Ligand-Controlled Asymmetric Induction at a Transition Metal-Bonded α -Carbon in Ester and Amide Enolates. Diastereoselective Formation of Oxapalladacycles Applied to the Synthesis of a Chiral Nonracemic 2H-1-Benzopyran

Janelle L. Portscheller, Sara E. Lilley,† and Helena C. Malinakova*

Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045

Received March 19, 2003

Stable benzannelated oxapalladacycles [-(P-P)Pd-1-C₆H₄-2-OCHY-] possessing chiral nonracemic bidentate phosphine ligands, (P-P) = (4S,5S)-(+)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane ((S,S)-DIOP) or (2S,4S)-(-)-2,4-bis(diphenylphosphino)pentane ((S,S)-BDPP), and a palladium-bonded stereogenic carbon representing an α -carbon in ester (Y = COOEt) or amide (Y = CONEt₂) enolates, have been synthesized in diastereomeric excess 46-80% exploiting asymmetric induction from the chiral ligands. The stereoselective event involved an intramolecular displacement of the iodide in complexes (P−P)IPd-1-C₆H₄-2-OCH₂Y by an in situ generated lithium or potassium ester or amide enolate. Only one enantiomer of each ligand was used, and the absolute sense of stereoinduction could be controlled by the choice of the base (t-BuOK or LDA) to afford both diastereomers of each palladacycle in a diastereomerically enriched form. Treatment of the palladacycles with an excess of t-BuOK allowed for further enrichment in the content of "thermodynamic" diastereomers. An X-ray structure of the complex [-((S,S)-BDPP)Pd-1- C_6H_4 -2-(R)-OCHCOOEt-] was obtained. Ligand exchange reactions of the palladacycles with an achiral 1,2-bis(diphenylphosphino)ethane (dppe) ligand afforded enantiomerically enriched palladacycles [-(dppe)Pd-1-C₆H₄-2-OCHCOOEt-] in the corresponding enantiomeric purities without a loss of the stereochemical information. Reaction of dimethyl acetylenedicarboxylate (dmad) with complex [-((S,S)-DIOP)Pd-1-C₆H₄-2-OCHCONEt₂-], enriched via chromatography to 96% de, afforded (-)-2-N,N-diethylcarbonyl-3,4-bis(methoxycarbonyl)-2H-1-benzopyran in 88.4% ee with only a minimal (8%) racemization of the metal-bonded stereocenter.

Introduction

Carbon—carbon bond-forming reactions of intermediates possessing a transition metal—carbon bond play a major role in selective syntheses of complex organic molecules. If organometallics with a transition metal-bonded sp³-hybridized stereogenic carbon could be used in these transformations,² a convenient approach to the creation of stereogenic carbon centers would arise. For this reason, stereoselective synthesis of complexes with a transition metal—Csp³ bond has recently received much attention.³ Classical resolution techniques⁴ or diastereoselective cyclometalations of chiral nonracemic

organic substrates⁵ have been explored. In contrast, an approach relying on communication of stereochemical information from chiral auxiliary ligands into achiral organic substrates giving rise to metal-bonded stereogenic carbons has only a few precedents.^{6,7} Transition metal enolates, in most cases existing as the Csp³-

(4) (a) Spencer, J.; Maassarani, F.; Pfeffer, M. *Tetrahedron: Asymmetry* **1994**, *5* (3), 321–324. (b) Yoneda, A.; Hakushi, T.; Newkome, G. R.; Fronczek, F. R. *Organometallics* **1994**, *13* (12), 4912–4918.

(6) (a) For a stereoselective preparation (45% de) of a cycloplatinated complex featuring a carbon-bonded platinum ketone enolate, see: Ryabov, A. D.; Panyashkina, I. M.; Polyakov, V. A.; Fisher, A. Organometallics 2002, 21 (8), 1633–1636. (b) Binotti, B.; Carfagna, C.; Gatti, G.; Martini, D.; Mosca, L.; Pettinari, C. Organometallics 2003, 22 (5), 1115–1123.

[†] Undergraduate research participant (NSF-REU), Department of Chemistry, College of the Ozarks, Point Lookout, MO 65726.

⁽¹⁾ Diederich, F., Stang, P. J., Eds. *Metal-Catalyzed Cross-Coupling Reactions*; Willey-VCH Verlag GmbH: Weinheim, 1998.

(2) For palladium- and nickel-catalyzed approaches to coupling of

⁽²⁾ For palladium- and nickel-catalyzed approaches to coupling of two Csp³ centers, see: (a) Aiwen, L.; Zhang, X. Org. Lett. **2002**, 4 (14), 2285–2288. (b) Netherton, M. R.; Dai, C.; Neuschütz, K.; Fu, G. C. J. Am. Chem. Soc. **2001**, 123 (41), 10099–10100. (c) Cardenas, D. J. Angew. Chem., Int. Ed. **1999**, 38 (20), 3018–3020. (d) Giovannini, R.; Stüdemann, T.; Devasagayaraj, A.; Dussin, G.; Knochel, P. J. Org. Chem. **1999**, 64 (10), 3544–3553. (e) Giovannini, R.; Knochel, P. J. Am. Chem. Soc. **1998**, 120 (43), 11186–11187. (f) Sustmena, R.; Lau, J.; Zipp, M. Tetrahedron Lett. **1986**, 43 (27), 5207–5210.

⁽³⁾ For methods based on Csp^3-H activation, see: Jones, W. D. In *Topics in Organometallic Chemistry: Activation of Unreactive Bonds and Organic Synthesis*; Murai, S., Ed.; Springer-Verlag: Berlin, 1999; pp 10-46.

⁽⁵⁾ Cyclometalation at a Csp²-H bond giving rise to the element of planar chirality has been extensively studied, see: (a) Stevens, A. M.; Richards, C. J. Organometallics 1999, 18 (7), 1346–1348. (b) Zhao, G.; Yang, Q.-C.; Mak, T. C. W. Organometallics 1999, 18 (18), 3623–3636. Stereoinduction at metal-bonded stereocenters (carbon and sulfur) has only recently been demonstrated, see: (c) Dupont, J.; Gruber, A. S.; Fonseca, G. S.; Monteiro, A. L.; Ebeling, G. Organometallics 2001, 20 (1), 171–176. (d) Garcia-Ruano, J. L.; Gonzalez, A. M.; Barcena, A. I.; Camazon, M. J.; Navarro-Ranninger, C. Tetrahedron: Asymmetry 1996, 7 (1), 139–148.

bonded forms, 8 have been established 9 as intermediates in the synthetically powerful catalytic arylation and alkenylation of ketones, 10 esters, 11 amides, 12 and cyano derivatives. 13 While catalytic asymmetric arylation of ketones afforded products in excellent enantiomeric purities,14 palladium-catalyzed arylation of esters and amides has been found to be much less stereoselective. 15 Thus, it is rather surprising that studies on the preparation of stable transition metal ester or amide enolates¹⁶ remain rare in the organometallic literature. To date, only a few examples of stereoselective syntheses¹⁷ of transition metal enolates have been reported, and methods relying on asymmetric induction from chiral nonracemic ligands appear virtually unexplored.⁶

As a part of our program that investigates synthetic applications of palladacycles, we have recently described the preparation of racemic oxapalladacycles 1 and

(7) For examples of an enantioselective Csp3-H activation mediated by irridium centers bearing chiral nonracemic ligands, see: (a) Mobley, T. A.; Bergman, R. G. *J. Am. Chem. Soc.* **1998**, *120* (13), 3253–3254. (b) Dorta, R.; Togni, A. *Organometallics* **1998**, *17* (25), 5442–5444.

(8) For representative examples of studies on the preparation and reactivity of stable transition metal enolates, see: (a) Heathcock, C. H. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: 11. In Complete Bive Organic Synthesis, 110st, B. M., Ed., 1 et glanloid Oxford, U.K., 1991; Vol. 2, Chapter 1.9. (b) Naota, T.; Tannna, A.; Kamuro, S.; Murahashi, S.-I. *J. Am. Chem. Soc.* **2002**, *124* (24), 6842—6843. (c) Kujime, M.; Hikichi, S.; Akita, M. *Organometallics* **2001**, *20* (19), 4049–4060. (d) Albeniz, A. C.; Catalina, N. M.; Espinet, P.; Redon, R. Organometallics 1999, 18 (26), 5571-5576, and references therein. (e) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1990, 112 (14), 5670-5671. (f) Burkhardt, E. R.; Doney, J. J.; Slough, G. A.; Stack, J. M.; Heathcock, C. H.; Bergman, R. G. Pure Appl. Chem. 1988, 60 (1), 1–6. (g) Weinstock, I.; Floriani, C.; Chiesi-Villa, A.; Guastini, C. J. Am. Chem. Soc. 1986, 108 (26), 8298–8299. (9) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123 (24),

5816-5817, and references therein.

(10) (a) Fox, J. M.; Huang, X.; Chieffi, A.; Buchwald, S. L. *J. Am. Chem. Soc.* **2000**, *122* (7), 1360–1370. (b) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 1999, 121 (7), 1473-1478. (c) Hamann, B. C.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119 (50), 12382—12383. (d) Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119 (45), 11108—

(11) (a) Jorgensen, M.; Lee, S.; Liu, X.; Wolkowski, J. P.; Hartwig, J. F. J. Am. Chem. Soc. **2002**, 124 (42), 12557–12565. (b) Gaertzen, O.; Buchwald, S. L. J. Org. Chem. **2002**, 67 (2), 465–475. (c) Beare, N. A.; Hartwig, J. F. J. Org. Chem. **2002**, 67 (2), 541–555. (d) Lee, S.; Beare, N. A.; Hartwig, J. F. J. Am. Chem. Soc. **2001**, 123 (34), 8410–8411. (e) Stauffer, S. R.; Beare, N. A.; Stambuli, J. P.; Hartwig, J. F. J. Am. Chem. Soc. **2001**, 123 (19), 4641–4642.

(12) (a) Shaughnessy, K. H.; Hammann, B. C.; Hartwig, J. F. *J. Org. Chem.* **1998**, *63* (19), 6546–6553.

(13) Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124 (32).

(14) (a) Hamada, T.; Chieffi, A.; Åhman, J.; Buchwald, S. L. J. Am. Chem. Soc. **2002**, 124 (7), 1261–1268. (b) Hamada, T.; Buchwald, S. L. Org. Lett. **2002**, 4 (6), 999–1001. (c) Åhman, J.; Wolfe, J. P.; Troutman, M. V.; Palucki, M.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120 (8), 1918-1919.

(15) An intramolecular reaction mediated by chiral monodentate or bidentate phosphines afforded oxindoles in enantiomeric excesses from 4% to 59%. Chiral imidazolidene carbene ligands afforded products with enantiomeric purities 70-76% ee, see: (a) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66 (10), 3402–3415. Excellent levels of asymmetric induction (94–97% ee) in a catalytic arylation of γ -butyrolationes have been realized when palladium(0) catalyst was replaced with Ni[[(S)-BINAP](COD), see: (b) Spielvogel, D. J.; Buchwald, S. L. *J. Am. Chem.* Soc. 2002, 124 (14), 3500-3501

(16) For the preparation and characterization of stable transition metal ester enolates, see: (a) Tian, G.; Boyle, P. D.; Novak, B. M. Organometallics **2002**, 21 (7), 1462–1465. (b) Burkhardt, E. R.; Bergmann, R. G.; Heathcock, C. H. Organometallics **1990**, 9 (1), 30–44. (c) Kayaki, Y.; Shimizu, I.; Yamamoto, A. Chem. Lett. **1995**, 1089– 1090. (d) Stack, J. G.; Simpson, R. D.; Hollander, F. J.; Bergman, R. G.; Heathcock, C. H. *J. Am. Chem. Soc.* **1990**, *112* (7), 2716–2729.

(17) For a stereoselective synthesis of a stable chiral nonracemic carbon-bonded "double" ester enolate via an oxidative cyclization of cyclopropene esters bearing a covalently bonded chiral auxiliary group, see: (a) Hashmi, A. S. K.; Naumann, F.; Bolte, M. *Organometallics* **1998**, *17* (12), 2385–2387. The influence of metal-centered chirality on the configuration of the stereogenic carbon in a carbon-bonded ruthenium ketone enolate has been studied, see: (b) Rasley, B. T.; Rapta, M.; Kulawiec, R. J. Organometallics 1996, 15 (13), 2852–2854.

Scheme 1

"Pd(0)", L
$$\stackrel{H_1}{\longrightarrow}$$
 $\stackrel{H_1}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{H_2$

Y = CO₂Et, CONEt₂; L = dppb, PPh₃; base = LDA, t-BuOK R₁ = Me, n-Bu, Ph, 1-cyclohexenyl, TMS; R₂ = CO₂Et, COMe

demonstrated their conversion into highly substituted 2H-1-benzopyrans 2 via a regiocontrolled insertion of unsymmetrical alkynes (Scheme 1).¹⁸

Herein, we wish to report that the metal-bonded stereogenic carbon in stable oxapalladacycles 1 representing a carbon-bonded ester or amide enolate can be generated in a stereoselective manner (de up to 80%) via asymmetric induction from commercially available chiral nonracemic bidentate phosphine ligands (4S,5S)-(+)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane ((S,S)-DIOP) or (2S,4S)-(-)-2,4-bis(diphenylphosphino)pentane ((S,S)-BDPP). Insertion of dimethyl acetylenedicarboxylate (dmad) into a diastereomerically enriched palladacycle 1 (96% de after chromatography) proceeded with only minimal racemization, providing a chiral nonracemic 2H-1-benzopyran 2 (88.4% ee, $R_1 = R_2 = COOMe$, $Y = CONEt_2$). ¹⁹ We have systematically explored factors that control asymmetric induction in the synthesis of palladacycles 1 and evaluated the configurational stability of the metal-bonded stereocenter. Absolute sense of stereoinduction could be controlled by the choice of the base (t-BuOK vs LDA), and good diastereoselectivity was achieved under both "kinetic" and "thermodynamic" conditions. Results described herein provide a proof of concept for the future development of a new approach to asymmetric synthesis of 2H-1-benzopyrans²⁰ and additional diverse applications of palladacycles 1 to asymmetric organic synthesis.

Results and Discussion

Synthesis and Structure Elucidation of Palladacycles 5a-c. Iodopalladium complexes 4a-c possessing commercially available enantiomerically pure phosphine ligands (S, \dot{S}) -DIOP²¹ and (S, \dot{S}) -BDPP²² were obtained by straightforward ligand exchange reactions²³ with known¹⁸ complexes **3a** and **3b** (Scheme 2). Bidentate

⁽¹⁸⁾ Portscheller, J. L.; Malinakova, H. C. Org. Lett. 2002, 4 (21), 3679-3681.

⁽¹⁹⁾ Retention of asymmetry at a palladium-bonded sp3-hybridized stereogenic carbon in an alkyne insertion reaction has been demonstrated, see: Spencer, J.; Pfeffer, M. Tetrahedron: Asymmetry 1995, 6 (2), 419-426

^{(20) (}a) Wipf, P.; Weiner, W. S. J. Org. Chem. 1999, 64 (14), 5321-5324. (b) Harrity, J. P. A.; Visser, M. S.; Gleason, J. D.; Hoveyda, A. H. *J. Am. Chem. Soc.* **1997**, *119* (6), 1488–1489.

⁽²¹⁾ For representative examples of the application of the (S,S)-DIOP ligand in asymmetric synthesis, see: (a) Hiroi, K.; Makino, K. *Chem. Lett.* **1986**, 617–620. (b) Trost, B. M.; Strege, P. E. *J. Am. Chem.* Soc. 1977, 99 (5), 1649-1651. (c) Dang, T. P.; Kagan, H. B. J. Chem. Soc., Chem. Commun. 1971, 10, 481.

⁽²²⁾ For representative examples of the application of the (S,S)-BDPP ligand in asymmetric synthesis, see: (a) Burgess, K.; Donk, W. A.; Ohlmeyer, M. J. *Tetrahedron: Asymmetry* **1991**, *2* (7), 613–621. (b) Bakos, J.; Toth, I.; Heil, B.; Marko, L. *J. Organomet. Chem.* **1985**, 279, 23. (c) MacNeil, P. A.; Roberts, N. K.; Bosnich, B. J. Am. Chem.

^{276, 23. (}c) MacNetl, 1. A., Roberts, N. R., Boshich, B. J. All. Chem. Soc. **1981**, 103 (9), 2273–2280. (23) Ludwig, M.; Strömberg, S.; Svensson, M.; Åkermark, B. Organometallics **1999**, 18 (6), 970–975.

ligands with three- and four-carbon tethers were selected because a synthesis of a 2H-1-benzopyran via alkyne insertion into a racemic palladacycle bearing a structurally related achiral 1,4-bis(diphenylphosphino)butane (dppb) ligand has been described.¹⁸

¹H and ³¹P NMR spectra of iodopalladium complexes **4a**–**c** showed temperature-dependent features. ³¹P NMR spectra of complexes 4a-c consisted of one major and one minor pair of doublets corresponding to nonequivalent phosphorus atoms present in two distinct conformations of the seven-membered and six-membered "chelate" rings.24 Changes in chemical shifts and relative intensities of the two pairs of doublets were noted when ³¹P NMR spectra recorded at 25 and 55 °C were compared.25

Treatment of iodopalladium complexes **4a**-**c** with appropriate bases (e.g., t-BuOK or LDA) afforded the corresponding palladacycles 5a-c in good overall yields (71-99%) as moisture- and air-stable solids in variable diastereomeric purities (8-80% de) (vida infra) (Table 1).

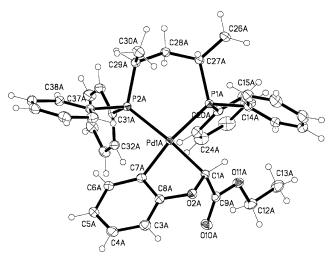
Spectroscopic data for complexes **5a**–**c** fully support the structures depicted in Table 1. Resonances at δ 5.35 and 5.22 (dd, $J(^{1}H-^{31}P) = 10.6$ Hz, 8.1 Hz), δ 5.94 and 5.69 (dd, $J(^{1}H-^{31}P) = 8.6-9.9$ Hz, 6.8-7.3 Hz), and δ 5.50 and 5.17 (t, $J({}^{1}H-{}^{31}P) = 8.5-8.7$ Hz) in the ${}^{1}H$ NMR (500 MHz, CDCl₃) spectra of palladacycles **5a**, **5b**, and **5c**, respectively, were assigned to the methine protons attached to stereogenic metal-bonded carbons. The palladium-bonded methine carbons were found to resonate at δ 97.1 and 98.3 (dd, $J(^{13}C-^{31}P) = 85.0-85.4$ Hz, 5.6-5.9 Hz), δ 104.3 (dd, $J(^{13}C-^{31}P) = 89.2-92.0$ Hz, 4.3–4.9 Hz), and δ 95.9 and 98.5 (dd, $J(^{13}C-^{31}P) =$ 84.4 - 85.3 Hz, 5.4 - 5.7 Hz) in the 13 C NMR (125 MHz, CDCl₃) spectra for complexes **5a**, **5b**, and **5c**, respectively. The corresponding H-C correlations were established via 2D NMR (HMQC) analyses on complexes 5a, **5b**, and **5c**. Two pairs of doublets were detected in ³¹P

Table 1. Effects of Reaction Conditions on Diastereoselectivity in the Synthesis of Stable Oxapalladacycles

a: Y = COOEt, L-L = (S,S)-DIOP; **b:** $Y = CONEt_2$, L-L = (S,S)-DIOP;

C: Y = COOEt, L-L = (S,S)-BDPP

				diastereomeric ratio			
	sub- strate	base	temp (°C)	5.1a-c (%)	5.2a-c (%)	de (%)	combined yield (%)
	4a			5.1a	5.2a		
1		$KHMDS^a$	-78	35	65	30	94
2		t-BuOK	rt	44	56	12	72
3			-78	69	31	38	88
4		LDA	rt	63	37	26	72
5			-78	86	14	72	89
6		$(R^*)MeNLi^b$	-78	90	10	80	98
	4b			$5.1b^c$	$\mathbf{5.2b}^c$		
7		t-BuOK	rt	24	76	52	71
8			0	25	75	50	88
9			-78	44	56	12	d
10		LDA	rt	54	46	8	82
11			-78	77	23	54	91
	4 c			5.1c	5.2c		
12		t-BuOK	rt	64	36	28	99
13			-78	87	13	74	99
14		LDA	rt	42	58	16	94
15			-78	12	88	76	99


^a Reaction time was extended to 2 h. ${}^{b}R^{*} = PhCH(Me) - with$ a R configuration. c The assignment of the absolute configuration is arbitrary. See ref 26. d The reaction proceeded with only a partial conversion of the starting material.

NMR (162 MHz, CDCl₃) spectra of complexes **5a-c** (**5a**: δ 10.72 (d, J = 30.3 Hz), 7.50 (d, J = 30.1 Hz) and δ 12.28 (d, J = 30.7 Hz), 3.42 (d, J = 30.3 Hz); **5b**: δ 8.38 (d, J = 31.1 Hz), 7.61 (d, J = 31.2 Hz) and δ 8.76 (d, J= 30.9 Hz), 3.52 (d, J = 30.8 Hz); **5c**: δ 21.74 (d, J = 45.8 Hz), 14.34 (d, J = 46.0 Hz) and δ 22.34 (d, J =43.1 Hz), 16.65 (d, J = 43.0 Hz)). Thus, the indicative spectral features appeared as two clearly distinguishable sets in various ratios in ¹H and ³¹P NMR spectra recorded for products 5a-c of products 5a-c of the ringclosure reactions of complexes **4a**-**c** (Table 1). Careful thin-layer chromatography (silica, EtOAc/hexanes) of these materials indicated the presence of two compounds with close retention factors (R_{d}) , and variabletemperature NMR studies did not reveal any temperature-dependent features in ¹H and ³¹P NMR spectra within the range of temperatures examined (25-55 °C). On the basis of this evidence, integration of the two ¹H NMR signals corresponding to methine protons at 5.17-5.94 ppm was employed as a convenient method for determining the ratios of diastereomers 5.1a-c:5.2a- \mathbf{c}^{26} shown in Table 1.

Crystallization of palladacycle 5c (L = (S,S)-BDPP, Y = COOEt) (72% de, **5.1c**:**5.2c** = 14:86 by ¹H NMR) via slow diffusion of hexane into a methylene chloride solution at room temperature afforded diffraction-quality crystals of a pure major diastereomer, 5.2c, as confirmed by spectroscopic analyses of the crystalline material (¹H NMR: δ 5.17 (t, J(¹H-³¹P) = 8.5 Hz)). The

⁽²⁴⁾ For discussions of the conformational equilibrium in palladium, platinum, rhodium, and irridium complexes bearing the DIOP ligand, see: (a) Chaloner, P. A. *J. Organomet. Chem.* **1984**, *266* (2), 191–201. (b) Brown, K.; Chaloner, P. A. *J. Organomet. Chem.* **1981**, *217* (2), C25–C28. (c) Campi, E. M.; Elmes, P. S.; Jackson, W. R.; Thomson, R. J.; Weigold, J. A. *J. Organomet. Chem.* **1989**, *371* (3), 393–395. (d) Brown, J. M.; Chaloner, P. A. *J. Am. Chem. Soc.* **1978**, *100* (13), 4307–

⁽²⁵⁾ For example, see data for complex **4a**: $^{31}{\rm P}$ NMR (202 MHz, CDCl₃, 25 °C): δ 11.31 (d, J = 38.8 Hz, 0.24 P), 11.24 (d, J = 38.9 Hz, 0.76 P), -3.70 (d, J = 38.9 Hz, 0.76 P), -6.15 (d, J = 39.0 Hz, 0.24 P); 3.19 NMR (202 MHz, CDCl₃, 55 °C) δ 11.04 (d, J= 39.0 Hz, 1 P), -3.62 (d, J= 39.0 Hz, 0.35 P), -5.53 (d, J= 39.0 Hz, 0.65 P).

Figure 1. Crystal structure of complex (+)-(R,S,S)-5.2c. Ellipsoids represent a 50% probability level.

X-ray crystal structure of complex 5.2c depicted in Figure 1 indicates the absolute configuration of the metal-bonded sp 3 -hybridized stereogenic carbon as R, allowing for the assignment of the absolute configuration of the diastereomer 5.2c as (R,S,S) and the diastereomer **5.1c** (¹H NMR: δ 5.50 (t, J(¹H $^{-31}$ P) = 8.4 Hz)) as (S,S,S).

However, attempts to obtain diffraction-quality crystals of palladacycles 5a and 5b were unsuccessful. Diastereomeric purity of palladacycles 5.1a (78% de) and 5.1b (50% de) could be further increased by flash column chromatography over silica, which afforded diastereomer **5.1a**²⁶ (¹H NMR: δ 5.35 (dd, J(¹H-³¹P) = 10.6 Hz, 8.1 Hz) in 94% de, diastereomer $\mathbf{5.1b}^{26}$ (1 H NMR: δ 5.94 (dd, $J(^{1}H-^{31}P)=8.7$ Hz, 6.8 Hz) in 94% and 96% de, and a fraction containing the diastereomer **5.2b**²⁶ (¹H NMR: δ 5.70 (dd, $J(^{1}H-^{31}P) = 9.9$ Hz, 7.3 Hz) in 94% de.

Investigation of the Factors that Control Asymmetric Induction and Configurational Stability of the Metal-Bonded Stereocenters. The choice of the base and the reaction temperature proved to be the most important parameters for the control of asymmetric induction in the preparation of palladacycles 5a-c. However, no common trends in responses to these factors could be identified among substrates 4a-c that differ in the nature of ligands L-L and the electronwithdrawing group Y. In experiments reported in Table 1, care was taken not to alter the diastereomeric compositions of the crude products 5a-c upon isolation.²⁷

Diastereoselectivity of the preparation of palladacycle **5.1a** (Y = COOEt, L-L = (S,S)-DIOP) via the treatment of complex 4a with either t-BuOK or LDA was increased to 72% de by lowering the reaction temperature to -78 $^{\circ}$ C (entries 2–5, Table 1). Further improvement in the

diastereomeric excess of complex 5.1a up to 80% de was achieved by employing a chiral nonracemic base generated in situ via deprotonation of (R)-(+)-N, α -dimethylbenzylamine by *n*-BuLi²⁸ (entry 6, Table 1). The opposite diastereomer **5.2a** was prepared in 30% de when the ring closure reaction of complex 4a was mediated by KHMDS at −78 °C (entry 1, Table 1). Application of t-BuOLi, chiral alkoxide bases (potassium (1R,2S)-(1S,2R)-[α -[1-(dimethylamino)ethyl]benzenemethoxide),²⁹ LiHMDS, NaHMDS, and variations in the nature of solvents (benzene) and additives (AgNO₃) did not prove effective for the ring closure, or did not significantly improve the observed diastereoselectivities.

Different trends were observed with complex 4b featuring the amide functionality (entries 7–11, Table 1). Diastereomer **5.2b** was isolated in 52% de from the reaction mediated by t-BuOK at room temperature (entry 7, Table 1). Surprisingly, reaction at 0 °C afforded essentially the same result (entry 8, Table 1), and a further decrease in the reaction temperature to -78 °C led to incomplete conversion (entry 9, Table 1). The ring closure mediated by LDA at -78 °C was selective for the opposite diastereomer, providing complex 5.1b in 54% de (entry 11, Table 1). Attempts to mediate the ring closure by chiral nonracemic lithium bases (lithium (R)or (S)-N, α -dimethylbenzylamides)²⁸ or chiral alkoxide bases (potassium (1*R*,2*S*)- or (1*S*,2*R*)-[α -[1-(dimethylamino)ethyl]benzenemethoxide])²⁹ were unsuccessful.

Complex 4c, featuring the (S,S)-BDPP ligand, participated in highly diastereoselective ring closure reactions when treated with either t-BuOK or LDA at low temperatures (entries 13 and 15, Table 1). Notably, while the ring closure with t-BuOK afforded diastereomer 5.1c (74% de), the reaction mediated by LDA afforded the opposite diastereomer **5.2c** (76% de).

The observed differences in diastereoselectivity between reactions mediated by t-BuOK and LDA at variable temperatures prompted us to assess the configurational stability of the metal-bonded stereogenic center in the presence of an excess of *t*-BuOK (Table 2). Generation of enolates **6a**-**c** in low equilibrium concentrations may allow for either an "enrichment" or an "erosion" of the diastereomeric purities of palladacycles

⁽²⁶⁾ In the ¹H NMR spectra of the diastereomers designated as 5.1, the signal for the methine proton attached to the palladium-bonded carbon is found at *lower field* than in the spectra of the diastereomers designated as 5.2 (Table 1). Absolute configurations of the metalbonded stereocenters for the diastereomers 5.1a S, 5.1c S, 5.2a R, and **5.2c** R as shown in Table 1 were assigned via a combination of X-ray crystallographic studies on the complex 5.2c, stereospecific ligand exchange, and specific optical rotations of complexes 7 (see Schemes 3 and 4 in the text). Note that the absolute configurations for the complexes 5.1b and 5.2b as shown in Tables 1 and 2 have been assigned arbitrarily.

⁽²⁷⁾ Workup procedures for the preparations of palladacycles ${\bf 5a-c}$ as described in Table 1: Solutions of complexes 4a-c in THF were treated with the indicated base at the indicated temperature. Crude reaction mixtures were filtered through a short plug of basic alumina eluting with ethyl acetate or ethyl acetate/hexanes mixtures with compositions that allowed for a complete elution of all the organometallic material. Solvents were removed under reduced pressure to afford the palladacycles 5a-c as yellow solids. The diastereomeric composition of this material was determined by ¹H NMR spectroscopic

^{(28) (}a) Cain, C. M.; Cousins, R. P. C.; Coumbarides, G.; Simpkins, N. S. *Tetrahedron* **1990**, *46* (2), 523–544. (b) Majewski, M.; Gleave, D. M.; Nowak, P. *Can. J. Chem.* **1995**, *73* (10), 1616–1626. When the opposite enantiomer of the chiral base, lithium (S)-(-)-N, α -dimethylbenzylamide, was applied to the ring closure of complex 4a, a complete conversion into the palladacycle 5a could not be achieved, even when an excess of the base was used for a prolonged reaction time. Both enantiomers of the base, lithium (R)- or (S)-N, α -dimethylbenzylamide, failed to allow for a complete conversion of complex 4b into palladacycle

⁽²⁹⁾ Plaquevent, J.-C.; Perrard, T.; Cahard, D. Chem. Eur. J. 2002, 8 (15), 3301-3307. Attempted formation of palladacycles **5a** and **5b** via the treatment of complexes 4a and 4b with chiral alkoxides, potassium (1R,2S)- and (1S,2R)-[α -[1-(dimethylamino)ethyl]benzenemethoxide, obtained by the reaction of potassium hydride with N-methylephedrine in THF, afforded mixtures consisting of unreacted complexes 4a or 4b and palladacycles 5a or 5b with approximately 1:1 ratios of the diastereomers.

Table 2. Assessment of Configurational Stability of Palladium-Bonded Stereogenic Carbons in **Stable Oxapalladacycles**

C: Y = COOEt, Z = OEt, L-L = (S,S)-BDPP

	diastereomeric ratio in substrate		time ^a	diastereomeric ratio in product		product	recovery
	5.1 (%)	5.2 (%)	(h)	5.1 (%)	5.2 (%)	de (%)	(%)
	5	a	5a				
1	82	18	1	71	29	42	76
2	43	57	1	27	73	46	81
3	43	57	3	38	62	24	69
	$\mathbf{5b}^b$			5	\mathbf{b}^b		
4	69	31	1	55	45	10	71
5	27	73	1	18	82	64	76
6	28	72	3	13	87	74	61
	5c			5	c		
7	87	13	1	36	64	28	93
8	19	81	1	14	86	72	95
9	19	81	3	12	88	76	90

^a To solutions of the substrates 5a-c in THF was added 1.1 mol equiv of t-BuOK (1 M solutions in THF). Reaction mixtures were stirred for the indicated time period at room temperature. Diastereomeric composition of the recovered palladacycles 5a-c was determined by 1H NMR. b The assignment of the absolute configuration is arbitrary. See ref 26.

5a−**c**. Thus, treatment of palladacycles **5a**−**c** with 1.1 mol equiv of t-BuOK in THF for at least 1 h30 resulted in significant shifts in the diastereomeric ratios measured for the recovered palladacycles (compare entries 1-3, 4-6, and 7-9 in Table 2) favoring the generation of the "thermodynamic" products 5.2a, 5.2b, and 5.2c. The equilibration process described in Table 2 allowed us to raise the maximum diastereomeric purity of palladacycle 5.2a to 46% de (entry 2, Table 2), and in the case of palladacycle **5.2b** to 74% de (entry 6, Table 2).

In summary, both diastereomers of palladacycles 5a (in 80% and 46% de), **5b** (in 54% and 74% de), and **5c** (in 74% and 76% de) have been prepared via transfer of asymmetry using only one enantiomer of a chiral nonracemic ligand and employing either kinetic or thermodynamic conditions. The structures of the in situ generated alkaline metal ester and amide enolates appeared to play a critical role³¹ in this process, since the choice of the base allowed us to control the absolute sense of asymmetric induction.

Ligand Exchange Reactions of the Diastereo merically Enriched Palladacycles. Assignments of **Absolute Configurations.** Both enantiomers of palladacycle 7 have been synthesized via ligand exchange reactions of palladacycles 5.1a26 and 5.2a26 with an

Scheme 3

achiral 1,2-bis(diphenylphosphino)ethane (dppe) ligand without affecting the configurational integrity of the metal-bonded stereocenter (Scheme 3).32

Enantiomeric purities of complexes (-)-7 (68.2% ee) and (+)-7 (26.5% ee), determined by HPLC analyses on a chiral stationary phase (Chiralpak AD), were in acceptable agreement³³ with the diastereomeric ratios of substrates 5.1a (66% de) and 5.2a (30% de) measured by ¹H NMR spectroscopy (Scheme 3). In both the reactions, care was taken to ensure that complete conversion of the complexes **5.1a** and **5.2a** was achieved. Enantiomerically enriched palladacycle (-)-7 (74.1% ee)³³ did not racemize to a significant degree when dissolved in 2-propanol at room temperature, showing 73.1% ee in an HPLC analysis repeated after 7 days, or when the solution of the complex (-)-7 $(74.1\% \text{ ee})^{33}$ in ethyl acetate was treated with silica for 1 h, yielding recovered complex (-)-7 in 73.8% ee.

An exchange of (S,S)-BDPP ligand in complex **5.2c** (62% de) for the achiral dppe ligand afforded complex (+)-7 (62.1% ee by HPLC) (Scheme 4). Assuming that the ligand exchange proceeded with retention of the absolute configuration R at the metal-bonded stereogenic carbon³² in substrate **5.2c** (Figure 1), a correlation of the signs of optical rotation measured for complexes 7 (Schemes 3 and 4) was used to assign the absolute configurations of the metal-bonded stereocenters for

⁽³⁰⁾ However, no changes in the diastereomeric composition of palladacycles 5a-c could be detected when the complexes were treated in neat THF (rt, 1 h), in THF with 0.1 mol equiv of t-BuOK (rt, 1 h), and in THF with 0.5 mol equiv of t-BuOK (rt, 1 h).

⁽³¹⁾ For a discussion of the differences in the structure and the aggregation state of enolate anions of lithium and potassium metals, see: Smith, M. B. Organic Synthesis; McGraw-Hill: New York, 1994; Chapter 9, pp 865-869.

⁽³²⁾ Stability of a Pd-C bond during a ligand exchange process has been previously established (see ref 4b) and used for the preparation of enantiomerically enriched transition metal complexes with achiral ligands, see refs 4a, 6 and: Ryabov, A. D.; Panyashkina, I. M.; Polyakov, V. A.; Howard, J. A. K.; Kuzmina, L. G.; Datt, M. S.; Sacht, C. Organometallics 1998, 17 (16), 3615-3618.

⁽³³⁾ In the case of palladacycle (-)-7, the agreement between the value of the diastereomeric ratio in substrates **5.1a** (determined by ¹H NMR) and the enantiomeric excess of complex (-)-7 measured by chiral phase HPLC analyses was lower than expected. This could have been caused by the tendency of complex (-)-7 to selectively precipitate during the removal of solvents under reduced pressure. Although all the solvents were removed to avoid a net enantiomeric enrichment, the bulk of the solid material was not homogeneous. This explanation is supported by a relatively large discrepancy noted for repeated HPLC analyses of the same sample (up to relative 3%). Conversion of complex **5.1a** into the enantiomerically enriched palladacycle (-)-7 was repeated several times with the following results: (i) complex **5.1a** (60% de) yielded palladacycle (**–)-7** (62% yield, 56.9% ee); (ii) complex **5.1a** (70% de) yielded palladacycle (**–)-7** (84% yield, 72.7% ee); (iii) complex **5.1a** (80% de) yielded palladacycle (-)-7 (61% yield, 74.1% ee).

Scheme 4

Scheme 5 a

5.1b (96% *de*, ¹H NMR)^a

(-)-8 (88.4% ee, HPLC)^a

^a Assignments of the absolute configuration are arbitrary.

palladacycles **5.1a** as S and **5.2a** as R (Scheme 3, and Tables 1 and 2).

Synthesis of a Chiral Nonracemic 2H-1-Benzo**pyran.** To explore the applicability of palladacycles 5 for asymmetric organic synthesis, insertion of dimethyl acetylenedicarboxylate (dmad) into palladacycles **5a**–**c** was studied. 18 Optimum reactivity was observed for complexes **5b**, bearing a sterically demanding amide functionality.³⁴ The reaction of diastereomer **5.1b** enriched to 96% de (by ¹H NMR) by column chromatography, with dmad (ClCH₂CH₂Cl, 6 h at 100 °C and 16 h at room temperature) afforded benzopyran (-)- 8^{18} in good yield (62%) and only moderately diminished (8% racemization) enantiomeric excess of 88.4% ee, as established by HPLC on a chiral stationary phase (Chiralpak AD) (Scheme 5). The extent of racemization increased slightly when palladacycle 5.1b enriched to 94% de (by ¹H NMR) was treated with dmad for an extended time at elevated temperature (10 h at 100 °C and 16 h at room temperature) yielding benzopyran (-)-8 in 82.1% ee (by HPLC, 12.6% racemization). The reaction period at room temperature (16 h) allowed for gradual precipitation of palladium(0) and thus facilitated chromatographic purification of benzopyran (-)-8 without significantly affecting its enantiomeric purity. Thus, benzopyran (-)-8 with 87.2% ee was obtained when palladacycle **5.1b** (96% de by ¹H NMR) was reacted with dmad at elevated temperature (ClCH₂-CH₂Cl, 6 h at 100 °C) followed by an immediate isolation of the product. Decreasing the reaction temperature from 100 °C to 80 °C eliminated the racemization, but HPLC analysis of benzopyran (–)-8 detected the presence of less than 5% unreacted palladacycle **5.1b**, which was difficult to separate by column chromatography. Although 2*H*-1-benzopyran (–)-8 proved relatively resistant to racemization³⁵ during chromatographic purification and extended solution manipulations without protection from light, the possibility that a slow racemization of benzopyran (-)-8 accounts for the slight loss of the stereochemical information in the alkyne insertion reaction cannot be ruled out. This work represents a rare study on the fate of a nonracemic transition metal-bonded stereocenter in subsequent carboncarbon bond forming reactions.¹⁹ At present we are unable to assign the absolute configurations of benzopyran (-)-8 and palladacycles 5b,26 and work toward this goal is in progress.

Conclusions

In conclusion, an efficient transfer of asymmetry from chiral nonracemic ligands into a transition metalbonded stereogenic sp³-hybridized carbon has been demonstrated. The transformation allowed for a diastereoselective (46-80% de) synthesis of novel oxapalladacycles representing rare examples of stable chiral nonracemic palladium ester and amide enolates with a metal-bonded stereogenic α -carbon. Our studies revealed that for a selected enantiomer of the ligand, the absolute sense of stereoinduction could be controlled by the choice of the base, operating under either kinetic or thermodynamic conditions. Absolute configurations of palladacycles 5a and 5c were assigned relying on an X-ray crystallographic analysis and stereoselective ligand exchange reactions. A synthetically valuable highly substituted 2*H*-1-benzopyran was synthesized in a good enantiomeric purity (88.4% ee) via a stereoselective insertion of an alkyne into a diastereomerically enriched (96% de) palladacycle. In this transformation, the palladium-bonded stereogenic carbon was incorporated into a carbon framework with only a minimal loss (8% racemization) of the stereochemical information. Further generalization of this concept with respect to ligand structures and reaction types of the novel palladacycles is being pursued in our laboratories.

Experimental Section

Unless otherwise indicated, all NMR data were collected at room temperature in CDCl3 with internal CHCl3 as the reference (δ 7.26 ppm for ¹H and 77.00 ppm for ¹³C) and "internal" (present in a sealed capillary inserted into the NMR tube) H_3PO_4 (85%) (δ 0 ppm) as the reference for ³¹P NMR. Specific rotation was measured on an AUTOPOL IV polarimeter (Rudolph Research Analytical) at room temperature in methylene chloride. IR spectra were measured in KBr pellets or as thin films on salt (NaCl) plates. Melting points are uncorrected and were taken in open capillary tubes. MS were measured under fast atom bombardment (FAB) or electron impact (EI) conditions. Elemental analyses were performed by Galbraith Laboratories, Knoxville, TN. Analytical thin-layer chromatography (TLC) was carried out on commercial Merck silica gel 60 plates, 0.25 μ m thickness, with fluorescent indicator (F-254) or stained with aqueous KMnO₄ solution. Column chromatography was performed with 40–63 μ m silica gel (Merck) or basic alumina (150 mesh, Brokmann I). Tetrahydrofuran (THF) was freshly distilled from sodium/benzophenone. 1,2-Dichloroethane was freshly distilled from CaH₂.

⁽³⁴⁾ Under the optimized reaction conditions (dmad 2.2 mol equiv, ClCH₂CH₂Cl, 6 h at 100 °C and 16 h at room temperature), palladacyle 5a afforded after repeated chromatographic purification a 45% yield of the corresponding benzopyran¹⁸ in 80% purity (by ¹H NMR), and palladacycles 5c and 7 failed to yield the desired organic product.

^{(35) (}a) See ref 20a. (b) Van Gemert, B. In Organic Photochromic and Thermochromic Compounds, Crano, J. C., Guglielmetti, R. J., Eds.; Plenum: New York, 1999; Vol. 1, Chapter 3, p 111. Treatment of benzopyran (-)-8 (82.1% ee) in 1,2-dichloroethane for 6 h at 100 °C in light or for 6 h at room temperature in light afforded the recovered benzopyrans (-)-8 in 78.6% ee (4.2% racemization) and 76.8% ee (6.5% racemization), respectively. Treatment of benzopyran (-)-8 (78.6%) dissolved in ethyl acetate with silica for 1 h afforded recovered benzopyran (-)-**8** in 76.3% ee (2.9% racemization).

Benzene was distilled from CaH2 and kept over 3 Å (8-12 mesh) molecular sieves under an atmosphere of dry argon. Methylene chloride was kept over 3 Å (8−12 mesh) molecular sieves under an atmosphere of dry argon; other solvents were used as received. Unless otherwise specified, all reactions were carried out under an atmosphere of dry nitrogen or argon in oven-dried (at least 6 h at 140 °C) glassware. Single crystals for X-ray analysis were obtained by slow diffusion of hexanes into a methylene chloride solution of the palladium complex.

General Procedure for the Synthesis of Iodopalladium Complexes 4a-c. A solution of the complex 3a or 3b (1.0 mmol) and (S,S)-DIOP (1.1 mmol) or (S,S)-BDPP (1.1 mmol) in methylene chloride (55 mL for 4a,b and 13.5 mL for 4c) was stirred for the indicated time at room temperature under argon. The solvent was removed under reduced pressure, and the crude product was triturated with small amounts of ether/hexanes (3:1) to afford pure complexes 4a-c as pale yellow or orange solids.

(+)-[2-(Ethoxycarbonylmethoxy)phenyl]iodo[(4S,5S)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane]palladium (4a). Complex 3a (0.789 g, 1.49 mmol), (S,S)-DIOP (0.845 g, 1.64 mmol), and methylene chloride (80 mL) were treated according to the general procedure described above for 1 h to afford complex 4a (1.33) g, 98%) as a yellow solid: mp 152-153 °C dec (EtOAc/hexanes, 1:2); $R_f = 0.58$ (EtOAc/hexanes, 1:1); $[\alpha]_D + 115.2$ (c 0.65, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, 5 °C) δ 8.05 (t, J = 9.3Hz, 1.3 H), 7.99-7.91 (m, 0.3 H), 7.82 (t, J = 9.4 Hz, 1.7 H), 7.74-7.71 (m, 2.7 H), 7.57-7.36 (m, 10 H), 7.20-7.10 (m, 2 H), 7.03 (t, J = 7.9 Hz, 1 H), 6.93 (td, J = 7.6 Hz, 2.3 Hz, 1 H), 6.85 (t, J = 9.4 Hz, 1 H), 6.48 (t, J = 7.1 Hz, 1 H), 6.43-6.38(m, 1 H), 6.03-6.02 (m, 0.3 H), 5.90-5.88 (m, 0.7 H), 4.65 (d, J = 15.7 Hz, 0.3 H, 4.49 (d, J = 15.3 Hz, 0.7 H, 4.37-4.27(m, 2 H), 4.21 (d, J = 15.7 Hz, 0.3 H), 4.06 (d, J = 15.3 Hz, 0.7 H), 3.90–3.82 (m, 1 H), 3.72–3.67 (m, 0.7 H), 3.40–3.29 (m, 1 H), 3.08 (t, J = 15.4 Hz, 0.7 H), 2.69 (t, J = 14.4 Hz, 0.7 H), 2.64-2.62 (m, 0.3 H), 2.48-2.44 (m, 0.3 H), 2.28-2.21 (m, 0.7 H), 2.11 (dd, J = 14.5 Hz, 9.5 Hz, 0.6 H), 1.37 (t, J = 7.1 Hz, 2 H), 1.33 (t, J = 7.1 Hz, 1 H), 1.25 (s, 3 H), 1.21 (s, 0.3 H), 1.15 (s, 0.7 H), 0.88 (d, J = 12.8 Hz, 1.4 H), 0.87 (d, J = 13.6Hz, 0.6 H); 13 C NMR (125 MHz, CDCl₃) δ [169.6], 169.5, 157.7, [142.0], 141.0, [138.5 (d, $J(^{13}C-^{31}P) = 2.9 \text{ Hz})$], 137.9 (d, $J(^{13}C-^{31}P) = 2.9 \text{ Hz}$) $^{31}P) = 2.9 \text{ Hz}$, 135.4 (d, $J(^{13}C-^{31}P) = 12.4 \text{ Hz}$), [135.3 (d, $J(^{13}C-^{31}P) = 10.3 \text{ Hz}$], 134.7 (d, $J(^{13}C-^{31}P) = 13.0 \text{ Hz}$), 133.8, 133.7 (d, $J(^{13}C-^{31}P) = 10.6$ Hz), [133.6 (d, $J(^{13}C-^{31}P) = 11.0$ Hz)], 133.3 (d, $J(^{13}C^{-31}P) = 9.5$ Hz), [133.0 (d, $J(^{13}C^{-31}P) =$ 11.5 Hz)], 132.4 (d, $J(^{13}C^{-31}P) = 10.6$ Hz), 131.6 (d, $J(^{13}C^{-31}P) = 10.6$ Hz) ^{31}P) = 2.4 Hz), 131.0 (d, $J(^{13}C-^{31}P)$ = 9.0 Hz), [130.8 (d, $J(^{13}C-^{31}P)$ $^{31}P) = 2.4 \text{ Hz}$], 130.7 (d, $J(^{13}C - ^{31}P) = 2.4 \text{ Hz}$), 130.2 (d, $J(^{13}C - ^{31}P) = 2.4 \text{ Hz}$), 130.2 (d, $J(^{13}C - ^{31}P) = 2.4 \text{ Hz}$) ^{31}P) = 1.4 Hz), 130.1 (d, $J(^{13}C-^{31}P)$ = 2.4 Hz), 129.9 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 2.4 Hz), [129.7 (d, $J(^{13}C-^{31}P)$ = 2.9 Hz)], 128.9 (d, $J(^{13}C-^{31}P)$ $^{31}P) = 10.5 \text{ Hz}$), 128.7 (d, $J(^{13}C-^{31}P) = 2.6 \text{ Hz}$), [128.5 (d, $J(^{13}C-^{31}P) = 10.6 \text{ Hz}$], 128.4 (d, $J(^{13}C-^{31}P) = 10.1 \text{ Hz}$), 127.9 (d, $J(^{13}C-^{31}P) = 9.2$ Hz), [127.7 (d, $J(^{13}C-^{31}P) = 10.6$ Hz)], $127.0 \text{ (d, } J(^{13}\text{C}-^{31}\text{P}) = 10.4 \text{ Hz)}, 123.9, [123.8], [122.0 \text{ (d, } J(^{13}\text{C}-^{31}\text{P})] = 10.4 \text{ Hz)}$ ^{31}P) = 8.6 Hz)], 121.8 (d, $J(^{13}C-^{31}P)$ = 8.4 Hz), [112.3 (d, $J(^{13}C-^{31}P)$ $^{31}P) = 5.6 \text{ Hz}$, $111.1 \text{ (d, } J(^{13}C-^{31}P) = 5.5 \text{ Hz}$, 108.4, [107.9], 78.3 (dd, $J(^{13}C^{-31}P) = 7.6$ Hz, 2.4 Hz), [77.0 (d, $J(^{13}C^{-31}P) =$ 9.2 Hz)], 76.5 (d, $J(^{13}C-^{31}P) = 13.0$ Hz), [66.1], 65.2, 60.8, [60.7], 31.9 (dd, $J(^{13}C-^{31}P) = 21.0$ Hz, 3.8 Hz), 31.2 (dd, $J(^{13}C-^{31}P) = 21.0$ Hz, 31.2 (dd ^{31}P) = 17.9 Hz, 3.6 Hz), 26.8, [26.7], 26.5, [26.2], 14.4, [14.2], signals for the minor conformer are given in brackets, several signals account for more than one carbon; ³¹P NMR (162 MHz, $\overline{\text{CDCl}_3}$) δ 11.60 (d, J = 38.8 Hz, 0.25 P), 11.54 (d, J = 39.0 Hz, 0.75 P, -3.43 (d, J = 38.9 Hz, 0.75 P), -5.93 (d, J = 38.7 Hz, 0.75 P0.25 P); IR (KBr, cm⁻¹) 3050 (m), 2980 (m), 1755 (s), 738 (s), 692 (s). Anal. Calcd for $C_{41}H_{43}IO_5P_2Pd$: C, 54.05; H, 4.76. Found: C, 54.56; H, 4.93.

(+)-[2-(N,N-Diethylcarbonylmethoxy)phenyl]iodo-[(4S,5S)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane|palladium (4b). Complex 3b (0.500 g, 0.899 mmol), (S,S)-DIOP (0.492 g, 0.987 mmol), and methylene chloride (50 mL) were treated according to the general procedure described above for 1 h to afford complex 4b (0.844 g, 98%) as a yellow solid: mp 139-140 °C dec (EtOAc/hexanes, 1:1); $R_f = 0.26$ (EtOAc/hexanes, 1:1); $[\alpha]_D +54.0$ (c 0.74, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, 5 °C) δ 7.95 (t, J = 9.5Hz, 0.7 H), 7.85-7.82 (m, 2 H), 7.77 (t, J = 8.6 Hz, 1.3 H), 7.59 (t, J = 9.0 Hz, 1 H), 7.47–7.37 (m, 10 H), 7.30–7.11 (m, 6 H), 6.50-6.45 (m, 2 H), 6.95-6.89 (m, 1 H), 4.45-4.41 (m, 1 H), 4.25-4.22 (m, 0.3 H), 4.04-3.94 (m, 1.3 H), 3.91-3.84 (m, 1.3 H), 3.59-3.51 (m, 0.7 H), 3.47-3.41 (m, 1 H), 3.35-3.26 (m, 2 H), 3.19-3.14 (m, 1 H), 3.01 (t br, J = 14.2 Hz, 0.7 H), 2.73-2.67 (m, 0.3 H), 2.43 (t br, J = 12.2 Hz, 0.7 H), 2.30-2.18 (m, 1.7 H), 1.25 (s, 3 H), 1.17–1.11 (m, 3 H), 1.08 (t, J =7.4 Hz, 2 H), 0.99 (s, 2 H), 0.97 (s, 1 H), 0.87 (t, J = 7.1 Hz, 1 H); 13 C NMR (125 MHz, CDCl₃) δ 167.7, 158.0, 137.8 (dd, $J(^{13}C-^{31}P) = 8.8 \text{ Hz}, 2.6 \text{ Hz}, 134.8 \text{ (d, } J(^{13}C-^{31}P) = 10.6 \text{ Hz}),$ 134.3 (t, $J(^{13}C-^{31}P) = 10.9 \text{ Hz}$), 134.0 (d, $J(^{13}C-^{31}P) = 4.3 \text{ Hz}$), $[133.9 (d, J(^{13}C-^{31}P) = 5.5 Hz)], [133.7], [133.0 (d, J(^{13}C-^{31}P)$ = 10.4 Hz)], [132.5 (d, $J(^{13}C-^{31}P) = 10.7$ Hz)], [131.8 (d, $J(^{13}C-^{31}P) = 10.7$ Hz)] ^{31}P) = 10.0 Hz)], 131.7 (d, $J(^{13}C-^{31}P)$ = 10.0 Hz), 131.0 (d, $J(^{13}C-^{31}P) = 3.4 \text{ Hz}$, [130.9 (d, $J(^{13}C-^{31}P) = 2.4 \text{ Hz}$)], 130.3 $(dd, J(^{13}C-^{31}P) = 23.9 \text{ Hz}, 1.9 \text{ Hz}), 129.5 (d, J(^{13}C-^{31}P) = 2.9$ Hz), 128.1 (t, $J(^{13}C-^{31}P) = 10.4$ Hz), 128.0 (d, $J(^{13}C-^{31}P) =$ 9.2 Hz), 127.6 (d, $J(^{13}C-^{31}P) = 10.5$ Hz), 124.0, 121.5 (t, $J(^{13}C-^{31}P) = 10.5$ Hz) ^{31}P) = 8.3 Hz), 111.6 (d, $J(^{13}C-^{31}P)$ = 4.8 Hz), [111.3 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 4.8 Hz)], 108.2, [107.9], 77.6 (dd, $J(^{13}C-^{31}P)$) = 7.5 Hz, 2.8 Hz), 76.5 (d, $J(^{13}C - ^{31}P) = 2.2$ Hz), [68.1], 67.6, [42.4], 42.2, [40.5], 40.4, 31.4 (dd, $J(^{13}C-^{31}P) = 21.0$ Hz, 2.4 Hz), 29.8 (d, $J(^{13}C^{-31}P) = 23.6 \text{ Hz}$, 26.6, 26.5, [26.4], [14.8], 14.7, [14.2], 13.2, signals for the minor conformer are given in brackets, several signals account for more than one carbon; ³¹P NMR (162 MHz, CDCl₃) δ 12.32 (d, J = 39.4 Hz, 0.69 P), 11.06 (d, J= 39.0 Hz, 0.31 P), -4.55 (d, J = 39.0 Hz, 0.31 P), -4.63 (d, J= 39.4 Hz, 0.69 P); IR (KBr, cm⁻¹) 3050 (m), 2979 (m), 2931 (m), 1663 (s), 739 (s), 692 (s). Anal. Calcd for C₄₃H₄₈INO₄P₂-Pd: C, 55.05; H, 5.16; N, 1.49. Found: C, 54.97; H, 5.30; N, 1.50.

(+)-[2-(Ethoxycarbonylmethoxy)phenyl]iodo[(2S,4S)-2,4-bis(diphenylphosphino)pentane]palladium (4c). Complex **3a** (0.400 g, 0.757 mmol), (S,S)-BDPP (0.366 g, 0.831 mmol), and methylene chloride (10 mL) were treated according to the general procedure described above for 12 h to afford complex 4c (0.633 g, 98%) as an orange solid: mp 173-174 °C dec (hexanes); $R_f = 0.57$ (EtOAc/hexanes, 1:1); $[\alpha]_D + 79.8$ (c 0.54, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, 5 °C) δ 8.31-8.27 (m, 2 H), 8.09–8.00 (m, 0.3 H), 7.78 (t, J = 9.2 Hz, 2 H), 7.70 (t, J = 8.7 Hz, 1.7 H), 7.67–7.62 (m, 0.3 H), 7.53 (s br, 2.7 H), 7.45 (s br, 0.3 H), 7.41 (t, J = 7.3 Hz, 1 H), 7.36–7.31 (m, 3 H), 7.17-7.13 (m, 3 H), 6.95 (t, J = 6.3 Hz, 1.7 H), 6.90-6.84 (m, 2.7 H), 6.51 (t, J = 7.3 Hz, 1 H), 6.43 (t, J = 7.2 Hz, 1 H), 6.20-6.15 (m, 0.3 H), 5.80-5.75 (m, 1 H), 4.41 (d, J =15.1 Hz, 1 H), 4.36-4.31 (m, 1.7 H), 4.29-4.17 (m, 0.3 H), 3.60 (d, J = 15.1 Hz, 1 H), 3.20 - 3.10 (s br, 1 H), 2.85 - 2.80 (m, 0.7H), 1.94-1.81 (m, 2.3 H), 1.39 (t, J = 7.1 Hz, 3 H), 1.29 (dd, J= 14.5 Hz, 7.0 Hz, 3 H), 0.91 (dd, J = 11.2 Hz, 7.1 Hz, 3 H);¹³C NMR (125 MHz, CDCl₃) δ 169.5, [163.9], 158.7, 143.2, 142.3, 137.2 (d, $J(^{13}C-^{31}P) = 12.6$ Hz), 136.6 (d, $J(^{13}C-^{31}P) =$ 2.8 Hz), 135.6 (d, $J(^{13}C-^{31}P) = 11.2$ Hz), [135.2 (d, $J(^{13}C-^{31}P)$ = 10.6 Hz)], 134.2 (d, $J(^{13}C-^{31}P) = 9.6$ Hz), [134.1 (d, $J(^{13}C-^{31}P) = 9.6$ Hz) ^{31}P) = 10.9 Hz)], 133.7, 133.4, 131.5 (d, $J(^{13}C-^{31}P)$) = 7.8 Hz), 131.3 (d, $J(^{13}C-^{31}P) = 2.8 \text{ Hz}$), 131.1, [130.8], 130.2 (d, $J(^{13}C-^{31}P) = 2.8 \text{ Hz}$) ^{31}P) = 1.9 Hz), 130.0 (d, $J(^{13}C-^{31}P)$ = 2.8 Hz), 129.8 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 1.4 Hz), 128.7 (d, $J(^{13}C-^{31}P)$ = 8.8 Hz), 128.3 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 2.6 Hz), 127.8 (d, $J(^{13}C-^{31}P)$ = 10.7 Hz), 127.4 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 10.1 Hz), 126.6 (d, $J(^{13}C-^{31}P)$ = 9.9 Hz), 125.9, [125.6], 123.9, 121.4 (d, $J(^{13}C-^{31}P) = 8.4 \text{ Hz}$), 110.9 (d, $J(^{13}C-^{31}P) =$ 5.2 Hz), [66.1], 64.9, 60.5, [60.4], 35.6 (t, $J(^{13}C-^{31}P) = 6.7$ Hz), $26.4 \text{ (dd, } J(^{13}\text{C}-^{31}\text{P}) = 20.4 \text{ Hz}, 3.8 \text{ Hz}), 23.3 \text{ (dd, } J(^{13}\text{C}-^{31}\text{P})$ = 20.8 Hz, 6.3 Hz), 19.7 (d, $J(^{13}C^{-31}P)$ = 7.6 Hz), 16.3 (d, $J(^{13}C-^{31}P) = 5.9$ Hz), 14.5, [14.3], signals for the minor

conformer are given in brackets, several signals account for more than one carbon; ³¹P NMR (162 MHz, CDCl₃) δ 22.57 (d, J = 50.3 Hz, 0.13 P), 20.30 (d, J = 47.9 Hz, 0.87 P), 6.92 (d, J = 47.9 Hz, 0.87 P) = 48.1 Hz, 0.87 P, 6.28 (d, J = 50.2 Hz, 0.13 P); IR (KBr,cm⁻¹) 3049 (m), 2978 (m), 1756 (s), 1192 (s), 744 (m), 695 (s); HRMS (FAB) calcd for $C_{39}H_{42}IO_3P_2Pd$ (M + H⁺), 870.0954, found 870.0969. Anal. Calcd for C₃₉H₄₁IO₃P₂Pd: C, 54.91; H, 4.84. Found: C, 54.95; H, 5.08.

Synthesis of Palladacycles 5a-c. (-)-[(S)-(Ethoxycarbonylmethineoxy-1,2-phenylene)][(4S,5S)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane|palladium (5.1a). To a solution of iodopalladium complex **4a** (0.150 g, 0.165 mmol) in THF (7.5 mL) at −78 °C was added a solution of lithium (R)-(+)-N,α-dimethylbenzylamide^{29b} (1.1 mL, 0.173 mmol, in THF). The mixture was stirred at -78°C for 15 min, quenched with 0.1 mL of MeOH, and filtered through a small plug of basic alumina, eluting with EtOAc. The solvent was removed under reduced pressure to afford palladacycle 5.1a (0.126 g, 98%) as a yellow solid in 80% de $(5.1a:5.2a = 90:10 \text{ by }^{1}\text{H NMR})$. Palladacycle 5.1a with diastereomeric excess 78% de was further purified by flash chromatography over silica eluting with EtOAc/hexanes (2: 3), to afford complex **5.1a** in 94% de, **5.1a**:**5.2a** = 97:3 (by 1 H NMR): mp 155–158 °C dec (EtOAc/hexanes, 2:3); $R_f = 0.42$ (EtOAc/hexanes, 1:1); $[\alpha]_D$ -80.3 (c 0.40, CH_2Cl_2).

Analytical data for 5.1a as a 97:3 mixture of diastereomers: ¹H NMR (500 MHz, CDCl₃) δ 8.14 (t, J = 8.9 Hz, 2 H), 7.87 (t, J = 8.9 Hz, 2 H), 7.61 (t, J = 8.7 Hz, 2 H), 7.53 (t, J = 8.9 Hz, 2 H), 7.48 (dd, J = 7.1 Hz, 1.6 Hz, 1 H), 7.43 (t, J = 7.9 Hz, 3 H, 7.36 (dd, J = 14.2 Hz, 7.1 Hz, 4 H, 7.34 - 7.25(m, 4 H), 6.87-6.81 (m, 2 H), 6.45 (td, J = 7.9 Hz, 3.3 Hz, 1H), 6.11-6.07 (m, 1 H), 5.35 (dd, J = 10.6 Hz, 8.1 Hz, 0.97 H), 5.22 (dd, J = 10.6 Hz, 8.1 Hz, 0.03 H), 4.07 (dq, J = 7.0 Hz, 3.6 Hz, 1 H), 3.99-3.94 (m, 1 H), 3.81 (dq, J = 7.1 Hz, 3.6 Hz, 1 H), 3.78-3.72 (m, 1 H), 3.19 (td, J = 13.3 Hz, 3.3 Hz, 1 H), 2.77 (ddd, J = 13.7 Hz, 11.2 Hz, 4.7 Hz, 1 H), 2.20 (t br, J =5.0 Hz, 2 H), 1.21 (s, 3 H), 1.00 (t, J = 7.1 Hz, 3 H), 0.94 (s, 3 H); 13 C NMR (125 MHz, CDCl₃) δ 176.1, 174.0 (t, $J({}^{13}C-{}^{31}P)$ = 4.8 Hz), 147.6 (dd, $J(^{13}C-^{31}P) = 106.2$ Hz, 10.1 Hz), 140.3 $(dd, J(^{13}C-^{31}P) = 10.1 \text{ Hz}, 2.9 \text{ Hz}), 136.2 (dd J(^{13}C-^{31}P) = 36.3)$ Hz, 2.9 Hz), 135.6 (d, $J(^{13}C^{-31}P) = 14.6$ H), 134.1 (d, $J(^{13}C^{-31}P) = 14$ ^{31}P) = 13.2 Hz), 133.8 (d, $J(^{13}C-^{31}P)$ = 13.0 Hz), 132.5 (d, $J(^{13}C-^{31}P) = 1.0 \text{ Hz}$, 132.2 (d, $J(^{13}C-^{31}P) = 11.0 \text{ Hz}$), 131.1 (d, $J(^{13}C-^{31}P) = 1.4$ Hz), 131.0 (d, $J(^{13}C-^{31}P) = 2.0$ Hz), 130.8, 130.6 (t, $J(^{13}C-^{31}P) = 2.4$ Hz), 130.5, 130.2, 130.1 (d, $J(^{13}C-^{13}C-^{13}C) = 2.4$ Hz), 130.5, 130.2, 130.1 (d, $J(^{13}C-^{13}C) = 2.4$ Hz) ^{31}P) = 1.8 Hz), 128.6 (dd, $J(^{13}C-^{31}P)$ = 10.1 Hz, 1.3 Hz), 128.5 (d, $J(^{13}C-^{31}P) = 7.1 \text{ Hz}$), 128.4 (d, $J(^{13}C-^{31}P) = 6.4 \text{ Hz}$), 126.1, 117.7 (dd, $J(^{13}C-^{31}P) = 8.6$ Hz, 4.2 Hz), 109.1 (d, $J(^{13}C-^{31}P)$ = 2.3 Hz), 107.9, 97.1 (dd, $J(^{13}C-^{31}P)$ = 85.4 Hz, 5.9 Hz), 78.1 $(dd, J(^{13}C-^{31}P) = 14.9 \text{ Hz}, 7.7 \text{ Hz}), 76.7 (d, J(^{13}C-^{31}P) = 10.3)$ Hz). 59.0. 31.1 (dd. $J(^{13}C-^{31}P) = 21.4$ Hz. 5.5 Hz). 29.9 (d. $J(^{13}C^{-31}P) = 17.6 \text{ Hz}$), 26.7, 26.4, 14.5, only signals for the major diastereomer have been detected, some signals account for more than one carbon; ^{31}P NMR (162 MHz, CDCl₃) δ 12.28 (d, J = 30.7 Hz, 0.03 P), 10.72 (d, J = 30.3 Hz, 0.97 P), 7.50 (d, J = 30.1 Hz, 0.97 P), 3.42 (d, J = 30.3 Hz, 0.03 P).

(+)-[(R)-(Ethoxycarbonylmethineoxy-1,2-phenylene)]-[(4S,5S)-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane]palladium (5.2a). To a solution of iodopalladium complex 4a (0.150 g, 0.165 mmol) in THF (7.5 mL) at -78 °C was added a solution of potassium bis-(trimethylsilyl)amide (KHMDS) (0.5 M in toluene, 0.43 mL, 0.215 mmol). The mixture was stirred at -78 °C for 2 h, quenched with 0.1 mL of MeOH, and filtered through a small plug of basic alumina, eluting with EtOAc. The solvent was removed under reduced pressure to afford palladacycle 5.2a (0.121 g, 94%) as a yellow solid in 30% de, **5.1a**:**5.2a** = 35:65 (by ¹H NMR). Palladacycle **5.2a** with diastereomeric excess 22% de was further purified by flash column chromatography over silica eluting with EtOAc/hexanes (2:3), to afford complex **5.2a** in 68% de, **5.1a**:**5.2a** = 16:84 (by ¹H NMR): mp 152-155 °C dec (EtOAc/hexanes, 1:1); $R_f = 0.50$ (EtOAc/hexanes, 1:1); $[\alpha]_D$ +46.8 (c 0.34, CH₂Cl₂).

Analytical data for 5.2a as a 16:84 mixture of diastereomers: ¹H NMR (500 MHz, CDCl₃) δ 8.14 (t, J = 8.9 Hz, 0.32 H), 8.03 (t, J = 8.7 Hz, 1.68 H), 7.87 (t, J = 8.9 Hz, 0.32 H), 7.81 (t, J = 8.6 Hz, 1.68 H), 7.61 (t, J = 8.7 Hz, 0.32 H), 7.55 (t, J = 9.7 Hz, 2 H), 7.49 (t, J = 8.4 Hz, 2 H), 7.45-7.40 (m, 3 H), 7.36 (q, J = 6.8 Hz, 2 H), 7.32 - 7.27 (m, 4 H), 7.24(td, J = 7.4 Hz, 1.5 Hz, 1 H), 6.93 (t, J = 7.0 Hz, 1.68 H), 6.87-6.81 (m, 2 H), 6.59 (td, J = 8.1 Hz, 3.5 Hz, 0.84 H), 6.45(td, J = 7.9 Hz, 0.16 H), 6.16 (tt, J = 7.1 Hz, 1.6 Hz, 0.84 H), 6.11-6.07 (m, 0.16 H), 5.35 (dd, J = 10.6 Hz, 8.1 Hz, 0.16 H), 5.22 (dd, J = 10.1 Hz, 8.5 Hz, 0.84 H), 4.27 (dq, J = 7.1 Hz, 3.6 Hz, 0.84 H), 4.16-4.05 (m, 1.84 H), 3.99-3.94 (m, 0.16 H), 3.86 (t, J = 9.5 Hz, 0.84 H), 3.81 - 3.72 (m, 0.32 H), 3.25 (td, J= 13.5 Hz, 4.6 Hz, 0.84 H), 3.19 (td, J = 13.7 Hz, 3.3 Hz, 0.16 HzH), 3.10 (ddd, J = 13.6 Hz, 10.9 Hz, 4.0 Hz, 0.84 H), 2.77 (ddd, J = 13.6 Hz, 10.9 Hz, 4.0 Hz, 0.84 H)J = 13.7 Hz, 11.2 Hz, 4.7 Hz, 0.16 H), 2.58 (td, J = 14.0 Hz, 4.1 Hz, 0.84 H), 2.20 (t br, J = 5.0 Hz, 0.32 H), 1.74 (dd, J =14.7 Hz, 7.2 Hz, 0.84 H), 1.26 (t, J = 7.1 Hz, 2.52 H), 1.26 (s, 2.52 H), 1.21 (s, 3 H), 1.00 (t, J = 7.1 Hz, 0.48 H), 0.94 (s, 0.48 H); ¹³C NMR (125 MHz, CDCl₃) δ 176.0 (q, $J(^{13}C-^{31}P) = 1.3$ Hz), 174.6 (t, $J(^{13}C-^{31}P) = 4.8$ Hz), 147.9 (dd, $J(^{13}C-^{31}P) =$ 107.1 Hz, 9.9 Hz), 140.5 (dd, $J(^{13}C^{-31}P) = 10.7$ Hz, 3.1 Hz), 136.2 (dd, $J(^{13}C-^{31}P) = 38.1 \text{ Hz}$, 2.9 Hz), [136.6 (d, $J(^{13}C-^{31}P)$ = 14.8 Hz)], 135.2 (d, $J(^{13}C-^{31}P)$ = 13.2 Hz), [134.1 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 13.4 Hz)], 133.9 (dd, $J(^{13}C-^{31}P)$ = 14.8 Hz, 1.4 Hz), $[133.8 \text{ (d, } J(^{13}\text{C}-^{31}\text{P}) = 13.0 \text{ Hz})], 133.7 \text{ (dd, } J(^{13}\text{C}-^{31}\text{P}) = 1.4$ Hz), 133.4 (d, $J(^{13}C-^{31}P) = 13.5$ Hz), 132.4 (d, $J(^{13}C-^{31}P) =$ 1.4 Hz), 132.2 (d, $J(^{13}C-^{31}P) = 10.9$ Hz), 132.1 (d, $J(^{13}C-^{31}P)$ = 0.95 Hz), 131.7 (d, $J(^{13}C-^{31}P)$ = 10.0 Hz), 131.1 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 2.4 Hz), [131.0 (d, $J(^{13}C-^{31}P)$ = 1.9 Hz)], 130.7 (dd, $J(^{13}C-^{31}P) = 38.6 \text{ Hz}, 2.4 \text{ Hz}), [130.7 \text{ (t, } J(^{13}C-^{31}P) = 2.4 \text{ Hz})],$ [130.2], [130.1 (d, $J(^{13}C^{-31}P) = 1.9 \text{ Hz})$], 129.7, 129.4, 129.3 (d, $J(^{13}C-^{31}P) = 1.8 \text{ Hz}$), 128.8 (d, $J(^{13}C-^{31}P) = 9.9 \text{ Hz}$), [128.6] $(dd, J(^{13}C - ^{31}P) = 9.8 \text{ Hz}, 1.6 \text{ Hz}), [128.5 (d J(^{13}C - ^{31}P) = 7.1]$ Hz)], 128.4 (d, $J(^{13}C^{-31}P) = 10.4$ Hz), [128.4 (d, $J(^{13}C^{-31}P) =$ 6.4 Hz)], 128.3 (d, $J(^{13}C^{-31}P) = 9.4$ Hz), [126.1], 126.0, 117.5 $(q, J(^{13}C-^{31}P) = 4.3 \text{ Hz}), 109.2 (d, J(^{13}C-^{31}P) = 2.1 \text{ Hz}), [109.1],$ 108.3, [107.9], 98.3 (dd, $J(^{13}C-^{31}P) = 85.0$ Hz, 5.6 Hz), 79.0 $(dd, J(^{13}C-^{31}P) = 9.6 Hz, 5.4 Hz), 76.3 (dd, J(^{13}C-^{31}P) = 16.7$ Hz, 2.4 Hz), 59.3, [59.0], 32.5 (dd, $J(^{13}C-^{31}P) = 24.7$ Hz, 6.0 Hz), 27.6 (d, $J(^{13}C-^{31}P) = 14.7$ Hz), 26.9, [26.7], 26.6, [26.4], 14.9, [14.5], signals for the minor diastereomer are shown in brackets, some signals account for more than one carbon; ³¹P NMR (162 MHz, CDCl₃) δ 12.28 (d, J = 30.7 Hz, 0.84 P), 10.73 (d, J = 30.2 Hz, 0.16 P), 7.51 (d, J = 30.1 Hz, 0.16 P), 3.42 (d, J = 30.7 Hz, 0.84 P).

Analytical data for a mixture of diastereomers 5.1a: **5.2a (86:14):** IR (KBr, cm⁻¹) 3051 (m), 2981 (m), 2931 (w), 1706 (s), 1240 (s), 745 (s), 696 (s); HRMS (FAB) calcd for C₄₁H₄₃O₅P₂-Pd (M + H⁺), 783.1621 found 783.1618.

(-)-[(R or S)-(N,N-Diethylcarbonylmethineoxy-1,2phenylene)][(4S,5S)-O-isopropylidene-2,3-dihydroxy-1,4bis(diphenylphosphino)butane]palladium (5.1b). To a solution of iodopalladium complex 4b (0.686 g, 0.732 mmol) in THF (34 mL) at -78 °C was added a solution of LDA (1.5 M in cyclohexane, 0.53 mL, 0.795 mmol). The mixture was stirred at -78 °C for 15 min, quenched with 0.1 mL of MeOH, and filtered through a small plug of basic alumina, eluting with EtOAc/hexanes (1:1). The solvent was removed under reduced pressure to afford palladacycle 5.1b (0.542 g, 91%) as a yellow solid in 54% de, **5.1b**:**5.2b** = 77:23 (by ¹H NMR). Palladacycle 5.1b with diastereomeric excess 50% de was further purified by flash chromatography over silica eluting with EtOAc/hexanes (2:3), to afford complex 5.1b in 94% de, **5.1b**:**5.2b** = 97:3 (by 1 H NMR): mp 143–147 °C dec (EtOAc/ hexanes); $R_f = 0.29$ (EtOAc/hexanes, 1:1); $[\alpha]_D = 45.8$ (c 0.45,

Analytical data for 5.1b as a 97:3 mixture of diaster**eomers:** ¹H NMR (500 MHz, CDCl₃) δ 8.06 (ddd, J= 10.0 Hz, 8.2 Hz, 2.2 Hz, 2 H), 8.00 (t, J = 8.6 Hz, 2 H), 7.86 (t, J = 8.6Hz, 2 H), 7.62 (t, J = 8.7 Hz, 2 H), 7.49 (td, J = 7.3 Hz, 1.5 Hz, 1 H), 7.46 (td, J = 7.6 Hz, 1.5 Hz, 2 H), 7.39–7.35 (m, 4) H), 7.32 (td, J = 7.7 Hz, 1.7 Hz, 2 H), 7.28 (td, J = 7.4 Hz, 1.4 Hz, 1 H), 7.21 (td, J = 7.8 Hz, 1.7 Hz, 2 H), 6.78 (td, J = 8.2Hz, 1.4 Hz, 1 H), 6.68 (ddd, J = 7.9 Hz, 3.0 Hz, 1.2 Hz, 1 H), 6.65 (tdd, J = 7.9 Hz, 3.4 Hz, 1.4 Hz, 1 H), 6.11 (tt, J = 7.4Hz, 1.5 Hz, 1 H), 5.94 (dd, J = 8.7 Hz, 6.8 Hz, 0.97 H), 5.69 (dd, J = 9.9 Hz, 7.3 Hz, 0.03 H), 4.00–3.95 (m, 1 H), 3.66– 3.61 (m, 1 H), 3.61-3.17 (s br, 2 H), 3.14 (td, J=13.5 Hz, 2.4Hz, 1 H), 3.05 (t br, J = 6.5 Hz, 2 H), 2.55 (ddd, J = 13.9 Hz, 10.8 Hz, 4.7 Hz, 1 H), 2.33 (tt, J = 15.1 Hz, 5.1 Hz, 1 H), 2.18-2.11 (m, 1 H), 1.18 (s, 3 H), 1.01 (t, J = 7.0 Hz, 6 H), 0.90 (s, 3 H); 13 C NMR (125 MHz, CDCl₃) δ 175.1 (d, $J(^{13}\text{C}-^{31}\text{P})=1.9$ Hz), 174.7 (t, $J(^{13}C-^{31}P) = 5.6$ Hz), 148.8 (dd, $J(^{13}C-^{31}P) =$ 103.4 Hz, 9.4 Hz), 140.5 (dd, $J(^{13}C-^{31}P) = 10.5$ Hz, 2.9 Hz), 136.3 (dd, $J(^{13}C-^{31}P) = 35.3$ Hz, 2.9 Hz), 135.0 (d, $J(^{13}C-^{31}P)$ = 14.0 Hz), 134.2 (d, $J(^{13}C-^{31}P)$ = 13.5 Hz), 133.2 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 12.5 Hz), 132.9 (d, $J(^{13}C-^{31}P)$ = 1.4 Hz), 132.2 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 11.4 Hz), 131.9 (d, $J(^{13}C-^{31}P)$ = 1.4 Hz), 131.7 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 2.4 Hz), 131.4, 131.1, 130.9 (d, $J(^{13}C-^{31}P) = 1.9$ Hz), 130.4 (d, $J(^{13}C^{-31}P) = 1.9 \text{ Hz}$), 130.1 (d, $J(^{13}C^{-31}P) = 2.4 \text{ Hz}$), 129.7 (d, $J(^{13}C-^{31}P) = 1.9$ Hz), 128.6 (dd, $J(^{13}C-^{31}P) = 11.5$ Hz, 10.0 Hz), 128.3 (dd, $J(^{13}C^{-31}P) = 9.4$ Hz, 2.6 Hz), 125.7, 117.2 (dd, $J(^{13}C-^{31}P) = 8.2$ Hz, 4.2 Hz), 108.6 (d, $J(^{13}C-^{31}P)$ = 1.9 Hz), 107.7, 104.3 (dd, $J(^{13}C^{-31}P)$ = 89.2 Hz, 4.3 Hz), 77.9 $(dd, J(^{13}C-^{31}P) = 17.0 \text{ Hz}, 7.1 \text{ Hz}), 77.1 (d, J(^{13}C-^{31}P) = 31.5)$ Hz), 41.1 (s br, 2 C), 31.7 (dd, $J(^{13}C-^{31}P) = 19.8$ Hz, 5.5 Hz), 29.8 (d, $J(^{13}C-^{31}P) = 18.5 \text{ Hz}$), 26.8, 26.4, 13.7 (s br, 2 C), only signals for the major diastereomer were detected, some signals account for more than one carbon, broadening of certain signals is the result of a hindered rotation about the C-N bond in the amide group; 31 P NMR (162 MHz, CDCl₃) δ 8.38 (d, J= 31.1 Hz, 1 P), 7.61 (d, J = 31.2 Hz, 1 P); only signals for the major diastereomer were detected.

(+)-[(R or S)-(N,N-Diethylcarbonylmethineoxy-1,2phenylene)][(4S,5S)-O-isopropylidene-2,3-dihydroxy-1,4bis(diphenylphosphino)butane]palladium (5.2b). To a solution of iodopalladium complex 4b (0.151 g, 0.160 mmol) in THF (7.5 mL) at room temperature was added a solution of t-BuOK (1.0 M in THF, 0.18 mL, 0.180 mmol). The mixture was stirred at room temperature for 15 min and filtered through a small plug of basic alumina eluting with EtOAc/ hexanes (1:1). The solvent was removed under reduced pressure to afford palladacycle 5.2b (0.092 g, 71%) as a yellow solid in 52% de (**5.1b**:**5.2b** = 24.76 by ${}^{1}H$ NMR). In a subsequent step, a solution of palladacycle 5.2b (0.031 g, 0.038 mmol) with 44% de (5.1b:5.2b = 28:72 by ${}^{1}H$ NMR) in THF (2.5 mL) at room temperature was resubjected to the closing conditions by adding a solution of t-BuOK (1.0 M in THF, 0.042 mL, 0.042 mmol). The mixture was stirred at room temperature for 3 h and filtered through a small plug of basic alumina eluting with EtOAc/hexanes (1:1). The solvent was removed under reduced pressure to afford palladacycle 5.2b (0.019 g, 61%) in 74% de, 5.1b:5.2b = 13:87 (by ¹H NMR).

Palladacycle **5.1b** with diastereomeric excess 50% de was further purified by flash chromatography over silica eluting with EtOAc/hexanes (2:3) to afford a fraction containing complex **5.2b** in 94% de, **5.1b**: **5.2b** = 3:97 (by 1 H NMR): mp 144–147 °C dec (EtOAc/hexanes, 2:3); $R_f = 0.37$ (EtOAc/hexanes, 1:1); $[\alpha]_D + 31.0$ (c 0.51, CH_2Cl_2).

Analytical data for 5.2b as a 3:97 mixture of diastereomers: $^1\mathrm{H}$ NMR (500 MHz, CDCl $_3$) δ 8.05 (t, J= 8.5 Hz, 2 H), 7.83 (t, J= 8.8 Hz, 2 H), 7.56 (t, J= 7.3 Hz, 2 H), 7.51 (td, J= 8.2 Hz, 1.6 Hz, 2 H), 7.43 (ddd, J= 9.9 Hz, 7.7 Hz, 2.2 Hz, 2 H), 7.33 (td, J= 7.2 Hz, 1.5 Hz, 1 H), 7.28 (td, J= 7.9 Hz, 1.4 Hz, 6 H), 7.16 (td, J= 7.4 Hz, 1 H), 6.86 (td, J= 7.7 Hz, 1.4 Hz, 2 H), 6.81 (td, J= 7.5 Hz, 1.3 Hz, 1 H), 6.72 (td, J= 7.9 Hz, 2.8 Hz, 1 H), 6.67 (ddd, J= 7.8 Hz, 3.1 Hz, 1.0 Hz, 1 H), 6.18 (t, J= 7.4 Hz, 1 H), 5.93 (dd, J= 8.6 Hz, 6.8 Hz, 0.03 H) 5.70 (dd, J= 9.9 Hz, 7.3 Hz, 0.97 H), 4.23 (dt, J= 13.2 Hz,

8.2 Hz, 1 H), 3.82-3.77 (m, 1 H), 3.46 (s br 2 H), 3.30-3.21 (m, 2 H), 3.03 (s br, 2 H), 2.67 (td, J = 14.4 Hz, 4.2 Hz, 1 H), 1.66 (dd, J = 14.6 Hz, 8.4 Hz, 1 H), 1.27 (s, 3 H), 1.24 (s, 3 H),1.10 (s br, 6 H); $^{13}\mathrm{C}$ NMR (125 MHz, CDCl₃) δ 175.5 (d, $J(^{13}\mathrm{C} ^{31}P$) = 1.4 Hz), 174.9 (t, $J(^{13}C-^{31}P)$ = 5.7 Hz), 148.9, 141.0 (dd, $J(^{13}C-^{31}P) = 10.7 \text{ Hz}, 2.6 \text{ Hz}), 136.7 \text{ (dd, } J(^{13}C-^{31}P) = 38.6$ Hz, 3.8 Hz), 135.3 (d, $J(^{13}C-^{31}P) = 13.4$ Hz), 135.0 (t, $J(^{13}C-^{31}P) = 13.4$ Hz) ^{31}P) = 1.9 Hz), 133.8 (d, $J(^{13}C-^{31}P)$ = 13.5 Hz), 133.3 (dd, $J(^{13}C-^{31}P) = 32.0 \text{ Hz}, 1.9 \text{ Hz}), 133.1 \text{ (d, } J(^{13}C-^{31}P) = 13.0 \text{ Hz}),$ 131.6 (d, $J(^{13}C-^{31}P) = 10.0 \text{ Hz}$), 130.9 (d, $J(^{13}C-^{31}P) = 1.9 \text{ Hz}$), 130.5 (d, $J(^{13}C-^{31}P) = 1.4 \text{ Hz}$), 130.2 (d, $J(^{13}C-^{31}P) = 2.4 \text{ Hz}$), 130.0, 129.7, 128.8 (d, $J(^{13}C-^{31}P) = 9.8$ Hz), 128.7 (d, $J(^{13}C-^{31}P) = 9.8$ Hz) ^{31}P) = 1.9 Hz), 128.3, 128.2 (d, $J(^{13}C-^{31}P)$ = 2.0 Hz), 127.9 (d, $J(^{13}C-^{31}P) = 9.5 \text{ Hz}$, 125.7, 117.4 (dd, $J(^{13}C-^{31}P) = 8.6 \text{ Hz}$), 108.6, 108.1, 104.3 (dd, $J(^{13}C-^{31}P) = 92.0$ Hz, 4.9 Hz), 79.3 $(dd, J(^{13}C-^{31}P) = 9.5 Hz, 4.3 Hz), 76.4 (dd, J(^{13}C-^{31}P) = 17.6$ Hz, 2.9 Hz), 41.1 (s br, 2 C), 33.3 (dd, $J(^{13}C-^{31}P) = 24.1$ Hz, 5.5 Hz), 26.9, 26.8, 26.1 (d, $J(^{13}C^{-31}P) = 15.1$ Hz), 13.7 (s, br, 2 C), only signals for the major diastereomer were detected, several signals account for more than one carbon, broadening of certain signals is the result of a hindered rotation about the C-N bond in the amide group; ³¹P NMR (162 MHz, CDCl₃) δ 8.76 (d, J = 30.9 Hz, 1 P), 3.52 (d, J = 30.8 Hz, 1 P); only the signals for the major diastereomer were detected.

Analytical data for a mixture of diastereomers 5.1b: 5.2b (69:31): IR (KBr, cm $^{-1}$) 3051 (m), 2981 (m), 2930 (m), 1582 (m), 1223 (m), 743 (s), 696 (s); HRMS (FAB) calcd for $C_{43}H_{48}NO_4P_2Pd$ (M + H $^+$), 810.2093, found 810.2119.

(+)-[(*S*)-(Ethoxycarbonylmethineoxy-1,2-phenylene)]-[(2*S*,4*S*)-2,4-bis(diphenylphosphino)pentane]palladium (5.1c). To a solution of iodopalladium complex 4c (0.150 g, 0.176 mmol) in THF (7.5 mL) at -78 °C was added a solution of *t*-BuOK (1.0 M in THF, 0.20 mL, 0.200 mmol). The mixture was stirred at -78 °C for 15 min and filtered through a small plug of basic alumina eluting with EtOAc. The solvent was removed under reduced pressure to afford palladacycle 5.1c (0.126 g, 99%) as an orange solid in 74% de, 5.1c:5.2c = 87:13 (by ¹H NMR); R_f = 0.32 (EtOAc/hexanes, 2:3); [α]_D+1.1 (c 0.55, CH₂Cl₂).

Analytical data for 5.1c as a 87:13 mixture of diaster**eomers:** ¹H NMR (500 MHz, CDCl₃) δ 8.05–8.02 (m, 0.26 H), 7.84 (t, J = 6.6 Hz, 1.74 H), 7.71 (t, J = 8.6 Hz, 0.26 H), 7.67 7.62 (m, 3.48 H), 7.60 (t, J = 8.8 Hz, 0.26 H), 7.53 (td, J = 8.6Hz, 1.5 Hz, 3.26 H), 7.46-7.39 (m, 3 H), 7.38-7.34 (m, 2 H), 7.33-7.30 (m, 1.74 H), 7.28-7.25 (m, 2 H), 7.11 (td, J = 7.7Hz, 1.4 Hz, 2 H), 6.85–6.84 (m, 1.74 H), 6.79–6.77 (m, 0.26 H), 6.51 (td, J = 7.9 Hz, 3.3 Hz, 0.87 H), 6.50 (td, J = 7.9 Hz, 3.6 Hz, 0.13 H), 6.21-6.15 (m, 0.87 H), 6.12-6.09 (m, 0.13 H), 5.50 (t, J = 8.7 Hz, 0.87 H), 5.17 (t, J = 8.5 Hz, 0.13 H), 3.92 (dq, J = 7.0 Hz, 3.6 Hz, 1 H), 3.69 (dq, J = 7.1 Hz, 3.6 Hz,0.87 H), 2.91-2.87 (m, 0.13 H), 2.84-2.78 (m, 0.87 H), 2.77-2.68 (m, 1 H), 2.08-1.92 (m, 1 H), 1.91-1.78 (m, 1 H), 1.73-1.66 (m, 0.13 H), 1.91 (dd, J = 11.0 Hz, 7.0 Hz, 2.61 H), 1.13-1.07 (m, 3 H), 0.93 (t, J = 7.1 Hz, 2.61 H), 0.92–0.88 (m, 0.39 H), 0.63 (t, J = 7.1 Hz, 0.39 H); ¹³C NMR (125 MHz, CDCl₃) δ 176.2, 174.5 (t, J = 4.3 Hz), 148.8 (dd, $J(^{13}C-^{31}P) = 103.6$ Hz, 7.7 Hz), 139.9 (dd, $J(^{13}C-^{31}P) = 9.5$ Hz, 2.4 Hz), [137.0 (d, $J(^{13}C-^{31}P) = 14.2 \text{ Hz}$], 135.8 (d, $J(^{13}C-^{31}P) = 12.0 \text{ Hz}$), [134.9 (d, $J(^{13}C-^{31}P) = 11.9 \text{ Hz}$)], 134.4 (d, $J(^{13}C-^{31}P) = 12.6 \text{ Hz}$), $[134.3 \text{ (d, } J(^{13}\text{C}-^{31}\text{P}) = 12.7 \text{ Hz})], 134.0 \text{ (d, } J(^{13}\text{C}-^{31}\text{P}) = 11.8$ Hz), 133.9 (d, $J(^{13}C-^{31}P) = 10.2$ Hz), [132.1 (d, $J(^{13}C-^{31}P) =$ 9.2 Hz)], 131.2 (d, $J(^{13}C-^{31}P) = 1.4$ Hz), 131.2, 131.1 (dd, $J(^{13}C-^{31}P) = 6.2 \text{ Hz}, 2.4 \text{ Hz}, 130.9, [130.7 \text{ (d, } J(^{13}C-^{31}P) =$ 1.9 Hz)], 130.6 (d, $J(^{13}C-^{31}P) = 1.9$ Hz), 130.4, 130.3 (dd, $J(^{13}C-^{31}P) = 13.4 \text{ Hz}, 2.0 \text{ Hz}), 130.2 \text{ (d, } J(^{13}C-^{31}P) = 2.1 \text{ Hz}),$ 130.1 (d, $J(^{13}C^{-31}P) = 2.1 \text{ Hz}$), 129.5 (d, $J(^{13}C^{-31}P) = 1.9 \text{ Hz}$), $[129.1 \text{ (d, } J(^{13}C-^{31}P) = 9.5 \text{ Hz})], 128.7 \text{ (d, } J(^{13}C-^{31}P) = 9.3 \text{ Hz}),$ $[128.3 (d, J(^{13}C-^{31}P) = 8.8 Hz)], 128.2 (d, J(^{13}C-^{31}P) = 9.6 Hz),$ 127.9 (d, $J(^{13}C-^{31}P) = 9.0 \text{ Hz}$), [127.8 (d, $J(^{13}C-^{31}P) = 9.7 \text{ Hz}$)], 127.6 (d, $J(^{13}C^{-31}P) = 9.5$ Hz), [127.5 (d, $J(^{13}C^{-31}P) = 10.2$ Hz)], 125.7, [125.6], 117.5 (dd, $J(^{13}C-^{31}P) = 8.3$ Hz, 4.4 Hz),

109.0 (d, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=2.5$ Hz), [108.6 (d, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=2.5$ Hz)], 95.9 (dd, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=84.4$ Hz, 5.4 Hz), 58.5, [58.2], 35.4 (t, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=6.3$ Hz), 29.7, [29.1 (dd, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=22.2$ Hz, 5.0 Hz)], 28.1 (dd, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=21.9$ Hz, 6.0 Hz), 25.6 (dd, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=16.6$ Hz, 1.8 Hz), [19.1 (d, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=7.5$ Hz)], 17.9 (d, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=2.5$ Hz), [16.9 (d, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=4.9$ Hz)], 16.7 (d, $\mathcal{J}(^{13}\text{C}-^{31}\text{P})=3.2$ Hz), 14.6, [14.0], signals for the minor diastereomer are given in brackets, several signals account for more than one carbon; ^{31}P NMR (162 MHz, CDCl₃) δ 22.34 (d, $\mathcal{J}=43.1$ Hz, 0.13 P), 21.74 (d, $\mathcal{J}=45.8$ Hz, 0.87 P), 16.65 (d, $\mathcal{J}=43.0$ Hz, 0.13 P), 14.34 (d, $\mathcal{J}=46.0$ Hz, 0.87 P).

(+)-[(R)-(Ethoxycarbonylmethineoxy-1,2-phenylene)]-[(2S,4S)-2,4-bis(diphenylphosphino)pentane]palladium (5.2c). To a solution of iodopalladium complex 4c (0.148 g, 0.174 mmol) in THF (7.5 mL) at -78 °C was added a solution of LDA (1.5 M in cyclohexane, 0.13 mL, 0.195 mmol). The mixture was stirred at $-78\ ^{\circ}\text{C}$ for 15 min, quenched with 0.1 mL of MeOH, and filtered through a small plug of basic alumina eluting with EtOAc. The solvent was removed under reduced pressure to afford palladacycle 5.2c (0.125 g, 99%) as an orange solid in 76% de, **5.1c:5.2c** = 12:88 (by ¹H NMR). Palladacycle 5.2c with diastereomeric excess 72% de, 5.1c:5.2c = 14:86 (by ¹H NMR), was crystallized by a slow diffusion of hexane into a methylene chloride solution of the palladacycle to afford palladacycle 5.2c as a pure diastereomer: mp 212-214 °C dec (CH₂Cl₂/hexanes); $R_f = 0.38$ (EtOAc/hexanes, 2:3); $[\alpha]_D$ +99.4 (c 0.18, CH₂Cl₂).

Analytical data for a pure diastereomer 5.2c: 1H NMR (400 MHz, CDCl₃) δ 8.06–8.01 (m, 2 H), 7.71 (t, J = 8.6 Hz, 2 H), 7.59 (t, J = 8.6 Hz, 2 H), 7.56-7.53 (m, 5 H), 7.45-7.41 (m, 3 H), 7.37-7.35 (m, 2 H), 7.26 (t, J = 7.5 Hz, 2 H), 7.13(td, J = 7.3 Hz, 1.5 Hz, 2 H), 6.79 - 6.77 (m, 2 H), 6.50 (td, J =7.9 Hz, 3.3 Hz, 1 H), 6.14-6.07 (m, 1 H), 5.17 (t, J = 8.5 Hz, 1 H), 3.91 (dq, J = 7.1 Hz, 3.6 Hz, 1 H), 2.86 (dq, J = 7.1 Hz, 3.6 Hz, 1 H), 2.81-2.73 (m, 2 H), 1.85-1.72 (m, 1 H), 1.70-1.62 (m, 1 H), 1.11 (dd, J = 14.1 Hz, 7.1 Hz, 3 H), 0.90 (dd, J $= 9.7 \text{ Hz}, 7.0 \text{ Hz}, 3 \text{ H}) 0.62 \text{ (t, } J = 7.1 \text{ Hz}, 3 \text{ H)}; {}^{13}\text{C NMR (125)}$ MHz, CDCl₃) δ 176.7, 140.9 (dd, $J(^{13}C-^{31}P) = 9.3$ Hz, 2.4 Hz), 137.0 (d, $J(^{13}C-^{31}P) = 13.8$ Hz), 134.7 (dd, $J(^{13}C-^{31}P) = 70.0$ Hz, 12.2 Hz), 132.1 (d, $J(^{13}C-^{31}P) = 9.4$ Hz), 130.7 (dd, $J(^{13}C-^{31}P) = 9.4$ Hz) ^{31}P) = 16.0 Hz, 2.1 Hz), 130.5, 130.2 (d, $J(^{13}C-^{31}P) = 1.9$ Hz), 129.1 (d, $J(^{13}C-^{31}P) = 9.5 \text{ Hz}$), 128.3 (d, $J(^{13}C-^{31}P) = 8.8 \text{ Hz}$), $127.7 \text{ (dd, } J(^{13}\text{C}-^{31}\text{P}) = 36.5 \text{ Hz}, 10.0 \text{ Hz}), 127.1, 126.8, 125.6,$ 117.8 (dd, $J(^{13}C-^{31}P) = 8.3$ Hz, 4.1 Hz), 108.7 (d, $J(^{13}C-^{31}P)$ = 2.4 Hz), 98.5 (dd, $J(^{13}C-^{31}P)$ = 85.3 Hz, 5.7 Hz), 58.2, 35.6 (d, $J(^{13}C-^{31}P) = 5.2$ Hz), 29.0 (dd, $J(^{13}C-^{31}P) = 21.7$ Hz, 5.5 Hz), 25.8 (dd, $J(^{13}C-^{31}P) = 18.8$ Hz, 5.0 Hz), 19.1 (d, $J(^{13}C-^{31$ $^{31}P) = 7.5 \text{ Hz}$), 16.9 (d, $J(^{13}C-^{31}P) = 4.9 \text{ Hz}$), 14.0, several signals account for more than one carbon; ³¹P NMR (202 MHz, CDCl₃) δ 22.32 (d, J = 43.0 Hz, 1 P), 16.65 (d, J = 42.7 Hz, 1

Analytical data for a mixture of diastereomers 5.1c: 5.2c (87:13): IR (KBr, cm $^{-1}$) 3050 (m), 2975 (m), 2927 (m), 1701 (s), 1480 (m), 1157 (s), 746 (s), 697 (s); HRMS (FAB) calcd for $C_{39}H_{41}O_3P_2Pd$ (M + H $^+$), 725.1566, found 725.1541. Anal. Calcd for $C_{39}H_{40}O_3P_2Pd$: C, 64.60; H, 5.56. Found: C, 64.21; H, 5.88.

General Procedure for Preparation of (+)-[(*R*)-Ethoxycarbonylmethineoxy-1,2-phenylene)][1,2-bis(diphenylphosphino)ethane]palladium (+)-7 and (-)-[(*S*)-Ethoxycarbonylmethineoxy-1,2-phenylene)][1,2-bis(diphenylphosphino)ethane]palladium (-)-7. Solutions of complexes 5.1a or 5.2a (1.0 mmol) and dppe (1.1 mmol) in methylene chloride (78 mL) were stirred for 16 h at room temperature under argon. The crude reaction mixtures were purified by flash chromatography over silica eluting with EtOAc/hexanes (1:1) to afford pure palladacycles (+)-7 or (-)-7 as white solids.

(-)-[(*S*)-Ethoxycarbonylmethineoxy-1,2-phenylene)]-[1,2-bis(diphenylphosphino)ethane]palladium [(-)-7]. Complex **5.1a** (0.032 g, 0.407 mmol) with 66% de, **5.1a**:5.2a = 83:17 (by ¹H NMR), and dppe (0.036 g, 0.091 mmol) were treated according to the general procedure described above to

afford complex (–)-7 (0.021 g, 74%) as a yellow solid in 68.2% ee, **5.1a:5.2a** = 15.87:84.12 (by HPLC): $[\alpha]_D$ –78.7 (c 0.40, CH_2Cl_2).

(+)-[(*R*)-Ethoxycarbonylmethineoxy-1,2-phenylene)]-[1,2-bis(diphenylphosphino)ethane]palladium [(+)-7]. Complex **5.2a** (0.061 g, 0.077 mmol) with 30% de, **5.1a:5.2a** = 35:65 (by 1 H NMR), and dppe (0.035 g, 0.087 mmol) were treated according to the general procedure described above to afford complex (+)-7 (0.052 g, 98%) as a white solid in 26.5% ee, **5.1a:5.2a** = 36.73:63.26 (by HPLC): [α]_D +33.5 (c 0.54, CH₂Cl₂).

(+)-[(*R*)-Ethoxycarbonylmethineoxy-1,2-phenylene)]-[1,2-bis(diphenylphosphino)ethane]palladium [(+)-7]. To a solution of **5.2c** (0.050 g, 0.069 mmol) with 62% de, **5.1c**: **5.2c** = 19:81 (by 1 H NMR) in methylene chloride (5 mL), was added dppe (0.095 g, 0.239 mmol) by a stepwise addition of a single equivalent over a period of 4 days. Solvents were removed under reduced pressure, and the resulting solid was triturated with ether to afford the crude product as a yellow solid. The crude product was purified by filtration through a short plug of silica eluting with EtOAc/hexanes (2:1) to afford complex (+)-7 (0.263 g, 56%) as a pale yellow solid in 62.1% ee, **5.1c**:**5.2c** = 18.95:81.05 (by HPLC): $[\alpha]_D$ +71.7 (c 0.52, CH₂Cl₂).

Analytical data for palladacycle (\pm)-7: mp 213-214 °C dec (ether); $R_f = 0.70$ (EtOAc/hexanes, 1:1); ¹H NMR (500 MHz, CDCl₃) δ 7.94–7.90 (m, 2 H), 7.78–7.69 (m, 6 H), 7.50–7.38 (m, 12 H), 6.95 (ddd, J = 7.9 Hz, 3.4 Hz, 1.3 Hz, 1 H), 6.91 (dd, J = 7.0 Hz, 1.3 Hz, 1 H), 6.89 - 6.85 (m, 1 H), 6.31 (dd, J= 9.9 Hz, 3.8 Hz, 1 H), 6.26 (tt, J = 7.2 Hz, 1.6 Hz, 1 H), 3.86(dq, J = 7.1 Hz, 3.4 Hz, 1 H), 3.22 (dq, J = 7.1 Hz, 3.6 Hz, 1)H), 2.64-2.48 (m, 1 H), 2.38-2.25 (m, 1 H), 2.06-1.99 (m, 1 H), 1.85-1.74 (m, 1 H), 0.76 (t, J = 7.1 Hz, 3 H); 13 C NMR (125 MHz, CDCl₃) δ 177.4 (d, $J(^{13}C-^{31}P)=3.0$ Hz), 175.4 (t, $J(^{13}C-^{31}P) = 4.6 \text{ Hz}$, 140.4 (dd, $J(^{13}C-^{31}P) = 10.9 \text{ Hz}$, 2.4 Hz), 134.7 (dd, $J(^{13}C-^{31}P) = 13.6$ Hz, 3.0 Hz), 134.0 (t, $J(^{13}C-^{31}P)$ = 5.4 Hz), 133.5 (d, $J(^{13}C-^{31}P)$ = 12.9 Hz), 132.6 (d, $J(^{13}C-^{31}P)$ ^{31}P) = 11.5 Hz), 132.0, 131.4, 131.3 (d, $J(^{13}C-^{31}P)$ = 7.9 Hz), 131.1 (d, $J(^{13}C-^{31}P) = 9.9$ Hz), 131.0, 130.5 (dd, $J(^{13}C-^{31}P) =$ 69.1 Hz, 2.4 Hz), 129.4, 129.0 (dd, $J(^{13}C-^{31}P) = 13.4$ Hz, 10.0 Hz), 128.8 (d, $J(^{13}C-^{31}P) = 6.8$ Hz), 128.7 (dd, $J(^{13}C-^{31}P) =$ 17.8 Hz, 9.8 Hz), 126.3, 117.9 (dd, $J(^{13}C-^{31}P) = 8.1$ Hz, 4.9 Hz), 109.4 (d, $J(^{13}C-^{31}P) = 2.0$ Hz), 96.8 (dd, $J(^{13}C-^{31}P) = 85.6$ Hz, 5.3 Hz), 58.7, 29.7 (dd, $J(^{13}C^{-31}P) = 26.4$ Hz, 17.0 Hz), 28.9 (dd, $J(^{13}C^{-31}P) = 26.7$ Hz, 18.2 Hz), 14.1, several signals account for more than one carbon; ³¹P NMR (202 MHz, CDCl₃) δ 44.23 (d, J = 19.3 Hz, 1 P), 41.39 (d, J = 19.0 Hz, 1 P); IR (KBr, cm⁻¹): 3049 (w), 2980 (w), 1692 (s), 1434 (m), 1176 (m), 747 (w), 699 (w); HRMS (FAB) calcd for $C_{36}H_{35}O_3P_2Pd$ (M + H⁺), 683.1096, found 683.1073. Anal. Calcd for C₃₆H₃₄O₃-P₂Pd: C, 63.30; H, 5.02. Found: C, 63.02; H, 5.13.

(-)-2-N,N-Diethylcarbonyl-3,4-bis(methoxycarbonyl)-**2H-1-benzopyran** [(-)-8]. To a solution of palladacycle **5.1b** with 96% de, **5.1b**:**5.2b** = 98:2 (by 1 H NMR) (0.146 g, 0.180 mmol) in methylene chloride (5.5 mL), was added dimethyl acetylenedicarboxylate (0.048 mL, 0.055 g, 0.390 mmol). The reaction mixture was stirred for 6 h at 100 °C and subsequently for 16 h at room temperature in a 25 mL sealed glass tube. The crude reaction mixture was purified by flash chromatography over silica eluting with EtOAc/hexanes (1:2) to afford pure 2H-1-benzopyran (-)-8 (0.039 g, 62%) as a light yellow oil in 88.4% ee (by HPLC): $[\alpha]_D -13.4$ (c 1.36 CH₂Cl₂); R_f = 0.56 (EtOAc/hexanes, 1:3); ¹H NMR (400 MHz, CDCl₃) δ 7.24 (td, J = 7.8 Hz, 1.4 Hz, 1 H), 7.08 (dd, J = 7.8 Hz, 1.5 Hz, 1 H), 6.93 (td, J = 7.6 Hz, 1.0 Hz, 1 H), 6.84 (d, J = 8.2 Hz, 1 H), 5.95 (s, 1 H), 3.96 (s, 3 H), 3.77 (s, 3 H), 3.70-3.55 (m, 2 H), 3.36-3.23 (m, 2 H), 1.33 (t, J = 7.1 Hz, 3 H), 1.06 (t, J =7.1 Hz, 3 H).

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the ACS,

to Kansas NSF EPSCoR, and to Kansas Technology Enterprise Corporation for support of this research. We thank our colleague Dr. Douglas R. Powell for his assistance with X-ray crystallography.

Supporting Information Available: Descriptions of the X-ray crystallographic study on palladacycle **5.2c** and experimental procedures for the experiments in Table 2 and for the

chiral-phase chromatographic analyses. Includes HPLC chromatograms of (\pm) -7, (+)-7, (-)-7, (\pm) -8, and (-)-8 and photocopies of 1 H and 13 C NMR spectra of complexes $\mathbf{4a}$ - \mathbf{c} , $\mathbf{5a}$ - \mathbf{c} , and $\mathbf{7}$. This material is available free of charge via the Internet at http://pubs.acs.org.

OM030207B