

Volume 22, Number 13, June 23, 2003 © Copyright 2003

American Chemical Society

Communications

Conversion of Ethylene to Hydride and Ethylidyne by an Amido Rhenium Polyhydride

Oleg V. Ozerov, John C. Huffman, Lori A. Watson, and Kenneth G. Caulton*

Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102

Received December 27, 2002

Summary: Reaction of (PNP^{Cy})ReOCl₂ (PNP^{Cy} = N(SiMe₂-CH2PCy2)2) with Mg and H2 yields (PNPCy)Re(H)4, whose unsaturation is demonstrated by its ability to add H2. "(PNPCy)ReH6" is an equilibrium mixture of a structure where all six H's are on Re and a structure where five H's are on Re and one H is on N. (PNPCy)Re(H)4 reacts with C2H4 within 10 min at 25 °*C to give ethane and* $(PNP^{Cy})ReH \equiv C-CH_3$, together with its ethylene ad*duct.*

Whereas "pure" polyhydride compounds, L*n*MH*^m* (L) Lewis base), are almost invariably saturated and resist becoming unsaturated, the presence of at least one *^π*-donor ligand, L*n*MH*^m*-3X, even one as weak as chloride, makes such unsaturated species achievable. This is illustrated by $(R_3P)_2MH_5$ versus $(R_3P)_2MH_2Cl$ $(M = Rh, Ir)$, and $(R_3P)_2M'H_6$ versus $(R_3P)_2M'H_3Cl$ (M' $=$ Ru, Os).^{1,2} We desired to extend this class of compounds to include $X = NR₂$ and to do this via the class of ligands developed by Fryzuk: $(R_2PCH_2SiMe_2)_2N^{-1}$ ("PNPR").3 We were especially interested in enhancing the π -basicity of the metal to accomplish the isomerization of olefins lacking any *π*-donor substituents into coordinated carbenes, which was not possible for the fragment $(R_3P)_2RuHCl⁴$ We envisioned doing this by moving from $Ru(II)$ to $Re(I),$ ⁵ and from Cl to the more π -donating NR₂.

Mg powder under H_2 (1 atm, 25 °C, Et_2O) functions well to remove oxide and chloride from $(PNP^{Cy})ReOCl₂$ $(1)^6$ to give red-purple $(PNP^{Cy})ReH_4$ (2) in good yield upon workup (Scheme 1).⁷ The hydrides give only one ¹H NMR triplet at -9.24 ppm (J_{PH} = 22 Hz) in the -80 to +22 °C temperature range, but a crystal structure determination (Figure 1a) 8 was sufficient to reveal four hydride ligands in an unusual seven-coordinate geometry. The peculiarity of this approximately C_{2v} symmetric structure results from the fact that Ha1 and Ha2 are bent away from being mutually *trans* in order to avoid competition of two strong *trans*-effect ligands and to rehybridize one empty d*^π* orbital for more effective *π* bonding with the filled p_π orbital of the amide nitrogen.^{2b,9} DFT calculations (see Supporting Information) on a model species, (H2PCH2SiH2)2NReH4 (**2H**), give a tetrahydride ground state structure with the relevant

^{*} Corresponding author. E-mail: caulton@indiana.edu.

^{(1) (}a) Mediati, M.; Tachibana, G. N.; Jensen, C. M. *Inorg. Chem*. **1990**, *29*, 3. (b) Mediati, M.; Tachibana, G. N.; Jensen, C. M. *Inorg. Chem*. **1992**, *31*, 1827. (c) Le-Husebo, T.; Jensen, C. M. *Inorg. Chem*. **1993**, *32*, 3797. (d) Brinkmann, S.; Morris, R. H.; Ramachandran, R.; Park, S.-H. *Inorg. Synth.* **1998**, *32*, 303.
(2) (a) Gusev, D. G.; Kuznetsov, V. F.; Eremenko, I. L.; Berke, H. *J.*
(2) (a) Gusev, D. G.; Kuznetsov

G.; Eisenstein, O.; Caulton, K. G. *J. Am. Chem. Soc*. **1994**, *116*, 2685. (c) Chaudret, B.; Chung, G.; Eisenstein, O.; Jackson, S. A.; Lahoz, F.

J.; Lopez, J. A. *J. Am. Chem. Soc*. **1991**, *113*, 2314. (3) (a) Fryzuk, M. D.; Carter, A.; Westerhaus, A. *Inorg. Chem*. **1985**, *24*, 642. (b) Fryzuk, M. D.; Montgomery, C. D. *Coord. Chem. Rev*. **1989**, *95*, 1. (c) Fryzuk, M. D. *Can. J. Chem*. **1992**, *70*, 2839.

⁽⁴⁾ Coalter, J. N.; Bollinger, J. C.; Huffman, J. C.; Werner-Zwanziger, U.; Caulton, K. G.; Davidson, E. R.; Gerard, H.; Clot, E.;
Eisenstein, O. *New J. Chem.* **2000**, *24*, 9. (b) Ferrando, G.; Gerard, H.;
Spivak, G. J.; Coalter, J. N.; Huffman, J. C.; Eisenstein, O.; Caulton, K. G. *Inorg. Chem*. **2001**, *40*, 6610. (5) This approach was recently taken by Harman: Meiere, S. H.;

Brooks, B. C.; Gunnoe, T. B.; Carrig, E. H.; Sabat, M.; Harman, W. D. *Organometallics* **2001**, *20*, 3661.

⁽⁶⁾ Ozerov, O. V.; Gerard, H. F.; Watson, L. A.; Huffman, J. C.; Caulton, K. G. *Inorg. Chem*. **2002**, *41*, 5615.

Figure 1. Selected bond distances (Å) and angles (deg). (a) Molecular structure of **²**: Re(1)-P(1), 2.3877(6); Re- $(1)-P(2)$, 2.3860(6); Re(1)-N(1), 2.0633(19); N(1)-Re(1)-H(a1), 119.4(11); N(1)-Re(1)-H(a2), 116.8(11); H(a1)-Re(1)-H(a2), 123.7(16). (b) Molecular structure of **⁶**: Re(1)- P(1),2.4412(5);Re(1)-P(2),2.4292(5);Re(1)-N(1),2.2768(17); $Re(1)-C(31), 2.232(2); Re(1)-C(32), 2.242(2); Re(1)-C(33),$ $1.762(2);C(31)-C(32),1.422(3);P(1)-Re(1)-P(2),157.482(18);$ $N(1)-Re(1)-C(33),173.82(8);Re(1)-C(33)-C(34),174.03(19).$ [Hydrogen atoms, except Re-H, and all cyclohexyl CH2 were omitted for clarity.]

Scheme 1

geometrical parameters closely corresponding to those of **2**. No dihydrogen isomer was found as an energy minimum.

(PNPCy)ReH4 is an operationally unsaturated complex and does indeed bind H_2 (Scheme 1) to produce a mixture of two tautomers: $(PNP^{Cy})ReH₆$ (3) and (PN- HP^{Cy})ReH₅ (4). Under an H₂ atmosphere, the hydride signal of 4 (t, $J_{HP} = 17$ Hz) can be observed at ambient temperature by ¹H NMR at -6.82 ppm. The peaks corresponding to **2** and **3** are coalesced at ambient temperature and give rise to a very broad upfield hydride resonance and one very broad ³¹P NMR resonance. At -40 °C and below, the resonances of **²** and **³** decoalesce to give two broad triplets for their corresponding hydrides and two singlets for their corresponding Si-Me groups in 1H NMR, as well as two singlets in the ${}^{31}P_1{}^{1}H_1$ NMR.

We undertook a DFT computational study of the Re polyhydrides **2H**-**5H** (Scheme 2). Tautomerization of **2H** to **5H** is found to be highly unfavorable, whereas the tautomers **3H** and **4H** are approximately isoenergetic. Both **3H** and **4H** are saturated 18e complexes, while **2H** and **5H** are unsaturated 16e complexes. However, the Re center in 2^H is stabilized by π -donation from N; no such option exists for **5H**. The much shorter Re-N bond in **2H** (2.062 Å) than in **3H** (2.209 Å) is consistent with a multiple Re-N bond in **2H**. In contrast, the lengths of

the dative Re \leftarrow N bonds in 4^H (2.362 Å) and 5^H (2.357 Å) are very similar. The addition of H_2 to the unambiguously unsaturated **5H** is favorable by 25.3 kcal/mol, while the addition of H2 to the *operationally* unsaturated **2H** is favorable only by 2.5 kcal/mol.

Our computational results are consistent with the experimental observation of species **²**-**⁴** and not of **⁵** and with the observation that H_2 addition to 2 is reversible and that even in the presence of excess H_2 and at -80 °C the conversion of (PNP^{Cy})ReH₄ to "(PNPCy)ReH6" isomers is incomplete.10 (PNPCy)ReH4 (**2**) also slowly exchanges its hydrides and the hydrogens of the cyclohexyl rings with D from C_6D_6 at 25 °C.¹¹

The unsaturated character of $(PNP^{Cy})ReH₄$ allows it to react with ethylene rapidly (10 min) at 25 °C to

(7) (PNPCy)ReH4 (**2**). A 200 mL flask equipped with a Kontes Teflon stopcock was charged with (PNPCy)ReOCl2 (**1**) (0.730 g, 0.876 mmol), Mg powder (0.20 g, 8.3 mmol), 20 mL of ether, and a stir bar. The suspension was degassed and the flask was refilled with H2 (ca. 1 atm). The contents of the flask were vigorously stirred for 72 h, over which time the color changed from green to red-purple, then the volatiles were removed in vacuo. The residue was triturated with heptane, extracted with pentane, and filtered. The volume of the filtrate was reduced to ca. 5 mL in vacuo. and this solution was kept at -30 °C for reduced to ca. 5 mL in vacuo, and this solution was kept at -30 °C for 24 h. Red-purple crystalline product was separated by decantation and washed with cold pentane and dried in vacuo. Yield: 0.410 g (63%). The exact time needed for the completion of the reaction depends on the amount and the surface area of Mg used. Utilization of a large excess of Mg is not detrimental, and the remaining Mg can be reused in future preparations of **2**. Mg activated by previous reaction runs generally promotes faster (several hours) conversion to the product.
¹H NMR (C₆D₆): *δ* 2.23 (br d, 12 Hz, 4 H, Cy), 1.83 (br t, 8 Hz, 4 H, Cy), 1.74 (br m, 12 H, Cy), 1.40–1.60 (br m, 12 H, Cy), 1.06–1.30 (br m, 12 H, Cy), 0.94 (t, 6 Hz, 4 H, PC*H₂Si)*, 0.40 (s, 12 H, SiC*H₃*), -9.24 (t, 22 Hz, Re*H₄*). The hydride resonance at -9.24 ppm remains resonan essentially unchanged upon cooling the toluene-*d*₈ solution of (PNP^{Cy})-
ReH₄ down to -80 °C. ³¹P{¹H} NMR (C₆D₆): *δ* 56.2 (s). ¹³C{¹H} NMR
(C₆D₆): *δ* 41.4 (t, 14 Hz, *C*H of PCv), 29.1 (s, *C*H₀ (C6D6): *δ* 41.4 (t, 14 Hz, *C*H of PCy), 29.1 (s, *C*H2 of PCy), 28.6 (s, *C*H2 of PCy), 27.4 (t, 5 Hz, *C*H2 of PCy), 27.3 (t, 6 Hz, *C*H2 of PCy), 26.9 (s, *C*H2 of PCy), 10.7 (s, P*C*H2Si), 6.7 (t, 2 Hz, Si*C*H3).

(8) Crystallographic data for **2** (-162 °C): $a = 10.6141(4)$ Å, $b = 11.1066(4)$ Å, $c = 17.6560(7)$ Å; $\alpha = 71.902(1)$ ^o, $\beta = 75.498(1)$ ^o, $\gamma = 78.701(1)$ ^o with $Z = 2$ in space group P^{T} . $R(P) = 0.0178$ for 9824 reflections with *I* > 2.33*σ*(*I*). Crystallographic data for **6** (-158 °C): *a* = 11.2777(3) Å, *b* = 11.5672(3) Å, *c* = 15.5630(5) Å; *α* = 92.868(1)°, *β* = 11.2777(3) Å, *b* = 11.5672(3) Å, *c* = 15.5630(5) Å; α = 92.868(1)°, β
= 94.163(1)°, γ = 109.906(1)°, Z = 2 in space group *PI*. *R*(*F*) = 0.0153
for 9898 reflections with *I* > 3o(*I*).
(9) For discussion of related

(9) For discussion of related distortions involving metal hydrides see ref 2b and: (a) Clark, J. R.; Pulvirenti, A. L.; Fanwick, P. E.; Sigalas, M.; Eisenstein, O.; Rothwell, I. P. *Inorg. Chem*. **1997**, *36*, 3623. (b) Yandulov, D. V.; Huang, D.; Huffman, J. C.; Caulton, K. G. *Inorg. Chem*. **2000**, *39*, 1919.

(10) Contrast: (a) Kim, Y.; Deng, H.; Meek, D. W.; Wojcicki, A. *J. Am. Chem. Soc*. **1990**, *112*, 2798. (b) Luo, X.-L.; Crabtree, R. H*. J. Chem. Soc., Dalton Trans*. **1991**, 587. (c) Michos, D.; Luo, X.-L.; Crabtree, R. H. *J. Chem. Soc., Dalton Trans*. **1992**, 1735. (d) Kim, Y.; Deng, H.; Galucci, J. C.; Wojcicki, A. *Inorg. Chem*. **1996**, *35*, 7166.

(11) For selected reports relevant to intra- and intermolecular C-^H activation by Re, Ru, and Os polyhydrides see: (a) Baudry, D.; Ephritikhine, M.; Felkin, H.; Zakrzewski, J. *Tetrahedron Lett*. **1984**, *25*, 1283. (b) Kelle Zeiher, E. H.; DeWit, D. G.; Caulton, K. G. *J. Am. Chem. Soc.* **1984**, *106*, 7006. (c) Carr, S. W.; Fowles, E. H.; Fontaine, X. L. R.; Shaw, B. L. *J. Chem. Soc., Dalton Trans*. **1990**, 573. (d) Borowski, A. F.; Sabo-Etienne, S.; Christ, M. L.; Donnadieu, B.; Chaudret, B. *Organometallics* **1996**, *15*, 1427. (e) Six, C.; Gabor, B.; Goerls, H.; Mynott, R.; Philipps, P.; Leitner, W. *Organometallics* **1999**, 18, 3316. (f) Barrio, P.; Castarlenas, R.; Esteruelas, M. A.; Onate, E. *Organometallics* **2001**, *20*, 2635.

fragment C2H4 into hydride and carbyne ligands (Scheme 1). In this reaction, the four original hydride ligands are "abstracted" by two molecules of ethylene, effectively a *four*-electron reduction of Re, which enables reconstruction (and reduction) of ethylene into a hydride and a strongly *π*-acidic ethylidyne ligand. The ethylidyne moiety is characterized by the downfield 13C NMR resonance of the α -carbon (6, 259.5 ppm; 7, 271.0 ppm).¹²

While ethylene does bind to the hydridocarbyne, its enthalpy of binding is modest (like that of H_2 binding to $(PNP^{Cy})ReH₄$ to the point that it can be removed from the colorless **6** in a vacuum, albeit under drastic conditions (0.1 Torr, >100 °C),¹³ to give isolable, operationally unsaturated, deep red $(PNP^{Cy})ReH(CCH₃)$ (7). Ethylene in **6** does not undergo free rotation at ambient temperature on the NMR time scale, as evidenced by the observation of two different ¹H NMR resonances for the two diastereotopic pairs of H's in the C_2H_4 unit and a single 13C NMR signal. Solution NMR evidence is thus consistent with the alignment of the $C=C$ bond along the P-Re-P vector, as found in the solid state (Figure 1b).

 (12) On the formation of Re carbynes from alkynes^{10a} and Os carbynes from alkenes^{10b} and alkynes^{10c-e} see: (a) Leeaphon, M.; Ondracek, A. L.; Thomas, R. J.; Fanwick, P. E.; Walton, R. A. *J. Am. Chem. Soc*. **1995**, *117*, 9715. (b) Spivak, G. J.; Coalter, J. N.; Olivan, M.; Eisenstein, O.; Caulton, K. G. *Organometallics* **1998**, *17*, 999. (c) Esteruelas, M. A.; Lahoz, F. J.; Onate, E.; Oro, L. A.; Valero, C.; Zeier, B*. J. Am. Chem. Soc*. **1995**, *117*, 7935. (d) Espuelas, J.; Esteruelas, M. A.; Lahoz, F. J.; Oro, L. A.; Ruiz, N. *J. Am. Chem. Soc.* **1993**, *115*, 4683. (e) Buil, M. L.; Eisenstein, O.; Esteruelas, M. A.; Garcia-Yebra, C.; Gutierrez-Puebla, E.; Olivan, M.; Onate, E.; Ruiz, N.; Tajada, M. A. *Organometallics* **1999**, *18*, 4949.

(13) Only ethylene was detected among trapped volatiles from the thermolysis of **6**.

These results show that an amide supporting ligand, even one with two (electron-withdrawing) silyl substituents, has sufficient π -donor ability to make thermodynamically accessible either unsaturated polyhydride or carbyne complexes. The mechanism of conversion of ethylene to hydride¹⁴ and ethylidyne may involve either vinyl C-H oxidative addition or hydrogenation to a ReCH2CH3 intermediate. Because the product is not $Re=CHCH₃$, but instead a hydride carbyne, this is similar to an osmium analogue (**B** preferred over **A**), while the latter (an unsaturated carbene complex) is preferred for the 4d analogue Ru.4,12,15

This work shows that the (PNP)Re substructure has the versatility to (a) permit ready ligand (e.g., H_2 or olefin) loss and thus access unsaturated rhenium and still retain (b) an ability of Re to bind a new substrate and (c) effect olefin hydrogenation and C/H bond cleavage. These capabilities can be attributed to an amide nitrogen which can either donate or retain a lone electron pair and to a metal that has the ability to span a large range of oxidation states, including +5, and still have sufficient π -basicity to bind an olefin at the d² configuration in **2** and **6**.

Acknowledgment. This work was supported by the Department of Energy. L.A.W. acknowledges NSF for a predoctoral fellowship.

Supporting Information Available: Synthetic, spectroscopic and crystallographic, and computational details and the drawings and Cartesian coordinates of DFT geometries. Also two crystallographic files are available free of charge via the Internet at http://pubs.acs.org.

OM0210412

 (15) For examples of relative stability of the carbene and hydridocarbyne substructures on Ta and W see: (a) Fellmann, J. D.; Turner, H. W.; Schrock, R. R. *J. Am. Chem. Soc*. **1980**, *102*, 6609. (b) Holmes, S. J.; Schrock, R. R. *J. Am. Chem. Soc*. **1981**, *103*, 4599. (c) Bannwart, E.; Jacobsen, H.; Furno, F.; Berke, H. *Organometallics* **2000**, *19*, 3605.

⁽¹⁴⁾ Conversion of W-CH₂CH₃ to W=C-CH₃ has been reported: (a) Shih, K.-Y.; Tortland, K.; Seidel, S. W.; Schrock, R. R. *J. Am. Chem. Soc*. **1994**, *116*, 12103. (b) Dobbs, D. A.; Schrock, R. R.; Davis, W. M. *Inorg. Chim. Acta* **1997**, *263*, 171.