Ruthenium-Catalyzed One-Pot *â***-Alkylation of Secondary Alcohols with Primary Alcohols**

Chan Sik Cho*,†

Research Institute of Industrial Technology, Kyungpook National University, Taegu 702-701, Korea

Bok Tae Kim, Hong-Seok Kim, Tae-Jeong Kim, and Sang Chul Shim*

Department of Industrial Chemistry, College of Engineering, Kyungpook National University, Taegu 702-701, Korea

Received April 25, 2003

Summary: Secondary alcohols (carbinols) react with primary alcohols in dioxane at 80 °*C in the presence of a catalytic amount of RuCl2(PPh3)3 and KOH along with a sacrificial hydrogen acceptor to afford the corresponding coupled secondary alcohols. The reaction is applicable to a wide range of aryl methyl, alkyl methyl, and cyclic carbinols, and with alkyl methyl carbinols, the alkylation took place exclusively at the less-hindered methyl position over â-methylene and -methine.*

Introduction

Many unit organic reactions have been developed to give high efficiency and convenience of reaction.¹ In connection with this report, as shown in Scheme 1, *â*-alkylation of secondary alcohol **A** (carbon *â*-alkylation to the oxygen atom of **A**) generally can be accomplished via several step-by-step unit transformations such as oxidation of secondary alcohol **A** to ketone **B** $(A \rightarrow B)$,² an appropriate alkylation ($\mathbf{B} \rightarrow \mathbf{C}$),³ and reduction of alkylated ketone **C** to alkylated secondary alcohol **D** $(C \rightarrow D)$.⁴ However, a one-pot process for β -alkylation of $A (A \rightarrow D)$ without such preconversions is desirable from an organic synthetic point of view. During the course of our ongoing studies on ruthenium-catalyzed organic reactions, $5-\overline{8}$ we found an unusual type of ruthenium-catalyzed transfer hydrogenation of ketones

(7) Cho, C. S.; Kim, B. T.; Lee, M. J.; Kim, T.-J.; Shim, S. C. *Angew. Chem., Int. Ed.* **2001**, *40*, 958.

(8) For an excellent review on ruthenium-catalyzed organic reactions: Naota, T.; Takaya, H.; Murahashi, S.-I. *Chem. Rev*. **1998**, *98*, 2599.

Scheme 1

^B by primary alcohols **^E** accompanied by carbon-carbon coupling under KOH (eq 1). $9,10$ Tuning the molar ratio

of **E** to **B** was crucial for preferential formation of the alkylated ketone **C**9b or the unconventional transferhydrogenated secondary alcohol **D**. 9a It was also suggested that the reaction proceeds via an intrinsic ruthenium-catalyzed redox shuttle between alcohols and

[†] E-mail: cscho@knu.ac.kr. Fax: (+82)53-950-6594.

⁽¹⁾ Larock, R. C. *Comprehensive Organic Transformations*; VCH: New York, 1989.

⁽²⁾ Hudlicky´, M. *Oxidations in Organic Chemistry*; American Chemical Society: Washington, DC, 1990.

⁽³⁾ Caine, D. In *Comprehensive Organic Synthesis*; Trost, B. M.,

Fleming, I., Eds.; Pergamon: Oxford, U.K., 1991; Vol. 3, pp 1-63. (4) Hudlicky´, M. *Reductions in Organic Chemistry*; American Chemi-

cal Society: Washington, DC, 1986. (5) (a) Cho, C. S.; Lim, H. K.; Shim, S. C.; Kim, T. J.; Choi, H.-J. *Chem. Commun.* **1998**, 995. (b) Cho, C. S.; Kim, J. H.; Shim, S. C. *Tetrahedron Lett.* **2000**, 41, 1811. (c) Cho, C. S.; Kim, J. H.; Kim, T.-
J.; Shim, S. C. *Tetrahedron* **2001**, 57, 3321. (d) Cho, C. S.; Kim, J. H.; Choi, H.-J.; Kim, T.-J.; Shim, S. C. *Tetrahedron Lett*. **2003**, *44*, 2975.

^{(6) (}a) Cho, C. S.; Oh, B. H.; Shim, S. C. *Tetrahedron Lett*. **1999**, *40*, 1499. (b) Cho, C. S.; Kim, J. S.; Oh, B. H.; Kim, T.-J.; Shim, S. C. *Tetrahedron* **2000**, *56*, 7747. (c) Cho, C. S.; Oh, B. H.; Kim, J. S.; Kim, T.-J.; Shim, S. C. *Chem. Commun. 2000*, 1885. (d) Cho, C. S.; Kim, B.
T.-J.; Shim, S. C. *Chem. Commun. 2000*, 1885. (d) Cho, C. S.; Kim, B. S. **2002**, *650*, 65.

^{(9) (}a) For instance, treatment of acetophenone with 3 equiv of benzyl alcohol under the standard set of reaction conditions, RuCl₂-(PPh₃)₃ (5 mol %)/KOH (3 equiv)/dioxane/80 °C/20 h, afforded 1,3diphenylpropan-1-ol and 1,3-diphenylpropan-1-one in 77% and 3% isolated yields, respectively: Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. *J. Org. Chem*. **2001**, *66*, 9020. (b) For instance, treatment of equimolar amounts of acetophenone and benzyl alcohol under RuCl2-(PPh3)3 (2 mol %)/KOH (1 equiv)/1-dodecene (1 equiv)/dioxane/80 °C/ 20 h gave 1,3-diphenylpropan-1-one and 1,3-diphenylpropan-1-ol in 82% and 2% isolated yields, respectively. On the other hand, when the reaction was carried out in the absence of 1-dodecene, 1,3 diphenylpropan-1-one was formed in 70% yield along with a consider-able amount of 1,3-diphenylpropan-1-ol (14%): Cho, C. S.; Kim, B. T.; Kim, T.-J.; Shim, S. C. *Tetrahedron Lett*. **2002**, *43*, 7987.

⁽¹⁰⁾ For recent reviews on transition-metal-catalyzed transfer hydrogenations: (a) Zassinovich, G.; Mestroni, G.; Gladiali, S. *Chem. Rev.*
1992, *92*, 1051. (b) Bäckvall, J.-E.; Chowdhury, R. L.; Karlsson, U.; Wang, G. In *Perspectives in Coordination Chemistry*; Williams, A. F.,
Floriani, C., Merbach, A. E., Eds.; VCH: New York, 1992; pp 463-
486 (c) Novori. R.: Hashiguchi. S. *Acc. Chem. Res*. **1997**–30-97 (d) 486. (c) Noyori, R.; Hashiguchi, S. *Acc. Chem. Res*. **1997**, *30*, 97. (d) Palmer, M.; Wills, M. *Tetrahedron: Asymmetry* **1999**, *10*, 2045.

carbonyl compounds.10 Prompted by these findings, we have directed our attention to the present work. Herein we report an unprecedented one-pot procedure for *â*-alkylation of secondary alcohols with primary alcohols in the presence of a ruthenium catalyst along with a base and a sacrificial hydrogen acceptor.

Results and Discussion

Treatment of 1-phenylethanol (**1a**) with 2 equiv of benzyl alcohol (**2a**) in dioxane in the presence of a catalytic amount of $RuCl₂(PPh₃)₃$ (5 mol %) and KOH at 80 °C for 40 h afforded 1,3-diphenylpropan-1-ol (**3a**) in 18% isolated yield with concomitant formation of 1,3 diphenylpropan-1-one (**4a**) (7% yield). Performing the reaction for a longer time (120 h) gave at most a slightly increased yield of **3a** (21%) and **4a** (18%). However, interestingly, when 5 equiv of 1-dodecene was further added, the reaction rate was dramatically enhanced and the secondary alcohol **3a** was obtained nearly as the sole product (**3a**, 82%; **4a**, 3%).

As to the reaction pathway, 11 it seems to proceed via initial oxidations of both substrates to acetophenone (**5**) and benzaldehyde (**6**), respectively (Scheme 2).12 **5** and **6** then undergo a cross-aldol reaction under KOH to give the α , β -unsaturated ketone **7**, which is subsequently hydrogenated to **4a** and **3a**. ¹³ Reaction rate enhancement by the addition of 1-dodecene seems to be considered as a faster regeneration of [Ru] from $\text{[Ru]}H_2$ generated in the initial oxidation stages by reducing 1-dodecene to dodecane. Thus, forward oxidation is accelerated in the ruthenium-catalyzed redox shuttle, since **5** and **6** are consumed in the aldol reaction. However, unfortunately, an attempt by GLC analysis to detect dodecane in the crude mixture met with failure, since the 1-dodecene and dodecane peaks are exactly eclipsed. Thus, we examined another sacrificial hydrogen acceptor to determine the fate of 1-dodecene. With diphenylacetylene, although the additive effect was lower than that when 1-dodecene was used (**3a**, 32%; **4a**, 23%), we confirmed the reduced species *trans*and *cis*-stilbene (49% yield based on diphenylacety-

Scheme 2 Table 1. Ruthenium-Catalyzed *â***-Alkylation of Secondary Alcohols 1 with Primary Alcohols 2***^a*

secondary alcohol 1	primary alcohol 2	product 3	yield b (%)
OH		OH	
	OH R	R Ar	
$1a \text{ Ar} = Ph$	$2a R = Ph$	3a	82
	$2b R = Pr$	3b	75
	$2c R =$ pentyl	3c	80
	2d $R = iBu$	3d	82
	$2e R = i Pr$	3e	76
	$2f R = sBu$	3f	76 ^c
	$2g R = 3$ -pentyl	3g	70
	$2h R =$ phenethyl	3h	78
	$2i R = 1$ -naphthyl	3i	89
	$2j R =$ ferrocenyl	3j	81
1b Ar = 2-Me C_6H_4	2a	3k	60
1c Ar = 3 -MeC ₆ H ₄	2a	31	80
1d Ar = 4 -MeC ₆ H ₄	2a	3m	79
1e Ar = 4-MeOC ₆ H ₄	2a	3n	70
1f Ar = 4 -FC ₆ H ₄	2a	3 ₀	66
1g $Ar = 2$ -naphthyl	2a	3p	65
	2 _b	3q	90
OH		OH	
	2 _h	Ph j4	34
1h		3r	
OH		ОН	
		Ph	
Phi	2 _h	Phí	58
li		3s	
OH		OH	
	2 _h	Ph	25
1j		3 _t	
OH		OH	
		R	
1k	2a	3 _u	54^d
	2 _b	3v	49^e

a Reaction conditions: **1** (1 mmol), **2** (2 mmol), $RuCl_2(PPh_3)$ ₃ (5 mol %), 1-dodecene (5 mmol), KOH (3 mmol), dioxane (2 mL), 80 °C, for 40 h. *^b* Isolated yield based on **1**. *^c* Mixture of diastereoisomers (1:0.9). *^d* Mixture of diastereomers (5.8:4.2). 2-Benzyl-1 tetralone was also isolated in 30% yield. *^e* Mixture of diastereomers (7:3). 2-Butyl-1-tetralone was also isolated in 43% yield.

lene).^{14,15} In addition to the usual transfer hydrogenation of **7** to **4a** and **3a** by the starting alcohols **1a** and **2a**, this reaction seems to occur partially by transfer hydrogenation from solvent dioxane. In a separate experiment, we confirmed that **7** was reduced to **4a** and **3a** in 34% and 32% yields, respectively, under the employed conditions $RuCl₂(PPh₃)₃– KOH-dioxane.$ It is known that dioxane has been used as a hydrogen donor in transition-metal-catalyzed transfer hydrogenation.¹⁶

The present reaction could also be applied to many secondary alcohols **1** and primary alcohols **2** (Table 1). The reaction of **1a** with various straight and branched primary alcohols **2a**-**^j** gave the corresponding coupled carbinols **3a**-**^j** in yields of 70-89%. In all cases, coupled ketones were formed in less than 10% yield. However, no β , β -dialkylation was observed in the GLC and ¹H NMR analyses. Similar treatment of 1-phenyl-1-propanol with **2a** under the employed conditions gave no alkylation products. 1-Arylethanols **1b**-**^g** were also

⁽¹¹⁾ Santosh Laxmi, Y. R.; Ba¨ckvall, J.-E. *Chem. Commun*. **2000**, 611.

⁽¹²⁾ It is known that initial oxidation proceeds via oxidative addition of the O–H bond to Ru and subsequent β -hydrogen elimination.¹⁰

of the O-H bond to Ru and subsequent *β*-hydrogen elimination.¹⁰
(13) Bases are used as promoters in transition-metal-catalyzed
transfer hydrogenation of ketones to alcohols.¹⁰

⁽¹⁴⁾ Blum, Y.; Reshef, D.; Shvo, Y. *Tetrahedron Lett*. **1981**, *22*, 1541.

⁽¹⁵⁾ However, treatment of diphenylacetylene under the employed conditions scarcely afforded stilbenes. This result indicates that diphenylacetylene is converted to stilbenes by transfer hydrogenation from the starting alcohols **1a** and **2a**.

^{(16) (}a) Imai, H.; Nishiguchi, T.; Fukuzumi, K. *J. Org. Chem*. **1976**, *41*, 665. (b) Anwer, M. K.; Sherman, D. B.; Roney, J. G.; Spatola, A. F. *J. Org. Chem*. **1989**, *54*, 1284.

reacted with **2a** to afford the coupled carbinols **3k**-**q**, and the product yield was not considerably affected by the position and electronic nature of the substituent on the aromatic ring of **1**. With alkyl methyl carbinols **1h**-**j**, although the product yield was lower than that in the case of aryl methyl carbinols, the alkylation took place exclusively at the less-hindered methyl position over β -methylene and -methine. The reaction of α -tetralol (**1k**) with **2a**,**b** gave not only the corresponding alkylated alcohols (**3u**,**v**) as diastereoisomeric mixtures but also higher yields of alkylated ketones (2-benyl-1 tetralone, 30% yield; 2-butyl-1-tetralone, 43% yield) compared with that when aryl methyl and alkyl methyl carbinols were used.

In summary, we have discovered a novel regioselective *â*-alkylation of secondary alcohols with primary alcohols in the presence of a catalytic amount of a ruthenium catalyst and KOH along with 1-dodecene as sacrificial hydrogen acceptor. To the best of our knowledge, the present protocol is the first one-pot strategy for *â*-alkylation of secondary alcohols.

Experimental Section

General Considerations. The 1H (400 MHz) and 13C NMR (100 MHz) spectra were recorded on Bruker Avance Digital 400 spectrometers using TMS as an internal standard. Chemical shifts are reported in δ units downfield from TMS. Melting points were determined on a Thomas Scientific capillary melting point apparatus and were uncorrected. The GLC analyses were carried out with a Shimadzu GC-17A instrument equipped with a CBP10-S25-050 column (Shimadzu, fused silica capillary column, 0.33 mm × 25 m, 0.25 *µ*m film thickness) using nitrogen as the carrier gas. The isolation of pure products was carried out via column chromatography (silica gel 60, 70-230 mesh, Merck) and thin-layer chromatography (silica gel 60 GF254, Merck). Secondary alcohols **1b**-**^g** were prepared by reduction of the corresponding ketones with LiAlH4. Commercially available organic and inorganic compounds were used without further purification.

Typical Procedure for Ruthenium-Catalyzed *â***-Alkylation of Secondary Alcohols with Primary Alcohols. 1a** (0.122 g, 1 mmol), **2a** (0.216 g, 2 mmol), 1-dodecene (0.842 g, 5 mmol), KOH (0.168 g, 3 mmol), RuCl₂(PPh₃)₃ (0.048 g, 0.05 mmol), and dioxane (2 mL) were placed in a 5 mL screw-capped vial and allowed to react at 80 °C for 40 h. The reaction mixture was filtered through a short silica gel column (EtOAc). Removal of the solvent left an oil, which was separated by thinlayer chromatography (ethyl acetate-hexane 1:10) to give 1,3 diphenylpropan-1-ol (**3a**) in 82% yield. Spectroscopic data for **3a**-**h**,**q**-**t**,**^v** are noted in our recent report.9a

3-(1-Naphthyl)-1-phenylpropan-1-ol (3i): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 2.05-2.23 (m, 3H), 3.00-3.07 (m, 1H), 3.14-3.22 (m, 1H), 4.69 (dd, $J = 7.8$ and 5.3 Hz, 1H), $7.23 - 7.36$ (m, 7H), $7.40 - 7.45$ (m, 2H), 7.67 (d, $J = 8.0$ Hz, 1H), 7.79-7.81 (m, 1H), 7.92-7.94 (m, 1H); 13C NMR (100 MHz, CDCl3) *δ* 29.0, 39.7, 74.0 (*C*HOH), 123.7, 125.4, 125.5, 125.7, 125.8, 125.9, 126.6, 127.6, 128.4, 128.7, 131.8, 133.8, 137.9, 144.4; MS m/z (relative intensity) 262 (M⁺, 39), 142 (100).

3-Ferrocenyl-1-phenylpropan-1-ol (3j): reddish yellow oil; 1H NMR (400 MHz, CDCl3) *^δ* 1.87-2.07 (m, 3H), 2.28- 2.35 (m, 1H), 2.41-2.48 (m, 1H), 4.03-4.06 (m, 9H), 4.66 (dd, $J = 7.3$ and 5.8 Hz, 1H), 7.26-7.37 (m, 5H); ¹³C NMR (100 MHz, CDCl3) *δ* 25.6, 39.9, 67.1, 67.8, 68.0, 68.4, 74.1, 88.4, 125.9, 127.5, 128.4, 144.6; MS *m*/*z* (relative intensity) 320 (M+, 100), 121 (29).

1-(2-Methylphenyl)-3-phenylpropan-1-ol (3k): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.91-2.07 (m, 3H), 2.20 $(s, 3H)$, 2.66-2.73 (m, 1H), 2.78-2.85 (m, 1H), 4.87 (dd, $J =$ 8.0 and 4.5 Hz, 1H), $7.08 - 7.28$ (m, 8H), 7.46 (d, $J = 7.6$ Hz, 1H); 13C NMR (100 MHz, CDCl3) *δ* 18.8, 32.2, 39.4, 69.8 (*C*HOH), 125.1, 125.8, 126.2, 127.1, 128.3, 128.4, 130.3, 134.4, 141.7, 142.7.

1-(3-Methylphenyl)-3-phenylpropan-1-ol (3l): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.93-2.16 (m, 3H), 2.33 (s, 3H), 2.59–2.75 (m, 2H), 4.58 (dd, $J = 7.5$ and 5.5 Hz, 1H), 7.05-7.27 (m, 9H); 13C NMR (100 MHz, CDCl3) *^δ* 21.4, 32.0, 40.3, 73.8 (*C*HOH), 122.9, 125.7, 126.5, 128.25, 128.28, 128.30, 128.4, 138.0, 141.8, 144.5.

1-(4-Methylphenyl)-3-phenylpropan-1-ol (3m): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.96-2.03 (m, 2H), 2.06-2.15 (m, 1H), 2.33 (s, 3H), 2.59-2.75 (m, 2H), 4.59-4.63 (m, 1H), 7.13-7.27 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 32.0, 40.3, 73.6 (*C*HOH), 125.8, 125.9, 128.3, 128.4, 129.1, 137.2, 141.5, 141.8.

1-(4-Methoxyphenyl)-3-phenylpropan-1-ol (3n): pale yellow oil; 1H NMR (400 MHz, CDCl3) *^δ* 1.94-2.03 (m, 2H), 2.07-2.16 (m, 1H), 2.58-2.74 (m, 2H), 3.78 (s, 3H), 4.59-4.62 (m, 1H), 6.86-6.88 (m, 2H), 7.13-7.18 (m, 3H), 7.22-7.28 (m, 4H); 13C NMR (100 MHz, CDCl3) *δ* 32.1, 40.3, 55.2, 73.4 (*C*HOH), 113.8, 125.8, 127.2, 128.3, 128.4, 136.7, 141.8, 159.0.

1-(4-Fluorophenyl)-3-phenylpropan-1-ol (3o): pale yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 1.92-2.01 (m, 1H), 2.04-2.13 (m, 2H), 2.58-2.74 (m, 2H), 4.61-4.64 (m, 1H), 7.00 (t, *^J* $= 8.5$ Hz, 2H), 7.15-7.19 (m, 3H), 7.22-7.29 (m, 4H); ¹³C NMR (100 MHz, CDCl3) *^δ* 31.9, 40.5, 73.1 (*C*HOH), 115.2 (d, *^J*) 21.3 Hz), 125.9, 127.5 (d, $J = 7.7$ Hz), 128.36, 128.38, 140.2 (d, $J = 2.9$ Hz), 141.5, 162.1 (d, $J = 244.4$ Hz)

1-(2-Naphthyl)-3-phenylpropan-1-ol (3p): white solid; mp 61-62 °C (hexane) (lit.17 mp 64 °C); 1H NMR (400 MHz, CDCl₃) δ 2.01-2.23 (m, 3H), 2.62-2.78 (m, 2H), 4.80 (dd, $J =$ 7.6 and 5.5 Hz, 1H), 7.16-7.20 (m, 3H), 7.24-7.28 (m, 2H), 7.43-7.48 (m, 3H), 7.73 (s, 1H), 7.78-7.82 (m, 3H); 13C NMR (100 MHz, CDCl3) *δ* 32.0, 40.3, 73.9 (*C*HOH), 124.0, 124.6, 125.8, 126.1, 127.6, 127.9, 128.31, 128.35, 128.41 (×2), 132.9, 133.2, 141.7, 141.8.

2-Benzyl-1,2,3,4-tetrahydronaphthalen-1-ol (3u): white solid as a diastereoisomeric mixture, the isomeric ratio (5.8: 4.2) was determined from the peak areas of the -*C*HOH group in the 13C NMR spectrum; 13C NMR (100 MHz, CDCl3) *δ* 72.9 (major isomer), 69.3 (minor isomer).

2-Benzyl-1,2,3,4-tetrahydronaphthalen-1-one: pale yellow viscous oil; ¹H NMR (400 MHz, CDCl₃) δ 1.72-1.82 (m, 1H), $2.06 - 2.13$ (m, 1H), 2.63 (dd, $J = 13.5$ and 9.5 Hz, 1H), $2.70 - 2.77$ (m, 1H), $2.84 - 2.97$ (m, 2H), 3.49 (dd, $J = 13.6$ and 4.0 Hz, 1H), 7.19-7.23 (m, 4H), 7.28-7.31 (m, 3H), 7.44 (t, *^J* $= 7.4$ Hz, 1H), 8.07 (d, $J = 7.0$ Hz, 1H); ¹³C NMR (100 MHz, CDCl3) *δ* 27.6, 28.5, 35.6, 49.4, 126.1, 126.5, 127.5, 128.3, 128.7, 129.2, 132.4, 133.2, 140.0, 144.0, 199.3 (C=O).

2-Butyl-1,2,3,4-tetrahydronaphthalen-1-ol (3v): pale yellow oil as a diastereoisomeric mixture, the isomeric ratio (7:3) was determined from the peak areas of the clearly separated methine protons in the ¹H NMR spectrum; ¹H NMR (400 MHz, CDCl₃) δ 4.39 (d, *J* = 7.0 Hz, CHOH, minor isomer), 4.63 (s, C*H*OH, major isomer); 13C NMR (100 MHz, CDCl3) *δ* 70.0 (*C*HOH, major isomer), 73.3 (*C*HOH, minor isomer).

Acknowledgment. C.S.C. gratefully acknowledges the Research Professor Program of Korea Research Foundation (Grant No. KRF-2001-050-D00015).

OM030307H

⁽¹⁷⁾ Williams, H. J. *Tetrahedron Lett*. **1975**, *15*, 1271.