Dendrimeric Organotelluride Catalysts for the Activation of Hydrogen Peroxide. Improved Catalytic Activity through Statistical and Stereoelectronic Effects

Khalid Ahsan, Michael D. Drake, Donald E. Higgs, Amy L. Wojciechowski, Brian N. Tse, Margaret A. Bateman, Youngjae You, and Michael R. Detty*

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260

Received March 28. 2003

Dendrimeric polyorganotellurides are prepared in high yield using propyloxy spacers to connect the organotelluride groups to the core molecules. The polyorganotellurides catalyze the oxidation of thiophenol with hydrogen peroxide to give diphenyl disulfide in homogeneous solutions (5% CH₂Cl₂/MeOH or 46% CH₂Cl₂/MeOH). The polyorganotellurides with two, three, four, and six catalytic groups show roughly statistical increases for the number of catalytic groups relative to the corresponding monotellurides. Catalysts containing [4-(dimethylamino)phenyl]telluro groups and *n*-hexyltelluro groups are oxidized more rapidly by hydrogen peroxide and also show greater catalytic activity than the corresponding catalysts containing phenyltelluro groups. A combination of statistical effects and stereoelectronic effects give a 26-fold increase in catalytic activity from 1-phenoxy-3-(phenyltelluro)propane (**23a**; $v_0 = 12$ μ M min⁻¹) to dendrimer **22c** with six *n*-hexyltelluro groups ($\nu_0 = 312 \ \mu$ M min⁻¹) for the oxidation of 1.0×10^{-3} M PhSH with 3.75×10^{-3} M H₂O₂ in the presence of 1.0×10^{-5} M catalyst. The rate of appearance of PhSSPh, with a molar extinction coefficient, ϵ , of 1.24 \times 10^{-3} L mol⁻¹ cm⁻¹ at 305 nm, was monitored at 305 nm.

While H_2O_2 is a powerful oxidant thermodynamically, many of the reactions of H_2O_2 are limited by the kinetics of reaction, as illustrated by the oxidation of halides to the corresponding halogen/hypohalous acid¹ and the oxidation of thiols to disulfides.² Nature has developed a variety of peroxidase enzymes to accelerate these reactions of H_2O_2 and other peroxy compounds, and chemists have designed synthetic catalysts to mimic the peroxidase enzymes.³ Among these latter catalysts, diorganotellurides have been excellent catalysts for the activation of H₂O₂ in these particular reactions.^{2,4}

The diorganotellurides undergo two-electron redox processes at the Te atom during the catalytic cycle, as shown in Scheme 1.^{2,4,5} Peroxide oxidation of the diorganotelluride gives the corresponding oxide (or its hydrate), which then acts as an oxidant (kinetically superior to H_2O_2) for a variety of substrates (Sub-H). The diorganotelluride is regenerated in the process to

(2) (a) Detty, M. R.; Gibson, S. L. Organometallics 1992, 11, 2147.
 (b) Engman, L.; Stern, D.; Pelcman, M.; Andersson, C. M. J. Org. Chem.

(b) Engman, L.; Stern, D.; Pelcman, M.; Andersson, C. M. J. Org. Chem.
1994, 59, 1973. (c) Vessman, K.; Ekstörm, M.; Berglund, M.; Andersson, C. M.; Engman, L. J. Org. Chem. 1995, 60, 4461. (d) Kanda, T.; Engman, L.; Cotgreave, I. A.; Powis, G. J. Org. Chem. 1999, 64, 8161. (3) (a) Back, T. G.; Moussa, Z. J. Am. Chem. Soc. 2002, 124, 12104. (b) Dexter, A. F.; Lakner, F. J.; Campbell, R. A.; Hager, L. P. J. Am. Chem. Soc. 1995, 117, 6412. (c) Allain, E. J.; Hager, L. P. Deng, L.; Jacobsen, E. N. J. Am. Chem. Soc. 1993, 115, 4415. (d) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937.

 Walker, J. V. Chem. Rev. 1993, 93, 1937.
 (4) (a) Detty, M. R.; Zhou, F.; Friedman, A. E. J. Am. Chem. Soc.
 1996, 118, 313. (b) Higgs, D.; Nelen, M. I.; Detty, M. R. Org. Lett. 2001, 3, 349. (c) You, Y.; Abe, M.; Detty, M. R. Organometallics 2002, 21, 4546

resume the catalytic cycle. The rate-limiting step in the catalytic process is the rate of oxidation of the diorganotelluride.4a,5b

For the diorganotellurides, catalytic activity with H_2O_2 will be a balance between the rate of oxidation of the Te atom with H_2O_2 and the rate of reductive elimination to form product and to regenerate catalyst. Traditionally, the molar activity of catalysts has been optimized through structure-activity relationships derived from substituent changes. However, stereoelectronic effects can only go so far with respect to increasing rates of oxidation of the Te atom. We have shown enhanced catalytic activity in dendrimeric⁶ diorganotelluride catalysts⁷ in which statistical increases in catalytic activity in two-phase systems were noted by

⁽¹⁾ Mohammed, A.; Liebhafsky, H. A. J. Am. Chem. Soc. 1934, 56, 1680.

^{(5) (}a) Detty, M. R.; Friedman, A. E.; Oseroff, A. R. *J. Org. Chem.* **1994**, *59*, 8245–8250. (b) You, J.; Ahsan, K. Detty, M. R. *J. Am. Chem.* Soc. 2003, 125, 4918-4927.

⁽⁶⁾ For recent reviews: (a) Grayson, S. M.; Fréchet, J. M. M. *Chem. Rev.* **2001**, *101*, 3819–3867. (b) Fisher, M.; Vögtle, F. *Angew. Chem.*, Int. Ed. Engl. 1999, 38, 884. (c) Dendrimers. Top. Curr. Chem. 1998, 197. (d) Gorman, C. Adv. Mater. 1998, 295.
 (7) Francavilla, C.; Drake, M. D.; Bright, F. V.; Detty, M. R. J. Am.

Chem. Soc. 2001, 123, 57.

Chart 1

incorporating the catalytic telluride functionality at the end of each dendrimer arm. Herein, we describe the thiol peroxidase like activity of dendrimeric organotellurides in a homogeneous system⁸ and examine not only statistical effects but also stereoelectronic effects in the telluride substituents.

Results and Discussion

Synthesis of Catalysts. The dendrimer architecture supporting the catalytic organotelluride groups must be stable to H_2O_2 . We have demonstrated that Fréchet-type dendrimers (Chart 1) based on 3,5-dihydroxybenzyl alcohol (1)⁹ and 3,4,5-trihydroxybenzyl alcohol (2)¹⁰ are well-suited to this task.⁷ Compounds 1 and 2 provide two and three points of attachment, respectively, through the phenolic groups, leaving the benzyl alcohol functionality for further functionalization. Linking three molecules of 1 together gives four points of attachment in dendritic wedge 3 through the phenolic groups, while linking three molecules of 1 to 1,1,1-tris(4-hydroxyphenyl)ethane gives the first-generation dendrimer 4, with six points of attachment.⁹

The synthesis of organotelluride catalysts based on 3,5-dihydroxybenzyl alcohol (1) is shown in Scheme 2.

3,5-Bis[3-((*tert*-butyldimethylsilyl)oxy)propyl-1-oxy]benzyl alcohol (**5**)⁷ was converted to the corresponding benzoate **6** in 99% isolated yield with benzoic anhydride and pyridine in the presence of catalytic DMAP. The silyl protecting groups were removed with HF–pyridine to give diol **7** in 89% isolated yield. Diol **7** was converted to the corresponding dibromide **8** in two steps.¹¹ The mesylate was first prepared, but not isolated, and was then treated in situ with lithium bromide to give dibromide **8** in 87% isolated yield. The addition of PhTeNa to **8** gave **9a** with two phenyltelluro groups in 65% isolated yield, 4-Me₂NC₆H₄TeNa (**9b**) with two [(dimethylamino)phenyl]telluro groups in 92% isolated yield, and *n*-C₆H₁₃TeNa (**9c**) with two hexyltelluro groups in 62% isolated yield.

The structures of tellurides **9** followed directly from mass spectrometry and the symmetry of both ¹H and ¹³C NMR spectra. The electrospray mass spectra of all three tellurides **9** displayed the characteristic isotope clusters for molecules with two Te atoms (illustrated for **9a** in Figure S1, in the Supporting Information).

The synthesis of organotelluride catalysts based on 3,4,5-trihydroxybenzyl alcohol (2) is shown in Scheme 3. Methyl gallate was treated with excess 3-[(tertbutyldimethylsilyl)oxy]-1-bromopropane in the presence of K₂CO₃ to give ester 10 in 50% isolated yield, which was then reduced to benzyl alcohol 11 in 87% isolated yield with LiAlH₄. Compound **11** was converted to the benzoate ester 12 in 99% isolated yield as described, which was then desilylated with HF-pyridine to give triol 13 in 92% isolated yield. As before, the hydroxyl groups were converted via the mesylate to the corresponding bromides¹¹ to give 14 in 62% overall yield. The addition of excess PhTeNa to 14 gave tritelluride 15a in 56% isolated yield, that of 4-Me₂NC₆H₄TeNa gave tritelluride 15b in 94% isolated yield, and that of *n*-C₆H₁₃TeNa gave tritelluride **15c** in 56% isolated yield.

The structures for tritellurides **15** directly followed from mass spectrometry as well as the symmetry of their ¹H and ¹³C NMR spectra. The NMR spectra of compounds **15** displayed the same C_2 symmetry as those of compounds **9** but displayed the extra signals from the additional 4-[((organotelluro)propyl)oxy] group. The electrospray mass spectra of compounds **15** displayed the characteristic isotope clusters for three Te atoms (il-

^{(8) (}a) Iwaoka, M.; Tomoda, S. J. Am. Chem. Soc. 1994, 116, 2557.
(b) Mugesh, G.; Panda, A.; Singh, H. B.; Punekar, N. S.; Butcher, R. J. J. Am. Chem. Soc. 2001, 123, 839.
(9) (a) Hawker, C.; Fréchet, J. M. J. J. Chem. Soc., Chem. Commun.

 ^{(9) (}a) Hawker, C.; Fréchet, J. M. J. J. Chem. Soc., Chem. Commun.
 1990, 1010. (b) Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc.
 1990, 112, 7638.

 ^{(10) (}a) Percec, V.; Cho, W.-D.; Ungar, G. J. Am. Chem. Soc. 2000, 122, 10273. (b) Balagurusamy, V. S. K.; Ungar, G.; Percec, V.; Johansson, G. J. Am. Chem. Soc. 1997, 119, 1539.

⁽¹¹⁾ Wendler, N. L.; Graber, R. P.; Hazen, G. G. *Tetrahedron* 1958, 3, 144.

lustrated for **15c** in Figure S2, in the Supporting Information).

The synthesis of tetratelluride catalysts based on the dendritic wedge **3** is shown in Scheme 4. Benzyl alcohol **16**⁷ was converted to the benzoate **17** in 93% isolated yield with benzoic anhydride, as previously described. The four silyl groups were removed with HF–pyridine to give tetraol **18** in 88% isolated yield. As before, the hydroxyl groups were converted via the mesylate to the corresponding bromides¹¹ to give tetrabromide **19** in 52% overall yield. The addition of excess PhTeNa to **19** gave tetratelluride **20a** in 65% isolated yield, that of 4-Me₂NC₆H₄TeNa gave tetratelluride **20b** in 92% iso-

lated yield, and that of n-C₆H₁₃TeNa gave tetratelluride **20c** in 51% isolated yield.

The structures of tetratellurides **20** followed directly from the ¹H and ¹³C NMR spectra as well as the electrospray mass spectra. The ¹³C NMR spectra of **20a**-**c** displayed the expected 17, 18, and 19 lines, respectively, for the tetratelluride. The mass spectra of compounds **20** displayed the characteristic isotope clusters for molecules containing four Te atoms (illustrated for **20a** in Figure S3, in the Supporting Information).

The synthesis of hexatelluride catalysts based on the first-generation dendrimer **4** is shown in Scheme 5. Hexabromide 21^7 was treated with excess PhTeNa to

give hexatelluride **22a**⁷ in 82% isolated yield, with excess 4-Me₂NC₆H₄TeNa to give hexatelluride **22b** in 82% isolated yield, and with excess *n*-C₆H₁₃TeNa to give hexatelluride **22c** in 45% isolated yield.

Unlike tellurides 9, 15, and 20, the hexatellurides 22 did not give a parent ion by mass spectrometry under several soft ionization conditions (FAB, electrospray ionization). The ¹H and ¹³C NMR spectra of compounds **22** were consistent with the proposed structures. Dendrimer 22a, terminating in 6 phenyltelluro groups, displayed the expected 18 ¹³C NMR signals for the firstgeneration dendrimer. Similarly, dendrimer 22b, terminating in 6 [4-(dimethylamino)phenyl]telluro groups, displayed the expected 19 signals from the additional aliphatic signal of the dimethylamino substituent. Dendrimer 22c, terminating in 6 hexyltelluro groups, displayed the expected 20 signals, including the additional 6 aliphatic carbon signals. The roughly 25–30 ppm upfield shift observed in the ¹³C chemical shift for the aliphatic C's bonded to Te in compounds 22 relative to Br in hexabromide **21** (δ 32.3)⁷ was diagnostic for the displacement of bromides by the organotelluride groups. For **22a**, this signal is observed at δ 4.3. For **22b**, this signal is observed at δ 4.1. For **22c**, terminating in hexyltelluro groups, two highly shielded aliphatic carbons are observed at δ 3.1 and -2.0, which is consistent with a dialkyl telluride.

Oxidation of Telluride Catalysts with Hydrogen Peroxide. For the catalytic cycle shown in Scheme 1, the rate-determining step in all systems examined to date is the rate of oxidation of the telluride, 4a,5b which is accelerated by electron-donating substituents. In contrast, reductive elimination of the oxidized substrate is accelerated by electron-withdrawing substituents.^{4b,12} The 4-(dimethylamino)phenyl and *n*-hexyl substituents are both more electron-donating than the phenyl substituent, which suggests that organotelluride catalysts bearing the former substituents should be more readily oxidized than the phenyl series of catalysts. The monotellurides **23** and di-*n*-hexyltelluride $(24)^{13}$ shown in Chart 2 are model catalytic systems for the dendrimeric organotelluride catalysts 9, 15, 20, and 22, and the rates of oxidation of the monotellurides should predict the relative rates of oxidation in the dendrimeric catalysts.

1-Phenoxy-3-(phenyltelluro)propane (**23a**)⁷ and 1-phenoxy-3-[(4-(dimethylamino)phenyl)telluro]propane (**23b**)

were prepared by the addition of PhTeNa and 4-Me₂-NC₆H₄TeNa, respectively, to 1-bromo-3-phenoxypropane. Di-*n*-hexyltelluride (**24**) was prepared by the addition of 1-bromohexane to Li₂Te.¹² The mass spectra of the monotellurides displayed the characteristic isotope pattern for the Te atom (illustrated for **23b** in Figure S4, in the Supporting Information).

The rates of oxidation of monotellurides **23** and **24** were followed in the stopped-flow spectrometer under pseudo-first-order conditions. Final concentrations of 1.03×10^{-3} M telluride and 1.03×10^{-2} M H₂O₂ in MeOH at 276.8 ± 0.4 K gave observed rate constants for oxidation of $(1.10 \pm 0.01) \times 10^{-1}$ s⁻¹ for **23a**, $(3.62 \pm 0.02) \times 10^{-1}$ s⁻¹ for **23b**, and $(4.5 \pm 0.4) \times 10^{-1}$ s⁻¹ for **24**, which correspond to second-order rate constants of 10.7 ± 0.1 M⁻¹ s⁻¹ for **23a**, 35.1 ± 0.2 M⁻¹ s⁻¹ for **23b**, and 44 ± 4 M⁻¹ s⁻¹ for **24**. If telluride oxidation were to remain the rate-determining step in reactions with dendrimeric telluride catalysts, then one would predict that the (dimethylamino)phenyl series and *n*-hexyl series of tellurides should be more active than the phenyl series of tellurides.

Thiol Peroxidase Activity of Organotelluride Catalysts. In our earlier work with dendrimeric organotelluride catalysts for the oxidation of halide salts with H_2O_2 ,⁷ we employed a two-phase system of CH_2 - Cl_2 and pH 6 buffer, which kept the catalysts and substrate in solution. To evaluate the catalysts in a homogeneous system, the method of Tomoda et al.⁸ was employed to measure thiol peroxidase activity. In this procedure, thiophenol (PhSH) is oxidized to diphenyl disulfide (PhSSPh) using H_2O_2 as the oxidant. Catalytic activity is determined by the initial rates for the oxidation of PhSH (1.0×10^{-3} M) with H_2O_2 (3.75×10^{-3} M) in MeOH in the presence of a catalyst at a standard concentration of 1.0×10^{-5} M.

A 5% CH₂Cl₂/MeOH solution of catalyst (**9**, **15**, **20**, **23**, or **24** at 2.0 × 10⁻⁵ M) and PhSH (2.0 × 10⁻³ M) was mixed with an equal volume of a 5% CH₂Cl₂/MeOH solution of H₂O₂ (7.5 × 10⁻³ M) in a stopped-flow spectrophotometer at 276.8 \pm 0.4 K to give final concentrations of 1.0 × 10⁻⁵ M catalyst, 1.0 × 10⁻³ M PhSH, and 3.75 × 10⁻³ M H₂O₂. The rate of appearance of PhSSPh, with a molar extinction coefficient, ϵ , of 1.24 × 10⁻³ L mol⁻¹ cm⁻¹ at 305 nm,^{8b} was monitored at 305 nm. The 5% CH₂Cl₂ was added to keep the tellurides/ oxidized tellurides in solution during the course of the reaction. For hexatellurides **22**, the percentage of CH₂-Cl₂ was increased to 46% (by volume) in both solutions to keep the dendrimers in solution during the time course of the analysis.

Linear increases in absorbance, k_0 , were observed in the initial stages of the catalyzed reaction and are listed in Table 1 in units of $\Delta A \, \mathrm{s}^{-1}$ where A is the absorbance at 305 nm. A slow, uncatalyzed background reaction was observed upon mixing the two solutions in the stoppedflow spectrometer without added catalyst. Values of k_0 were corrected for the uncatalyzed background reaction

⁽¹²⁾ Leonard, K. A.; Zhou, F.; Detty, M. R. Organometallics 1996, 15, 4285.

⁽¹³⁾ Butcher, T. S.; Detty, M. R. J. Org. Chem. 1999, 64, 5677.

Table 1. Initial Rates of Oxidation (v_0) of PhSH (1 \times 10⁻³ M) with H₂O₂ (3.75 \times 10⁻³ M) in MeOH with Polyorganotelluride Catalysts (1 \times 10⁻⁵ M) with *n* Telluride Groups from Initial Linear Increases in Absorbance (k_0)^{*a*}

					ν_0 -
cat.	R	n	k_0 , $\Delta A \mathbf{s}^{-1 b}$	v_0 , $\mu \mathrm{M}~\mathrm{min}^{-1}$	(rel)
none		0	$(3.0 \pm 0.2) imes 10^{-6}$	0.72 ± 0.05	0.06
23a	Ph	1	$(5.3\pm0.4) imes10^{-5}$	$(1.2\pm0.1) imes10^1$	1
9a	Ph	2	$(8.8\pm0.5) imes10^{-5}$	$(2.0\pm0.1) imes10^1$	1.7
15a	Ph	3	$(1.14 \pm 0.02) \times 10^{-4}$	$(2.66 \pm 0.05) \times 10^{1}$	2.2
20a	Ph	4	$(1.81 \pm 0.05) \times 10^{-4}$	$(4.3\pm0.1) imes10^1$	3.6
22a	Ph	6	$(4.93 \pm 0.05) imes 10^{-4}$	$(1.18 \pm 0.01) \times 10^2$	9.8
23b	4-Me ₂ NC ₆ H ₄	1	$(1.06 \pm 0.05) \times 10^{-4}$	$(2.5\pm0.1) imes10^1$	2.1
9b	4-Me ₂ NC ₆ H ₄	2	$(1.69 \pm 0.05) \times 10^{-4}$	$(4.0 \pm 0.1) imes 10^{1}$	3.3
15b	4-Me ₂ NC ₆ H ₄	3	$(3.15 \pm 0.03) \times 10^{-4}$	$(7.49 \pm 0.07) \times 10^{1}$	6.3
20b	4-Me ₂ NC ₆ H ₄	4	$(3.13 \pm 0.05) \times 10^{-4}$	$(7.4 \pm 0.1) \times 10^{1}$	6.3
22b	4-Me ₂ NC ₆ H ₄	6	$(5.6 \pm 0.1) imes 10^{-4}$	$(1.34 \pm 0.02) \times 10^2$	11
23	<i>n</i> -hexyl	1	$(1.53 \pm 0.09) imes 10^{-4}$	$(3.6 \pm 0.2) imes 10^{1}$	3.0
9c	<i>n</i> -hexyl	2	$(2.90 \pm 0.06) \times 10^{-4}$	$(6.9 \pm 0.1) imes 10^{1}$	5.8
15c	<i>n</i> -hexyl	3	$(4.00 \pm 0.05) \times 10^{-4}$	$(9.5 \pm 0.1) \times 10^{1}$	7.9
20c	<i>n</i> -hexyl	4	$(5.47 \pm 0.07) \times 10^{-4}$	$(1.31 \pm 0.01) \times 10^2$	11
22c	<i>n</i> -hexyl	6	$(1.30 \pm 0.01) \times 10^{-3}$	$(3.12 \pm 0.02) \times 10^2$	26

^{*a*} Reagents were mixed in a stopped-flow spectrometer in a 2 mm cell at 276.8 \pm 0.4 K, and initial rates were measured at 305 nm for the initial 5–15% of reaction. Values are the average of 7–10 independent runs with \pm (standard deviation). ^{*b*} Values of k_0 were corrected for the uncatalyzed reaction prior to calculation of ν_0 .

Figure 1. Plot of initial velocities, v_0 , for the oxidation of thiophenol to diphenyl disulfide with hydrogen peroxide as a function of the number of organotelluride groups in polyorganotellurides for the phenyltelluro series (filled circles), [4-(dimethylamino)phenyl]telluro series (open circles), and *n*-hexyltelluro series (filled triangles). The lines connect related points and have no other significance. Standard deviations are given in Table 1.

and converted to initial velocities, v_0 , in units of μ M min⁻¹ (Table 1). Values of v_0 as a function of the number of catalytic groups are plotted in Figure 1.

As shown in Figure 1, increasing the number of telluride groups attached to the molecular scaffold increases the catalytic activity on a molar basis along statistical lines. Stereoelectronic effects can also be imposed. In the series of molecules described here, electron-donating substituents increase the rate of oxidation of the telluride groups in the catalytic cycle, which increases overall rates of catalysis. If 1-phenoxy-3-(phenyltelluro)propane (**23a**) is assigned a relative rate of 1.0 ($\nu_0 = 12 \ \mu M \ min^{-1}$), the dendrimer catalyst

22c with six *n*-hexyltelluro groups has a relative rate of 26 ($\nu_0 = 312 \ \mu M \ min^{-1}$) from a combination of statistical and stereoelectronic effects.

The use of dendrimeric catalysts offers potential advantages for catalyst loading on solid supports, where multiple catalytic sites can be tethered to a single site on the support. The combination of statistical and stereoelectronic effects can be used to tailor the overall catalytic activity.

Experimental Section

General Methods. Solvents and reagents were used as received from Sigma-Aldrich Chemical Co. (St. Louis, MO) unless otherwise noted. Concentration in vacuo was performed on a Büchi rotary evaporator. NMR spectra were recorded at 30.0 °C on a Varian Gemini-300, Inova 400, or Inova 500 instrument with residual solvent signal as internal standard: $CDCl_3$ (δ 7.26 for proton, δ 77.0 for carbon). Infrared spectra were recorded on a Perkin-Elmer FT-IR instrument. Elemental analyses were conducted by Atlantic Microlabs, Inc. Highresolution mass spectrometry was conducted by the Campus Chemical Instrumentation Center of The Ohio State University (Columbus, OH). Compounds 5, 21, 22a, and 23a were prepared according to ref 7. Compound 24 was prepared according to ref 13. Diphenyl ditelluride was prepared according to ref 14. Bis[(4-dimethylamino)phenyl] ditelluride was prepared according to ref 15. Dihexyl ditelluride was prepared according to ref 16.

Preparation of Methyl 3,4,5-Tris[(3-((tert-butyldimethylsilyl)oxy)propyl)oxy]benzoate (10). Methyl gallate (28.5 g, 155 mmol), 1-bromo-3-[(tert-butyldimethylsilyl)oxy]propane (129.2 g, 0.51 mol), K₂CO₃ (96.2 g, 0.70 mol), 18crown-6 (12.3 g, 46 mmol), and NaI (6.95 g, 46 mmol) in anhydrous acetone (1.0 L) were stirred at reflux for 48 h. The reaction mixture was concentrated. The residue was partitioned between EtOAc (0.5 L) and H_2O (1.0 L). The aqueous phase was extracted with additional EtOAc (2×250 mL). The combined organic extracts were dried over MgSO4 and concentrated. The crude product was purified by flash chromatography on silica gel with 50% EtOAc/hexanes as eluent to give 54.1 g (50%) of 10 as a viscous yellow oil: ¹H NMR (300 MHz, CDCl₃) δ 7.25 (s, 2 H), 4.09 (t, 6 H, J = 6.0 Hz), 3.86 (s, 3 H), 3.79 (t, 6 H, J = 6.0 Hz), 1.99 (quint, 4 H, J = 6.0 Hz), 1.91 (quint, 2 H, J = 6.3 Hz), 0.86 (s, 27 H), 0.02 (s, 18 H); ¹³C NMR (75 MHz, CDCl₃) δ 166.3, 152.5, 142.1, 124.7, 107.8, 70.3, 65.6, 60.1, 59.5, 52.0, 33.6, 32.5, 25.9, 18.2, -5.4, -5.5; IR (film, NaCl) 1723 cm⁻¹ (s); high-resolution MS (electrospray) m/z723.4120 (calcd for $C_{35}H_{68}O_8Si_3 + Na^+$ 723.4120).

Preparation of of 3,4,5-Tris[(3-((tert-butyldimethylsilyl)oxy)propyl)oxy]benzyl Alcohol (11). Ester 10 (13.0 g, 18.5 mmol) and LiAlH $_4$ (0.77 g, 20 mmol) in anhydrous THF (100 mL) were stirred at 0 °C for 1 h. The reaction was quenched by the slow addition of H₂O (20 mL). The reaction mixture was concentrated to approximately half-volume and was then partitioned between EtOAc (250 mL) and water (500 mL). The aqueous phase was extracted with additional EtOAc $(2 \times 100 \text{ mL})$. The combined organic layers were dried over MgSO₄ and concentrated to yield 10.82 g (87%) of 10 as a colorless oil: ¹H NMR (300 MHz, CDCl₃) δ 6.56 (s, 2 H), 4.58 (d, 2 H, J = 4.5 Hz), 3.99-4.07 (m, 6 H), 3.76-3.82 (m, 6 H), 1.98 (quint, 4 H, J = 6.0 Hz), 1.91 (quint, 2 H, J = 6.0 Hz), 0.87 (s, 18 H), 0.86 (s, 9 H), 0.03 (s, 12 H), 0.02 (s, 6 H); ¹³C NMR (75 MHz, CDCl₃) δ 152.9, 136.9, 136.3, 104.9, 70.3, 65.4, 65.2, 60.3, 59.6, 33.5, 32.5, 25.8, 18.2, -5.4, -5.5; IR (film,

(14) Aso, Y.; Yamashita, H.; Otsubo, T.; Ogura, F. J. Org. Chem. 1989, 54, 5627.

 ⁽¹⁵⁾ Engman, L.; Persson, J. Organometallics 1993, 12, 1068.
 (16) Merkel, G.; Berge, H.; Jeroschewski, P. J. Prakt. Chem. 1984, 326, 467.

NaCl) 3435 cm⁻¹ (broad); high-resolution MS (electrospray) m/z 695.4178 (calcd for for $C_{34}H_{68}O_7Si_3 + Na^+$ 695.4171).

General Procedure for the Preparation of Benzoate Esters. Preparation of the Benzoate Ester 6 of 3,5-Bis-[(3-((*tert*-butyldimethylsilyl)oxy)propyl)oxy]benzyl Alcohol (5). Benzoic anhydride (1.5 equiv), pyridine (1.25 equiv), and DMAP (0.2 equiv) were dissolved in freshly distilled CH₂-Cl₂ (from CaH₂, 10 mL/mmol of substrate). The benzyl alcohol (1.0 equiv) in CH₂Cl₂ (2.5 mL/mmol) was added dropwise. The reaction mixture was stirred for 16 h at ambient temperatue and was poured into H₂O, and the products were extracted with CH₂Cl₂. The organic layers were combined, dried with MgSO₄, and concentrated. The crude product was purified by chromatography on silica gel with 20% EtOAc/CH₂Cl₂ as eluent to give the benzoate ester.

For benzoate **6**: yield 99% as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, 2 H, J = 7.2 Hz), 7.51–7.53 (m, 1H), 7.41 (t, 2 H, J = 7.7 Hz), 6.58 (s, 2 H), 6.45 (s, 1 H), 5.28 (s, 2 H), 4.05 (t, 4 H J = 6.0 Hz), 3.79 (t, 4 H, J = 6.0 Hz), 1.97 (quint, 4 H, J = 6.0 Hz), 0.89 (s, 18 H), 0.04 (s, 12 H); ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 160.2, 138.0, 132.9, 130.4, 129.6, 128.2, 106.4, 100.9, 66.5, 64.4, 59.6, 32.3, 25.8, 18.2, -5.5; IR (film, NaCl) 1723.0 cm⁻¹ (s); high-resolution MS (electrospray) m/z 611.3198 (calcd for C₃₂H₅₂O₆Si₂ + Na⁺ 611.3200).

For benzoate **11**: yield 99% as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.05 (d \times d, 2 H, J= 1.2, 7.8 Hz), 7.52 (t, 1 H, J= 9 Hz), 7.41 (t, 2 H, J= 7.2 Hz), 6.64 (s, 2 H), 5.24 (s, 2 H), 4.09–4.02 (m, 6 H), 3.83–3.77 (m, 6 H), 2.03–1.90 (m, 6 H), 0.87 (s, 9 H), 0.9 (s, 18 H), 0.03 (s, 6 H), 0.0 (s, 12 H); ^{13}C NMR (75 MHz, CDCl₃) δ 163.2, 153.0, 132.9, 131.0, 129.6, 128.3, 106.8, 70.3, 67.0, 65.6, 60.3, 58.6, 33.6, 32.57, 25.9, 25.9, 18.2, -5.3, -5.41; IR (film, NaCl) 1722.2 cm⁻¹ (sharp); high-resolution MS (electrospray) m/z 799.4438 (calcd for C₄₁H₇₂O₈-Si₃ + Na⁺ 799.4433).

For benzoate **17**: yield 93% as a colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, 2 H, J = 8.1 Hz), 7.54 (t, 1 H, J = 7.2 Hz), 7.42 (t, 2 H, J = 7.7 Hz), 6.65 (s, 2 H), 6.54 (s, 5 H), 6.39 (s, 2 H), 5.26 (s, 2 H), 4.94 (s, 4 H), 4.02 (t, 8 H, J = 6.0 Hz), 3.77 (t, 8 H, J = 6.0 Hz), 1.94 (quint, 8 H, J = 6.0 Hz), 0.86 (s, 36 H), 0.02 (s, 24 H); ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 160.4, 160.0, 138.8, 138.2, 132.9, 130.0, 129.7, 128.3, 106.9, 105.7, 101.6, 100.8, 70.1, 66.4, 64.5, 59.4, 32.3, 25.9, 18.2, -5.4; IR (film, NaCl) 1722.5 cm⁻¹ (s); high-resolution MS (electrospray) m/z 1199.6417 (calcd for for C₆₄H₁₀₄O₁₂Si₄ + Na⁺ 1199.6503).

General Procedure for the Desilylation of Silyl Ethers 6, 12, and 17. Hydrogen fluoride–pyridine complex (3 equiv per silyl group) was added dropwise to a solution of silyl ether in THF (10 mL per mmol). The resulting solution was stirred at ambient temperature for 16 h. The reaction mixture was partitioned between EtOAc (100 mL) and H₂O (250 mL). The aqueous phase was extracted with additional EtOAc (3×100 mL). The combined organic extracts were dried over MgSO₄ and concentrated. The crude product was purified by chromatography on silica gel with EtOAc and then 10% MeOH/EtOAc as eluents.

For diol 7: yield 89% of a white solid, mp 78–82 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, 2 H, J = 7.0 Hz), 7.48 (t, 1 H, J = 7.0 Hz), 7.36 (t, 2 H, J = 7.7 Hz), 6.53 (d, 2 H, J = 2.0 Hz), 6.39 (t, 1 H, J = 2.0 Hz), 5.19 (s, 2 H), 4.00 (t, 4 H, J = 6.0 Hz), 3.76 (t, 4 H, J = 6.0 Hz), 3.69 (s, 2 H), 1.95 (quint, 4 H, J = 6.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 166.3, 159.9, 137.9, 132.9, 129.631, 129.4, 128.2, 106.4, 100.7, 66.4, 65.0, 59.3, 31.7; IR (KBr) 3242.7 cm⁻¹ (br), 1719.7 cm⁻¹ (s); high-resolution MS (electrospray) *m*/*z* 383.1462 (calcd for C₂₀H₂₄O₆ + Na⁺ 383.1471).

For triol **13**: yield 92% of a white solid, mp 54–55 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d × d, 2 H, J = 1.2, 8.1 Hz), 7.53 (t × t, 1 H, J = 1.2, 7.5 Hz), 7.40 (t, 2 H, J = 7.5 Hz), 6.66 (s, 2 H), 5.22 (s, 2 H), 4.16–4.07 (m, 6 H), 3.86–3.79 (m, 6 H), 3.02 (s, 3 H), 2.01 (quint, 4 H, J = 6.0 Hz), 1.93 (quint, 2 H, J = 5.1 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 166.4, 152.4, 133.1,

131.8, 129.6, 128.4, 106.7, 71.8, 67.1, 66.8, 60.7, 60.2, 32.3, 31.8; IR (KBr) 3341.8 cm⁻¹ (broad), 1721.7 cm⁻¹ (sharp); high-resolution MS (electrospray) m/z 457.1835 (calcd for $C_{23}H_{30}O_8$ + Na⁺ 457.1838).

For tetraol **18**: yield 88% as a colorless, viscous oil; ¹H NMR (300 MHz, CDCl₃) δ 8.04 (d, 2 H, J = 8.4 Hz), 7.55 (t, 1 H, J = 7.3 Hz), 7.42 (t, 2 H, J = 7.7 Hz), 6.64 (s, 2 H), 6.55 (s, 5 H), 6.40 (s, 2 H), 5.26 (s, 2 H), 4.95 (s, 4 H), 4.08 (t, 8 H, J = 6.0 Hz), 3.82 (t, 8 H, J = 5.7 Hz), 2.00 (quint, 8 H, J = 5.7 Hz), 1.80 (s, 4 H); ¹³C NMR (75 MHz, (CD₃)₂CO) δ 166.5, 161.1, 160.8, 140.1, 139.4, 133.8, 130.8, 130.1, 129.2, 107.6, 106.5, 102.239, 101.1, 70.3, 66.9, 65.5, 59.0, 33.0; IR (film, NaCl) 3381.9 cm⁻¹ (br), 1717.1 cm⁻¹ (s); high-resolution MS (electrospray) m/z 743.3041 (calcd for C₄₀H₄₈O₁₂ + Na⁺ 743.3043).

General Procedure for Conversion of (3-Hydroxypropyl)oxy Groups to (3-Bromopropyl)oxy Groups. Preparation of 3,5-Bis(3-(bromopropyl)oxy)benzyl Benzoate (8). Methanesulfonyl chloride (1.5 equiv per hydroxyl) was added dropwise over 0.5 h to a solution of alcohol and NEt₃ (1.5 equiv per hydroxyl) in THF (7 mL per mmol) at 0 °C. The solution was stirred for 2 h at 0 °C, and LiBr (4 equiv per hydroxyl, dried at 110°C for 16 h) was then added. The resulting mixture was warmed to ambient temperature, where stirring was maintained for 20 h. The reaction mixture was concentrated, the residue was partitioned between H₂O and CH₂Cl₂, and the aqueous layer was extracted with additional CH₂Cl₂. The combined organic extracts were dried over MgSO₄ and concentrated. The crude product was purified via chromatography on silica gel with CH₂Cl₂ as eluent.

For dibromo compound **8**: yield 87% of a white solid, mp 85–87.5 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, 2 H, J = 7.2 Hz), 7.54 (t, 1 H, J = 7.3 Hz), 7.42 (t, 2 H, J = 7.5 Hz), 6.61 (d, 2 H, J = 1.8 Hz), 6.45 (s, 1 H), 5.29 (s, 2 H), 4.06 (t, 4H, J = 6.0 Hz), 3.56 (t, 4 H, J = 6.4 Hz), 2.26 (quint, 4 H, J = 6.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 159.7, 138.2, 132.8, 129.7, 129.4, 128.1, 106.4, 100.7, 66.1, 65.1, 32.0, 29.8; IR (KBr) 1708.2 cm⁻¹ (s); high-resolution MS (electrospray) m/z 506.9787 (calcd for C₂₀H₂₂Br₂O₄ + Na⁺ 506.9782).

For tribromo compound **14**: yield 62% of a white, crystalline solid, mp 53–54 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.06 (d × d, 2 H, J = 1, 7.5 Hz), 7.55 (t × t, 1 H, J = 1, 7.5 Hz), 7.43 (t, 2 H, J = 7.8 Hz), 6.68 (s, 2 H), 5.27 (s, 2 H), 4.13 (t, 4 H, J = 6 Hz), 4.06 (t, 2 H, J = 5.7 Hz), 3.68 (t, 2 H, J = 6.6 Hz), 3.61 (t, 4 H, J = 6.3 Hz), 2.33 (quint, 4 H, J = 6.0 Hz), 2.23 (quint, 2 H, J = 6.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 165.0, 152.7, 133.1, 131.9, 129.7, 128.4, 107.2, 70.1, 66.7, 66.5, 33.5, 32.3, 30.5, 29.9; IR (KBr) 1714.7 cm⁻¹; high-resolution MS (electrospray) m/z 642.9280 (calcd for C₂₃H₂₇Br₃O₅ + Na⁺: 642.9306).

For tetrabromo compound **19**: 52% as a viscous oil; ¹H NMR (300 MHz, CDCl₃) δ 8.08 (d, 2 H, J = 7.8 Hz), 7.56 (t, 1 H, J = 7.3 Hz), 7.44 (t, 2 H, J = 7.5 Hz), 6.71 (s, 2 H), 6.61 (d, 5 H, J = 1.2 Hz), 6.44 (s, 2 H), 5.30 (s, 2 H), 4.98 (s, 4 H), 4.06 (t, 8 H, J = 5.6 Hz), 3.57 (t, 8 H, J = 6.3 Hz), 2.27 (quint, 8 H, J = 6.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 165.9, 159.7, 159.7, 138.9, 138.2, 132.8, 129.7, 129.4, 128.1, 106.7, 105.7, 101.4, 100.6, 69.6, 66.1, 65.1, 32.0, 29.8; IR (film, NaCl) 1716.6 cm⁻¹ (s); high-resolution MS (electrospray) m/z 990.9653 (calcd for C₄₀H₄₄Br₄O₈ + Na⁺ 990.9667).

General Procedure for the Preparation of Telluride Catalysts. Preparation of 3,5-Bis[(3-(phenyltelluro)propyl)oxy]benzyl Alcohol (9a). Sodium borohydride (2 mmol per mmol of ditelluride) was added in several portions to a solution of ditelluride (1.5 equiv per bromo group) in 1 M NaOEt in ethanol (10 mL/mmol of ditelluride), and the resulting solution was stirred until the reaction mixture became colorless. The reaction mixture was added dropwise to a solution of bromo compound in THF (50 mL/mmol). The resulting mixture was heated at reflux for 20 h. The reaction mixture was concentrated, the residue was partitioned between H_2O and CH_2Cl_2 , and the aqueous phase was extracted with additional CH_2Cl_2 . The combined organic extracts were dried over $MgSO_4$ and concentrated. The residue was purified via chromatography on silica gel first with CH_2Cl_2 and then with 20% EtOAc/ CH_2Cl_2 as eluents.

For **9a**: yield 65% as a yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, 4 H, J = 7.0 Hz), 7.24 (t, 2 H, J = 7.5 Hz), 7.17 (t, 4 H, J = 7.5 Hz), 6.45, (d, 2 H, J = 2.0 Hz), 6.29 (t, 1 H, J = 2.3 Hz), 4.58 (d, 2 H, J = 6.0 Hz), 3.96 (t, 4 H, J = 5.7 Hz), 3.02 (t, 4 H, J = 7.3 Hz), 2.23 (quintet, 4 H, J = 6.5 Hz), 1.64 (t, 1 H, J = 6.3 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 160.1, 143.3, 138.3, 129.2, 127.6, 111.6, 105.2, 100.6, 68.7, 65.3, 31.2, 4.2; IR (film, NaCl) 3385 cm⁻¹; high-resolution MS (electrospray) m/z 659.0061 (calcd for C₂₅H₂₈O₃¹³⁰Te₂ + Na⁺ 659.0061).

For **9b**: yield 92% as a viscous, orange oil; ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, 4 H, J = 8.8 Hz), 6.52 (d, 4 H, J = 8.8 Hz), 6.38 (d, 2 H, J = 2.0 Hz), 6.28 (t, 1 H, J = 2.2 Hz), 4.54 (d, 2 H, J = 5.6 Hz), 3.93 (t, 4 H, J = 6.0 Hz), 2.92 (s, 12 H), 2.89 (t, 4 H, J = 7.2 Hz), 2.19 (quintet, 4 H, J = 6.0 Hz), 1.93 (t, 1 H, J = 6.0 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 159.7, 149.9, 143.1, 140.7, 113.2, 104.7, 100.1, 94.7, 68.4, 64.7, 40.0, 30.9, 4.1; IR (film, NaCl) 3409 cm⁻¹; high-resolution MS (electrospray) *m*/*z* 723.1144 (calcd for C₂₉H₃₈N₂O₃¹³⁰Te₂ + H⁺ 723.1085).

For **9c**: yield 62% as a viscous, orange oil; ¹H NMR (300 MHz, CDCl₃) δ 6.51 (s, 2 H), 6.51 (s, 1 H), 4.61 (s, 2 H), 3.99 (t, 4 H, J = 6.0 Hz), 2.76 (t, 4 H, J = 7.4 Hz), 2.63 (t, 4 H, J = 7.7 Hz), 2.23–2.14 (m, 4 H), 1.75–1.64 (m, 5 H), 1.39–1.28 (m, 12 H), 0.88 (t, 6 H, J = 6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 160.2, 143.3, 105.2, 100.6, 68.8, 65.3, 32.1, 31.7, 31.6, 31.1, 22.5, 14.0, 3.2, -1.9; IR (thin film, NaCl) 3399, 2955, 2923, 2855, 1597, 1455 cm⁻¹; high-resolution MS (electrospray) *m*/*z* 671.1284 (calcd for C₂₅H₄₄O¹³⁰Te₂ + Na⁺ 671.1285).

For **15a**: yield 56% as a viscous, orange oil; ¹H NMR (300 MHz, CDCl₃) δ 7.71–7.67 (m, 6 H), 7.26–7.21 (m, 6 H), 7.18–7.13 (m, 3 H), 6.48 (s, 2 H), 4.54 (s, 2 H), 4.01–3.88 (m, 6 H), 3.13–2.97 (m, 6 H), 2.24 (quintet, 4 H, J = 6.6 Hz), 2.15 (quintet, 2 H, J = 7.2 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 152.8, 138.3, 138.2, 129.2, 129.1, 127.6, 127.4, 111.6, 105.3, 74.1, 69.8, 65.4, 32.1, 31.4, 4.9, 4.4; IR (film, NaCl) 3423.5 cm⁻¹; high-resolution MS (electrospray) *m*/*z* 916.9856 (calcd for C₃₄H₃₈O₄-¹³⁰Te₃ + Na⁺ 916.9816).

For **15b**: yield 94% as a viscous, orange oil; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.62 (d, 6 H, J = 8.8 Hz), 6.57–6.52 (t, 6 H, J = 9.4 Hz), 6.42 (s, 2 H), 4.51 (s, 2 H), 3.70–3.94 (t, 4 H, J = 6.2 Hz), 3.30–3.90 (t, 2 H, J = 8.8 Hz), 2.97–2.89 (m, 8 H), 2.94 (s, 12 H), 2.91 (s, 6 H), 2.26–2.20 (q, 4 H, J = 6.7 Hz), 2.13–2.06 (q, 2 H, J = 7.0 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 152.6, 150.2, 150.1, 141.0, 140.9, 136.7, 136.2, 113.5, 113.3, 104.9, 94.9, 94.9, 74.1, 69.4, 65.3, 40.2, 32.1, 31.3, 4.9, 4.4; IR (film, NaCl) 3432, 2934, 2876, 2807, 1501, 1439, 1355, 1114 cm⁻¹; high-resolution MS (electrospray) m/z 1046.1145 (calcd for C₄₀H₅₃N₃O₄¹³⁰Te₃ + Na⁺ 1046.1083).

For **15c**: yield 56% as a viscous, orange oil; ¹H NMR (400 MHz, CDCl₃) δ 6.58 (s, 2 H), 4.60 (s, 2 H), 4.01 (t, 4 H, J = 6.0 Hz), 3.98 (t, 2 H, J = 6.0 Hz), 2.86–2.77 (m, 6 H), 2.66 (t, 6 H, J = 7.6 Hz), 2.24 (quintet, 4 H, J = 6.7 Hz), 2.15 (quint, 2 H, J = 6.7 Hz), 1.78–1.70 (m, 7 H), 1.37–1.26 (m, 18 H), 0.89–0.87 (m, 9 H); ¹³C NMR (75 MHz, CDCl₃) δ 153.3, 147.5, 137.1, 105.8, 74.9, 70.4, 68.8, 33.4, 32.8, 32.7, 32.4, 32.3, 32.2, 31.8, 31.7, 30.2, 23.2, 23.1, 14.6, 3.9, 3.5, -0.9, -1.2; IR (film, NaCl) 3284, 2954, 2922, 2855, 1590, 1503, 1435, 1328, 1223, 1115 cm⁻¹; high-resolution MS (electrospray) m/z 947.1694 (calcd for C₃₄H₆₂O₄¹³⁰Te₃ + Na⁺ 947.1733).

For **20a**: yield 72% as an orange oil; ¹H NMR (300 MHz, CDCl₃) δ 7.71 (d, 8 H, J = 7.2 Hz), 7.14–7.27 (m, 12 H), 6.60 (s, 2 H), 6.51 (d, 5 H, J = 1.5 Hz), 6.32 (s, 2 H), 4.93 (s, 4 H), 4.61 (s, 2 H), 3.96 (t, 8 H, J = 5.9 Hz), 3.02 (t, 8 H, J = 7.4 Hz), 2.23 (quint, 8 H, J = 6.6 Hz); ¹³C NMR (75 MHz, CDCl₃) δ 160.05, 160.0, 143.4, 139.1, 138.3, 129.1, 127.6, 111.6, 105.8, 105.7, 101.3, 100.8, 69.9, 68.7, 65.2, 31.2, 4.2; IR (film, NaCl) 3442.9 cm⁻¹; high-resolution MS (electrospray) *m*/*z* 1399.0520 (calcd for C₅₇H₆₀O₇¹³⁰Te₄ + Na⁺ 1399.0486).

For **20b**: yield 92% as an orange oil; ¹H NMR (400 MHz, CDCl₃) δ 7.64–7.62 (d, 8 H, J= 8.8 Hz), 6.55–6.50 (m, 12 H), 6.32 (s, 2 H), 4.94 (s, 4 H), 4.62 (s, 4 H), 3.97–3.94 (t, 8 H, J= 6.0 Hz), 2.93–2.87 (m, 8 H), 2.90 (s, 24 H), 2.22–2.16 (q, 8 H, J= 6.6 Hz); ¹³C NMR (125 MHz, CDCl₃) δ 159.8, 159.5, 149.9, 148.6, 140.8, 138.8, 129.1, 113.0, 105.5, 105.2, 100.7, 100.4, 94.4, 69.5, 68.5, 39.9, 30.9, 4.0; IR (film, NaCl) 3437, 2921, 2873, 2897, 1590, 1501, 1446, 1354, 1196, 1061 cm⁻¹; high-resolution MS (electrospray) m/z 1571.2155 (calcd for C₆₅H₈₀N₄O₇¹³⁰Te + Na⁺ 1571.2174).

For **20c**: yield 51% as an orange oil; ¹H NMR (500 MHz, CDCl₃) δ 6.61 (s, 2 H), 6.53 (s, 1 H), 6.41 (s, 2 H), 4.96 (s, 4 H), 4.64 (d, 2 H, J = 5.0 Hz), 4.00 (t, 8 H, J = 6.0 Hz), 2.77 (t, 8 H, J = 7.3 Hz), 2.64 (t, 8 H, J = 7.6 Hz), 2.22–2.17 (m, 8 H), 1.76–1.70 (m, 9 H), 1.37–1.27 (m, 24 H), 0.89–0.86 (m, 12 H); ¹³C NMR (125 MHz, CDCl₃) δ 160.2, 160.1, 143.4, 139.1, 105.8, 105.7, 101.3, 100.8, 70.0, 68.8, 65.3, 32.1, 31.7, 31.6, 31.1, 22.5, 14.0, 3.3, -1.9; IR (film, NaCl) 3228, 2954, 2923, 2855, 1597, 1455, 1377, 1115 cm⁻¹; high-resolution MS (electrospray) m/z 1425.3117 (calcd for C₅₇H₉₂O₇¹³⁰Te₄ + Na⁺ 1425.3120).

For **22b**: yield 82% as an orange oil; ¹H NMR (500 MHz, CDCl₃) δ 7.63 (d, 12 H, J = 9 Hz), 6.98 (d, 6 H, J = 9 Hz), 6.84 (d, 6 H, J = 9 Hz), 6.53 (d, 12 H, J = 9 Hz), 6.51 (s, 6 H), 6.32 (s, 3 H), 4.92 (s, 6 H), 3.95 (t, 12 H, J = 6 Hz), 2.92 (s, 36 H), 2.88 (t, 12 H, J = 6 Hz), 2.18 (quintet, 12 H, J = 6 Hz), 2.08 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃) δ 160.2, 156.8, 150.3, 142.0, 141.1, 139.3, 129.6, 113.9, 113.3, 105.8, 100.7, 94.6, 69.9, 68.8, 50.6, 40.2, 31.2, 4.1 (one overlapped peak). Anal. Calcd for C₁₀₇H₁₂₆N₆O₉Te₆: C, 53.42; H, 5.28; N, 3.49. Found: C, 53.50; H, 5.31; N, 3.24.

For **22c**: yield 42% as an orange oil; ¹H NMR (400 MHz, CDCl₃) δ 7.01 (d, 6 H, J = 8.6 Hz), 6.87 (d, 8 H, J = 8.6 Hz), 6.58 (s, 6 H), 6.41 (s, 3 H), 4.96 (s, 6 H), 4.01 (t, 12 H, J = 6.3 Hz), 2.78 (t, 12 H, J = 7.3 Hz), 2.65 (t, 12 H, J = 7.3 Hz), 2.21 (quint, 12 H, J = 6.3 Hz), 2.12 (s, 3 H), 1.74 (quint, 12 H, J = 7.3 Hz), 1.39–1.29 (m, 36 H), 0.90–0.87 (m, 18 H); ¹³C NMR (125 MHz, CDCl₃) δ 160.0, 156.6, 141.8, 139.3, 129.5, 113.8, 105.7, 100.6, 69.8, 68.7, 50.5, 32.0, 31.6, 31.5, 31.0, 30.6, 22.4, 14.0, 3.1, -2.0; IR (film, NaCl) 2954, 2923, 2868, 1598, 1507, 1457, 13787, 1244, 1178 cm⁻¹. Anal. Calcd for C₉₅H₁₄₄O₉Te₆: C, 51.96; H, 6.61. Found: C, 52.11; H, 6.53.

Preparation of 1-Phenoxy-3-[(4-(dimethylamino)phenvl)telluro propane (23b). t-BuLi (12 mL of a 1.7 M solution, 20 mmol) was added dropwise to a solution of 4-bromo-N,Ndimethylaniline (2.00 g, 10 mmol) in THF (40 mL) at -78 °C. The resulting solution was stirred at -78 °C for 1 h and was then warmed to ambient temperature. Tellurium powder (1.28 g, 10 mmol) was added in one portion, and the resulting mixture was stirred at room temperature for 1 h. 1-Bromo-3phenoxypropane (2.04 g, 9.5 mmol) in 5 mL of THF was added, and the resulting mixture was heated at reflux for 16 h. The reaction mixture was filtered through Celite, and the filter cake was washed with CH2Cl2 (50 mL). The filtrate was concentrated, and the residue was partitioned between H₂O (100 mL) and CH₂Cl₂ (50 mL). The aqueous layer was extracted with additional CH_2Cl_2 (3 \times 25 mL). The combined organic extracts were dried over MgSO4 and concentrated. The crude product was then purified by column chromatography on silica gel with 60% CH₂Cl₂/hexanes as eluent to give 1.9 g (52%) of **23b** as an orange oil: ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, 2 H, J = 8.8 Hz), 7.24 (t, 2H, J = 7.8), 6.91 (t, 1 H, J = 7.2), 6.84 (d, 2 H, J = 8.0 Hz), 6.54 (d, 2 H, J = 8.8 Hz), 3.97 (t, 2 H, J = 6.0 Hz), 2.94 (s, 6 H), 2.90 (t, 2 H, J = 7.4 Hz), 2.20 (quint, 2 H, J= 6.8 Hz); $^{13}\mathrm{C}$ NMR (75 MHz, CDCl_3) δ 158.9, 150.3, 141.2, 129.4, 120.6, 114.5, 113.4, 94.7, 68.7, 40.2, 31.2, 4.3; high-resolution MS (EI) m/z 385.0694 (calcd for C₁₇H₂₁NO¹³⁰Te 385.0681). Anal. Calcd for C₁₇H₂₁NOTe: C, 53.32; H, 5.53; N, 3.66. Found: C, 53.26; H, 5.61; N, 3.32.

Stopped-Flow Experiments. All stopped-flow experiments were performed on a SX18 Stopped-Flow Spectrometer (Applied Photophysics, Leatherhead, U.K.). The sample-

handling unit was fitted with two drive syringes that are mounted inside a thermostated-bath compartment, which allowed for variable-temperature experimentation. The optical detection cell was set up in the 2 mm path length. First- and second-order curve fitting and rate constants used a Marquardt algorithm¹⁷ based on the routine Curfit.¹⁸

Preparation of Stock Solutions for Catalysis Experiments. Stock solutions of 2.0×10^{-3} M catalyst in CH₂Cl₂ and $5.0~\times~10^{-2}$ M PhSH in CH_2Cl_2 were prepared. These were diluted with MeOH to give a 5% CH₂Cl₂/MeOH solution of 2.0 imes 10⁻⁵ M telluride and 2.0 imes 10⁻³ M PhSH. A stock solution of 7.50 \times 10⁻³ M H₂O₂ in MeOH was prepared. These two solutions were mixed in the stopped-flow spectrometer to give concentrations of 1.0×10^{-5} M telluride, 1.0×10^{-3} M PhSH, and 3.75 \times 10 $^{-3}$ M $H_2O_2,$ and the increase in absorbance at 305 nm was measured. The concentration of H₂O₂ in the stock solution was determined from the absorbance at 240 nm (ϵ = 43.6 cm⁻¹ M⁻¹).¹⁹ The values in Table 1 are the average of 7–10 independent runs (\pm (standard deviation)).

Preparative Reaction for PhSSPh. Thiophenol (0.11 g, 1.0 mmol) was dissolved in 20 mL of MeOH, and H_2O_2 (0.5 mL of an 8.5 M¹⁸ solution, 4.3 mmol) was added. Di-n-hexyl telluride (0.010 g, 0.03 mmol) was added, and the resulting solution was stirred for 1 h at ambient temperature. The reaction mixture was concentrated, and the residue was partitioned between 20 mL of water and 20 mL of CH₂Cl₂. The

N. D. Biochemistry 2001, 40, 10832.

organic phase was dried over MgSO4 and concentrated. The residual oil was purified via recrystallization from hexanes to give 0.066 g (50%) of PhSSPh, mp 57-59 °C: 1H NMR (400 MHz, CDCl₃) δ 7.58 (d, 4 H, J = 7.2 Hz), 7.38 (t, 4 H, J = 7.4 Hz), 7.32 (t, 2 H, J = 7.2 Hz).

Oxidation of Tellurides 23 and 24. Stock solutions of 2.06 imes 10⁻³ M telluride and 2.06 imes 10⁻² M H₂O₂ in 5% CH₂Cl₂/ MeOH were prepared. These two solutions were mixed in the stopped-flow spectrometer to give concentrations of 1.03×10^{-3} M telluride and $1.03\,\times\,10^{-2}$ M H_2O_2 , and the increase in absorbance at 325 nm for 23a, 350 nm for 23b, and 352 nm for 24 was measured as a function of time for 7-10 independent runs (\pm (standard deviation)).

Acknowledgment. We thank the Office of Naval Research (Contract No. N00014021-0836), the National Science Foundation (Grant No. CHE-0108521), and the donors of the Petroleum Research Fund, administered by the American Chemical Society, for grants in support of this work.

Supporting Information Available: Figure S1, showing the parent ion isotope cluster in the mass spectrum of 9a, Figure S2, showing the parent ion isotope cluster in the mass spectrum of 15c, Figure S3, showing the parent ion isotope cluster in the mass spectrum of 20a, Figure S4, showing the parent ion isotope cluster in the mass spectrum of 23b, and ¹H NMR spectra for polyorganotellurides 9, 15, 20, and 22. This information is available free of charge via the Internet at http://pubs.acs.org.

OM030232H

⁽¹⁷⁾ Marquardt, D. W. J. Soc. Indust. Appl. Mathematics 1963, 11, 431.

⁽¹⁸⁾ Curfit is found in: Bevington, P. R. Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill: New York, 1969.
(19) (a) Riley, J. C. M.; Berman, H. R. Endocrinology 1991, 128, 1749. (b) Zhao, G.; Bou-Abdallah, F.; Yang, X.; Arosio, P.; Chasteen,