Table 1. Crystallographic Data for Cyclotrisilene 5

over potassium mirror and distilled through a vacuum line before use. 1H (300 MHz), 13C (75 MHz), and 29Si (59 MHz) NMR spectra were recorded on a Bruker AC300P NMR spectrometer.

Photolysis of Cyclotrisilene 5. A toluene-*d*⁸ (0.5 mL) solution of 5 (0.010 g, 2.4×10^{-2} M) in a sealed quartz NMR tube was irradiated using a low-pressure mercury-arc lamp $(\lambda = 254$ nm) at 243 K for 70 min. The photoreaction was followed by 1H NMR spectroscopy at the same temperature.

X-ray Crystallography of Cyclotrisilene 5. Single crystals of **5** suitable for X-ray diffraction study were obtained by recrystallization from dry hexane. X-ray data were collected on a Rigaku/MSC Mercury CCD diffractometer with graphitemonochromated Mo K α radiation (λ 0.71073 Å) at 230 K. The intensity data were corrected for Lorentz and polarization effects. The structures were solved by direct methods and refined by full-matrix least squares against F^2 using all data (G. M. Sheldrick, *SHELXL-97*, Program for the Refinement of Crystal Structures, University of Göttingen, Germany, 1997). Crystallographic data of **5** are summarized in Table 1.

Acknowledgment. This work was supported by the Ministry of Education, Culture, Sports, Science, and Technology of Japan (Grants-in-Aid for Scientific Research (B) No. 11440185 (M.K. and T.I.)).

Supporting Information Available: Tables giving the details of the X-ray structure determination, bond lengths, and bond angles of **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM020921D

⁽⁹⁾ Recently, a related thermal isomerization of a tristannaallene to the corresponding cyclotristannene has been shown by Wiberg and co-workers: Wiberg, N.; Lerner, H.-W.; Vasisht, S.-K.; Wagner, S.; Karaghiosoff, K.; Nöth, H.; Ponikwar, W. *Eur. J. Inorg. Chem.* 1999, 1211.

⁽¹⁰⁾ Ichinohe, M.; Matsuno, T.; Sekiguchi, A. *Angew. Chem., Int. Ed*. **1999**, *38*, 2194.

⁽¹¹⁾ Iwamoto, T.; Tamura, M.; Kabuto, C.; Kira, M. *Science* **2000**, *292*, 504.