Synthesis of Bisgermavinylidene and Its Reaction with Chalcogens

Wing-Por Leung,* Cheuk-Wai So, Zhong-Xia Wang, Jin-Zhi Wang, and Thomas C. W. Mak

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Received July 28, 2003

The lithium complex $[HC(PPh_2=NSiMe_3)_2Li(THF)]$ (2) prepared by the reaction of BuⁿLi with bis(iminophosphorano)methane reacts with GeCl₂·dioxane in different stoichiometric ratios to afford [HC(PPh₂=NSiMe₃)₂GeCl] (3) and [(Me₃SiN=PPh₂)₂C=Ge→Ge=C(PPh₂= $NSiMe_{3}$ (4), respectively. Bisgermavinylidene 4 can also be obtained by the reaction of 3 with $[Ge{N(SiMe_3)_2}_2]$ or **2**. Further reaction of **4** with Me₃NO afforded $[(\mu-N=Ph_2P)(Me_3-P$ $SiN=Ph_2PC=Ge(OSiMe_3)]_2$ (5), and direct reaction of elemental chalcogens (sulfur, selenium, and tellurium) with **4** afforded $[(Me_3SiN=PPh_2)_2C=Ge(\mu-E)]_2$ [E = S (6), Se (7), and Te (8)]. X-ray structures of compounds 2-8 have been determined.

Introduction

Compounds containing a double bond between germanium and carbon (>Ge=C<) have attracted much attention in the past 15 years, and they have been the focus of several reviews.¹ It was found that the thermal stability of the Ge=C bond is intrinsically low, and it can undergo oligomerization readily.² Nevertheless, stable germenes R₂Ge=CR'₂ can be synthesized by incorporating sterically bulky substituents at both germanium and carbon.³ The low-valent germanium analogues such as germavinylidenes (>C=Ge:) are rare.

We have communicated the synthesis of bisgermavi- $[(Me_3SiN=PPh_2)_2C=Ge \rightarrow Ge=C(PPh_2=$ nylidene $NSiMe_3)_2$] (4).⁴ We have also reported the synthesis of some group 14 ketone analogues R₂M=E from the direct reaction of group 14 carbene analogues MR_2 (R = CH- $(SiMe_3)C_9H_6N-8 \text{ or } CPh(SiMe_3)C_5H_4N-2; M = Ge \text{ or } Sn)$ with corresponding elemental chalcogens.⁵ Recently, we were interested in the synthesis of compounds containing a >C=Ge=E moiety, as they may be considered as germaketene analogues, which are also scarcely found. Their unusual structures and possibly the unknown reactivity have attracted our interest. We anticipated that the bisgermavinylidene 4 is potentially a source for the reactive monomeric intermediate germavinylidene ":Ge=C(PPh2=NSiMe3)2", which may serve as a synthon for the direct synthesis of germaketene analogues through the active lone pair at the germanium center.

In this paper, we report the full details of the preparation and characterization of [(Me₃SiN=PPh₂)₂C= $Ge \rightarrow Ge = C(PPh_2 = NSiMe_3)_2$ (4) and its reactivity with chalcogens in order to prepare the germaketene analogues.

Results and Discussion

Synthesis of Bisgermavinylidene [(Me₃SiN= $PPh_2_2C = Ge \rightarrow Ge = C(PPh_2 = NSiMe_3)_2$ (4). Treatment of bis(iminophosphorano)methane [(Me₃SiN= $PPh_2_2CH_2$] (1)⁶ with BuⁿLi in THF afforded the monomeric [HC(PPh₂=NSiMe₃)₂Li·THF] (2), which has been reported earlier, but it has not been structurally characterized.⁷ We have now determined the X-ray structure of 2. The similar lithium complex [Li{HC- $(Cy_2P=NSiMe_3)_2 - \kappa C, \kappa N, \kappa N \} (OEt_2)] (Cy = cyclohexyl)$ prepared from the reaction of [(Me₃SiN=PCy₂)₂CH₂] with excess MeLi has been reported.⁸

The reaction of 2 equiv of 2 with $GeCl_2$ dioxane for 2 days afforded bisgermavinylidene [(Me₃SiN=PPh₂)₂C= $Ge \rightarrow Ge = C(PPh_2 = NSiMe_3)_2$ (4) (Scheme 1). When the reaction was quenched after 1 day, [HC(PPh₂=NSiMe₃)₂-GeCl] (3) can be isolated as the intermediate compound. Compound **3** can be further dehydrochlorinated by **2** to form bisgermavinylidene 4, if the reaction mixture was kept for a further 24 h. It is suggested that compound 2 acts both as a ligand transfer reagent and as a base for dehydrochlorination.

Bisgermavinylidene 4 can also be synthesized stepwisely by the reaction of $[Ge{N(SiMe_3)_2}_2]$ with [HC-(PPh₂=NSiMe₃)₂GeCl] (**3**), which was prepared sepa-

⁽¹⁾ Selected recent reviews and examples of germenes: (a) Barrau, J.; Escudié, J.; Satgé, J. Chem. Rev. 1990, 90, 283. (b) Driess, M.; Grützmacher, H. Angew. Chem., Int. Ed. Engl. 1996, 35, 828. (c) Grutzhacher, H. Angew. Chem., Int. Ed. Engl. 1950, 535, 525.
 Escudié, J.; Ranaivonjatovo, H. Adv. Organomet. Chem. 1999, 44, 113.
 (d) Couret, C.; Escudié, J.; Satgé, J.; Lazraq, M. J. Am. Chem. Soc.
 1987, 109, 4411. (e) Anselme, G.; Escudié, J.; Couret, C.; Satgé, J. J.
 Organomet. Chem. 1991, 403, 93. (f) Lazraq, M.; Couret, C.; Escudié, J.; Lazraq, M.; Couret, C.; Escudié, J.; Couret, C.; Escudié, J.; Lazraq, M.; Couret, C.; Escudié, J.; Couret, C.; Escudié, J.; Lazraq, M.; Couret, C.; Escudié, J.; Couret, C.; Escudié, J.; Lazraq, M.; Couret, C.; Escudié, J.; Couret, C.; Escudié, J.; Lazraq, M.; Couret, C.; Escudié, J.; Couret J.; Satgé, J. Polyhedron 1991, 10, 1153.

⁽²⁾ Bravo-Zhivotovskii, D.; Zharov, I.; Kapon, M.; Apeloig, Y. J.

⁽²⁾ Bravo-Znivotovskii, D.; Zharov, I.; Kapon, M.; Apeiolg, Y. J. Chem. Soc., Chem. Commun. 1995, 1625.
(3) (a) Meyer, H.; Baum, G.; Massa, W.; Berndt, A. Angew. Chem., Int. Ed. Engl. 1987, 26, 798. (b) Lazraq, M.; Escudié, J.; Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Angew. Chem., Int. Ed. Engl. 1988, (c) Couret, C.; Escudié, L.; Delpon-Jacaza, G.; Satgé, J. 27, 828. (c) Couret, C.; Escudié, L.; Delpon-Jacaza, G.; Satgé, J.; Präger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988, 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Angew. Chem., Int. Ed. Engl. 1988, 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dammel, R. Magew. Chem., Int. Ed. Engl. 1988. (c) Couret, C.; Satgé, J.; Dräger, M.; Dräger, C.; Satgé, J.; Dräger, C.; Satgé, J.; Dräger, C.; Satgé, J.; Dräger, M.; Dräg 27, 828. (c) Couret, C.; Escudié, J.; Delpon-Lacaze, G.; Satgé, J. Organometallics 1992, 11, 3176.

⁽⁴⁾ Leung, W.-P.; Wang, Z.-X.; Li, H.-W.; Mak, T. C. W. Angew. Chem., Int. Ed. 2001, 40, 2501.

⁽⁵⁾ Leung, W.-P.; Kwok, W.-H.; Zhou, Z.-Y.; Mak, T. C. W. Organo-metallics **2000**, *19*, 296.

⁽⁶⁾ Müller, A.; Möhlen, M.; Neumüller, B.; Faza, N.; Massa, W.;

⁽b) Huller, H., Holler, H., Hounder, B., Fuzz, H., Husser, H.,
(c) Dehnicke, K. Z. Anorg. Allg. Chem. 1999, 625, 1748.
(f) Ong, C. M.; Stephan, D. W. J. Am. Chem. Soc. 1999, 121, 2939.
(8) Babu, R. P. K.; Aparna, K.; McDonald, R.; Cavell, R. G. Organometallics 2001, 20, 1451.

rately by the reaction of 1 equiv of **2** with GeCl₂·dioxane in Et₂O. It is proposed that the ligand transfer intermediate [Ge{CH(PPh₂=NSiMe₃)₂}{N(SiMe₃)₂}] formed underwent dehydrochlorination and deamination with **3** to form bisgermavinylidene **4** (Scheme 2). In contrast, the reaction of **3** with MgBuⁿ₂ and AlMe₃ in toluene at room temperature gave the known bis-(iminophosphorano)methanide complexes [HC(PPh₂= NSiMe₃)₂Mg(μ -Cl)]₂ and [HC(PPh₂=NSiMe₃)₂AlMe₂], respectively.^{9,10}

Reaction of Bisgermavinylidene with Chalcogens. We have attempted to prepare the germaketene analogue containing a terminal >C=Ge=O moiety by the reaction of bisgermavinylidene **4** with 2 equiv of Me₃-NO in toluene. However, the product obtained was $[(\mu - N=Ph_2P)(Me_3SiN=Ph_2P)C=Ge(OSiMe_3)]_2$ (**5**) isolated as a pale yellow crystalline solid (Scheme 3). It is proposed that the intermediate compound bearing a >C=Ge=Omoiety underwent an insertion of the GeO unit into the N-SiMe₃ bond of the imino group. The unsuccessful isolation of the compound with a terminal >C=Ge=O moiety is probably due to the reactive Ge=O bond. Some previous attempts to generate >Ge=O species from germylenes, which led to the formation of germaindanol,¹¹ oxo-bridged dimer [{(Me₃Si)₂N}₂Ge(μ -O)]₂,¹² or *gem*-dihydroxy compound [(2,6-Mes₂H₃C₆)₂Ge(OH)₂],¹³ have been reported in the literature.

The reaction of **4** with stoichiometric amounts of elemental chalcogens in THF afforded chalcogen-bridged dimers of germaketene analogues $[(Me_3SiN=PPh_2)_2C=Ge(\mu-E)]_2$ [E = S (**6**), Se (**7**), and Te (**8**)], respectively (Scheme 4). Compounds **6**–**8** were isolated as colorless, yellow, and red crystalline solids, respectively. The unsuccessful isolation of compounds with terminal germaketene moieties >C=Ge=E could be due to the prolonged and more polar >C=Ge=E skeleton as compared to >C=Ge=O, which is more susceptible to dimerize at the chalcogen end and cannot be stabilized kinetically by the ligand. Similar results have been found for the synthesis of germaketone analogues in the

⁽⁹⁾ Aparna, K.; McDonald, R.; Ferguson, M.; Cavell, R. G. Organometallics **1999**, *18*, 4241.

⁽¹⁰⁾ Wei, P.; Stephan, D. W. Organometallics 2003, 22, 601.

⁽¹¹⁾ Jutzi, P.; Schmidt, H.; Neumann, B.; Stammler, H.-G. Organometallics **1996**, *15*, 741.

⁽¹²⁾ Ellis, D.; Hitchcock, P. B.; Lappert, M. F. *J. Chem. Soc., Dalton Trans.* **1992**, 3397.

⁽¹³⁾ Pu, L.; Hardman, N. J.; Power, P. P. Organometallics 2001, 20, 5105.

reaction of germylenes with chalcogens, where chalcogen-bridged dimers were formed.¹⁴ Compounds **7** and **8** are light sensitive, as they turned black when exposed to light. Therefore, the preparations of **7** and **8** were carried out with the exclusion of light.

Spectroscopic Properties of Compounds. The ¹H and ¹³C NMR spectra of **2** displayed one set of signals due to the bis(iminophosphorano)methanide ligand and THF, which is different from the unsolvated compound reported by Stephan and co-workers.⁷

The ¹H NMR spectrum of **3** displayed one singlet signal for the SiMe₃ group and a triplet at δ 3.50 ppm ($J_{P-H} = 12$ Hz) for the methine proton on the P–C–P backbone with coupling to two equivalent phosphorus nuclei. The data indicate considerable delocalization throughout the N–P–C–P–N backbone of the ligand, consistent with the solid-state structure of **3**. This is also consistent with a singlet at δ 13.97 ppm in the ³¹P NMR spectrum. The ¹³C NMR spectrum of **3** is normal and consistent with the ¹H NMR spectrum.

The ¹H and ¹³C NMR spectra of **5** are normal. The ³¹P NMR spectrum of **5** displayed two signals at δ 18.66 and 44.61 ppm due to two different phosphorus environments, consistent with the solid-state structure.

The ¹H and ¹³C NMR spectra of **6**-**8** showed a similar pattern and displayed one set of signals due to the bis-(iminophosphorano)methandiide ligand. The ³¹P NMR spectra of **6–8** displayed two sharp singlets [δ 10.69, 57.52 (**6**); δ 13.97, 60.80 (**7**); δ 11.78, 58.97 ppm (**8**)] due to two different phosphorus environments, consistent with the solid-state structures. It is suggested that the coordination of the imino groups to the germanium centers in 6-8 is nonfluxional in solution. The ⁷⁷Se NMR spectrum of **7** displayed a singlet at δ 860.88 ppm, which showed a downfield shift as compared with the signal at δ –476.0 ppm for [Ge{(NSiMe₃)₂}₂(μ -Se)]₂,^{14d} but similar to that of δ 940 ppm in [(Tbt)(Mes)Ge=Se].¹⁵ It is suggested that 7 may exist as a monomer in solution. The ¹²⁵Te NMR spectrum of 8 displayed a singlet at δ 1025.53, which is comparable to the signal of δ 1184 ppm in [Ge{(NSiMe₃)₂}₂(μ -Te)]₂.^{14d} The FABmass spectrum of compound 5 did not show the parent peak. The FAB-mass spectra of compounds 6-8 displayed the peak due to $[M/2 + H]^+$, suggesting that **6–8** may exist as monomeric species in the vapor phase.

X-ray Structures. The solid-state structure of **2** is shown in Figure 1. Selected bond distances (Å) and

Figure 1. Crystal structure of **2** with atomic numbering scheme.

angles (deg) of 2 are listed in Table 2. The fourcoordinated Li(1) is bonded to the methanide carbon atom C(55), two imino nitrogen atoms from the ligand, and O(1) from the THF to form two strained four-membered metallacycles sharing the Li(1)-C(55) edge. The Li(1)-C(55) bond distance of 2.622(9) Å in 2 is similar to that of 2.633(7) Å in $[Li{HC(Cy_2P=$ $NSiMe_3_2 - \kappa C, \kappa N, \kappa N \} (OEt_2)].^8$ The Li(1)-N distances of 1.980(9) and 2.017(9) Å in 2 are comparable to those of 2.033(6) and 2.012(7) Å in $[Li{HC}(Cy_2P=NSiMe_3)_2$ - $\kappa C, \kappa N, \kappa N$ (OEt₂)].⁸ The P–N distances of 1.572(4) and 1.575(3) Å and the C–P bonds of 1.717(4) and 1.722(4) Å are different from those of $[(Me_3SiN=PPh_2)_2CH_2]$ (1) $(P-N = 1.536(2) \text{ Å}; C-P = 1.825(1) \text{ Å}).^{6}$ These suggest considerable delocalization throughout the N-P-C-P-N ligand backbone.

Compound **3** is a monomeric heteroleptic germylene. The solid-state structure of **3** is shown in Figure 2. Selected bond distances (Å) and angles (deg) of 3 are listed in Table 2. The bis(iminophosphorano)methanide ligand is bonded in a N,N'-chelate fashion to the germanium center and adopts a trigonal pyramidal geometry. The sum of bond angles at the metal center is 299.97°, which deviates significantly from the tetracoordinated germylene.16 This is consistent with a stereoactive lone pair at the germanium center. The distance between the methanide carbon and germanium of 3.339 Å is significantly longer than the Li-C bond distance of 2.622(9) Å in 2 and the Mg–C bond distance of 2.460(8) Å in [HC(PPh₂=NSiMe₃)₂Mg(µ-Cl)]₂,¹⁰ suggesting no interaction between germanium and methanide carbon. The bond distances of Ge-N, P-N, and

^{(14) (}a) Hitchcock, P. B.; Jasim, H. A.; Kelly, R. E.; Lappert, M. F. J. Chem. Soc., Chem. Commun. 1985, 1776. (b) Wojnowska, M.; Noltemeyer, M.; Füllgrabe, H.-J.; Meller, A. J. Organomet. Chem. 1982, 228, 229. (c) Hitchcock, P. B.; Jasim, H. A.; Lappert, M. F.; Leung, W.-P.; Rai, A. K.; Taylor, R. E. Polyhedron 1991, 10, 1203. (d) Hitchcock, P. B.; Jang, E.; Lappert, M. F. J. Chem. Soc., Dalton Trans. 1995, 3179.

⁽¹⁵⁾ Matsumoto, T.; Tokitoh, N.; Okazaki, R. Angew. Chem., Int. Ed. Engl. 1994, 33, 2316.

⁽¹⁶⁾ Leung, W.-P., Kwok, W.-H.; Weng, L.-H.; Law, L. T. C.; Zhou, Z.-Y.; Mak, T. C. W. *J. Chem. Soc., Dalton Trans.* **1997**, *22*, 4301.

Table 1. Crystallographic Data for Compounds 2, 3, and 5 and 6-8

	2	3	5
formula	C35H47LiN2OP2Si2	C ₃₁ H ₃₉ ClGeN ₂ P ₂ Si ₂	$C_{62}H_{76}N_4P_4O_2Si_4Ge_2$
fw	636.81	665.80	1290.69
color	colorless	nale vellow	pale vellow
cryst syst	triclinic	triclinic	monoclinic
space group	$P\bar{1}$	$\overline{P_1}$	C^2/c
$a(\dot{A})$	11 028(2)	12 021(4)	26.24(3)
$a(\mathbf{A})$ $b(\mathbf{\hat{A}})$	11.020(2) 11.211(2)	15.021(4)	13746(7)
$D(\mathbf{A})$	11.311(2) 16 174(2)	20 647(6)	13.740(7) 20.021(8)
c(A)	72 06(2)	20.047(0)	20.021(8)
ℓ (deg)	72.30(3) 88 60(2)	90.000(0) 00.000(c)	30 107 08(0)
ρ (deg)	00.00(3) 99.69(9)	90.000(0)	107.08(9)
γ (deg)	82.02(3) 1010 7(7)	00.400(4)	90
$V(\mathbf{A}^{\circ})$	1912.7(7)	3424.0(17)	6903(9)
Z	Z 1.100	4	4
$a_{\text{calcd}} (g \text{ cm}^{-1})$	1.106	1.291	1.242
$\mu (\text{mm}^{-1})$	0.203	1.158	1.075
F(000)	680	1384	2688
cryst size (mm)	0.60 imes 0.50 imes 0.40	$1.30 \times 0.79 \times 0.78$	$0.32 \times 0.15 \times 0.15$
2θ range (deg)	2.27-25.00	0.99-28.28	1.62-28.11
index range	$-13 \le h \le 13$,	$-10 \leq h \leq 15$,	$-25 \leq h \leq 34$,
	$-13 \leq k \leq 0$,	$-18 \leq k \leq 19$,	$-18 \leq k \leq 18$,
	$-19 \leq I \leq 18$	$-27 \le l \le 27$	$-26 \le I \le 19$
no. of reflns collected	7100	23 036	23 200
no. of indep reflns	6728	16 172	8352
R1, wR2 $(I \geq 2(\sigma)I)$	0.0647, 0.1762	0.1010, 0.2552	0.0649, 0.1198
R1, wR2 (all data)	0.1467, 0.2126	0.1189, 0.2723	0.2073, 0.1625
goodness of fit, F ²	1.056	1.005	0.782
no. of data/restraints/params	6728/1/388	16172/0/703	8352/0/353
largest diff peaks, e Å ^{–3}	0.402 to -0.340	3.046 to -0.808	0.876 to -0.523
	6	7	8
formula	6 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ S ₂ Si ₂	7 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Se ₂ Si ₂	8 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Si ₂ Te ₂
formula fw	6 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ S ₂ Si ₂ 1322.81	$\frac{7}{C_{62}H_{76}N_4Ge_2P_4Se_2Si_2}\\1418.62$	8 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Si ₂ Te ₂ 1513.89
formula fw color	$\begin{array}{c} \textbf{6} \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \end{array}$	$\frac{7}{C_{62}H_{76}N_4Ge_2P_4Se_2Si_2}\\ 1418.62\\ vellow$	8 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Si ₂ Te ₂ 1513.89 red
formula fw color cryst syst	6 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ S ₂ Si ₂ 1322.81 white triclinic	7 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Se ₂ Si ₂ 1418.62 yellow monoclinic	8 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Si ₂ Te ₂ 1513.89 red triclinic
formula fw color cryst syst space group	$\begin{array}{c} {\bf 6} \\ \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \\ white \\ triclinic \\ P\bar{1} \end{array}$	7 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Se ₂ Si ₂ 1418.62 yellow monoclinic P2 ₁ /c	8 C ₆₂ H ₇₆ N ₄ Ge ₂ P ₄ Si ₂ Te ₂ 1513.89 red triclinic <i>P</i> I
formula fw color cryst syst space group a (Å)	$\begin{array}{c} 6 \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \overline{P1} \\ 10.1970(6) \end{array}$	$\frac{7}{C_{62}H_{76}N_4Ge_2P_4Se_2Si_2}$ 1418.62 yellow monoclinic $P2_1/c$ 11.8491(14)	$\frac{8}{C_{62}H_{76}N_4Ge_2P_4Si_2Te_2}\\ 1513.89\\ red\\ triclinic\\ P\bar{1}\\ 10.4130(5)$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$	$\begin{array}{c} 6 \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ P\bar{1} \\ 10.1970(6) \\ 11.5672(7) \end{array}$	$\frac{7}{C_{62}H_{76}N_4Ge_2P_4Se_2Si_2}$ 1418.62 yellow monoclinic $P2_1/c$ 11.8491(14) 16.902(2)	$\begin{array}{c} {\bf 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å)	$\begin{array}{c} 6 \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \end{array}$	$\begin{array}{c} \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \end{array}$	$\begin{array}{c} {\bf 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \end{array}$	$\begin{array}{c} \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \end{array}$	$\begin{array}{c} {\bf 8} \\ \hline C_{62} H_{76} N_4 Ge_2 P_4 Si_2 Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\overline{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \end{array}$	$\begin{array}{c} \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \end{array}$	$\begin{array}{c} {\bf 8} \\ \hline C_{62} H_{76} N_4 Ge_2 P_4 Si_2 Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\overline{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ P\bar{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ \end{array}$	$\begin{array}{c} \hline & 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ \end{array}$	$\begin{array}{c} {\color{black} 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ P\bar{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \end{array}$	$\begin{array}{c} \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \end{array}$	$\begin{array}{c} {\color{black} {\bf 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\bar{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \end{array}$	$\begin{array}{c} \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \end{array}$	$\begin{array}{c} {\color{black} 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \end{array}$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ α (deg) β (deg) γ (deg) γ (deg) $V(\hat{A}^3)$ Z $d_{\text{old}}(q \text{ cm}^{-3})$	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\bar{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \end{array}$	$\begin{array}{c} & 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \end{array}$	$\begin{array}{c} {\color{black} {\bf 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \end{array}$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ α (deg) β (deg) γ (deg) $V(\hat{A}^3)$ Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \end{array}$	$\begin{array}{c} \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ \end{array}$	$\begin{array}{c} {\color{black} {\bf 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \end{array}$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ α (deg) β (deg) γ (deg) γ (deg) $V(\hat{A}^3)$ Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \end{array}$	$\begin{array}{c} \hline & \hline & \hline & \hline & \hline & \hline & C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \end{array}$	$\begin{array}{c} {\color{black} {\color{black} 8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \end{array}$	$\begin{array}{c} \hline 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg)	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P1 \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \end{array}$	$\begin{array}{c} \hline 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) index range	$\begin{array}{c} \textbf{6} \\ \hline \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P1 \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13 \end{array}$	$\begin{array}{c} & 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \le h \le 15 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 103.4.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \\ -13 \le h \le 13 \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) index range	$\begin{array}{c} \textbf{6} \\ \hline \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\bar{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11 \end{array}$	$\begin{array}{c} \hline & \hline & \hline & \hline & \hline & \hline & C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ & P2_1/c \\ & 11.8491(14) \\ 16.902(2) \\ & 17.737(2) \\ & 90 \\ & 105.057(3) \\ & 90 \\ & 3430.3(7) \\ & 2 \\ & 1.373 \\ & 2.140 \\ & 1452 \\ & 1.00 \times 0.18 \times 0.16 \\ & 1.69-28.07 \\ & -15 \leq h \leq 15, \\ & -17 \leq k \leq 22 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P1 \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15 \end{array}$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\alpha(\deg)$ $\beta(\deg)$ $\gamma(\deg)$ $\gamma(\deg)$ $V(\hat{A}^3)$ Z $d_{calcd}(g cm^{-3})$ $\mu(mm^{-1})$ F(000) cryst size (mm) 2θ range (deg) index range	$\begin{array}{c} \textbf{6} \\ \hline \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\bar{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \end{array}$	$\begin{array}{c} \hline & 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \leq h \leq 15, \\ -17 \leq k \leq 22, \\ -23 \leq l < 20 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15, \\ -19 \leq l \leq 15 \end{array}$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\alpha(\deg)$ $\beta(\deg)$ $\gamma(\deg)$ $\gamma(\deg)$ $\gamma(deg)$ $\gamma(\hat{A}^3)$ Z $d_{calcd}(g cm^{-3})$ $\mu(mm^{-1})$ F(000) cryst size (mm) 2θ range (deg) index range	$\begin{array}{c} \textbf{6} \\ \hline \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \\ 11.921 \end{array}$	$\begin{array}{c} \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \leq h \leq 15, \\ -17 \leq k \leq 22, \\ -23 \leq l \leq 20 \\ 22.966 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P\bar{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15, \\ -19 \leq l \leq 15 \\ 11.765 \\ \end{array}$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ α (deg) β (deg) γ (deg) γ (deg) γ (deg) $V(\hat{A}^3)$ Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) index range no. of reflns collected no. of reflns collected	$\begin{array}{c} \textbf{6} \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \\ 11 921 \\ 8215 \end{array}$	$\begin{array}{c} \hline & 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \leq h \leq 15, \\ -17 \leq k \leq 22, \\ -23 \leq l \leq 20 \\ 22 966 \\ 8299 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\overline{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15, \\ -19 \leq l \leq 15 \\ 11.765 \\ \textbf{8}186 \\ \end{array}$
formula fw color cryst syst space group a(Å) b(Å) c(Å) a(deg) $\beta(deg)$ $\gamma(deg)$ $V(Å^3)$ Z $d_{calcd}(g cm^{-3})$ $\mu(mm^{-1})$ F(000) cryst size (mm) 2θ range (deg) index range no. of reflns collected no. of indep reflns P1 wP2 ($L \ge 2(c)$)	$\begin{array}{c} \textbf{6} \\ \hline \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P1 \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \\ 11 921 \\ 8215 \\ 0.0616 \ 0.1226 \\ \end{array}$	$\begin{array}{c} \hline & 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \leq h \leq 15, \\ -17 \leq k \leq 22, \\ -23 \leq l \leq 20 \\ 22 \ 966 \\ 8299 \\ 0 \ 0.067, 0 \ 1555 \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\overline{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84 - 28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15, \\ -19 \leq l \leq 15 \\ 11.765 \\ 8186 \\ 0.0364, 0.0780 \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å ³) Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) index range no. of reflns collected no. of indep reflns R1, wR2 ($I > 2(\sigma)I$) R1, wR2 ($I > 2(\sigma)I$)	$\begin{array}{c} \textbf{6} \\ \hline \textbf{C}_{62}\textbf{H}_{76}\textbf{N}_4\textbf{G}\textbf{e}_2\textbf{P}_4\textbf{S}_2\textbf{S}\textbf{i}_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P1 \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \\ 11 \\ 921 \\ 8215 \\ 0.0616, 0.1336 \\ 0.1692 \\ \end{array}$	$\begin{array}{c} \hline 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \leq h \leq 15, \\ -17 \leq k \leq 22, \\ -23 \leq l \leq 20 \\ 22 \ 966 \\ 8299 \\ 0.0667, 0.1555 \\ 0.1377 \\ 0.1377 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ P\overline{1} \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 103.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \\ -13 \le h \le 13, \\ -9 \le k \le 15, \\ -19 \le l \le 15, \\ -19 \le l \le 15 \\ 11.765 \\ 8186 \\ 0.0364, 0.0789 \\ 0.0594, 0.0950 \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) index range no. of reflns collected no. of reflns collected no. of ridep reflns R1, wR2 ($I > 2(\sigma)I$) R1, wR2 (all data) gradbaces of fit E^2	$\begin{array}{c} \textbf{6} \\ \hline \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \\ 11 921 \\ 8215 \\ 0.0616, 0.1336 \\ 0.1510, 0.1682 \\ 0.870 \end{array}$	$\begin{array}{c} & \textbf{7} \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \leq h \leq 15, \\ -17 \leq k \leq 22, \\ -23 \leq l \leq 20 \\ 22 \ 966 \\ 8299 \\ 0.0667, 0.1555 \\ 0.1357, 0.1787 \\ 0.901 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P1 \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 103.4.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84-28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15, \\ -19 \leq l \leq 15 \\ 11 \ 765 \\ 8186 \\ 0.0364, 0.0789 \\ 0.0594, 0.0859 \\ 0.904 \\ \end{array}$
formula fw color cryst syst space group a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) γ (deg) V (Å ³) Z d_{calcd} (g cm ⁻³) μ (mm ⁻¹) F(000) cryst size (mm) 2θ range (deg) index range no. of reflns collected no. of reflns collected no. of indep reflns R1, wR2 ($I > 2(\sigma)I$) R1, wR2 (all data) goodness of fit, F^2	$\begin{array}{c} \textbf{6} \\ \hline \\ \hline C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \\ 11 921 \\ 8215 \\ 0.0616, 0.1336 \\ 0.1510, 0.1682 \\ 0.879 \\ 9215(0)(252) \end{array}$	$\begin{array}{c} \hline 7 \\ \hline C_{62}H_{76}N_4Ge_2P_4Se_2Si_2 \\ 1418.62 \\ yellow \\ monoclinic \\ P2_1/c \\ 11.8491(14) \\ 16.902(2) \\ 17.737(2) \\ 90 \\ 105.057(3) \\ 90 \\ 3430.3(7) \\ 2 \\ 1.373 \\ 2.140 \\ 1452 \\ 1.00 \times 0.18 \times 0.16 \\ 1.69-28.07 \\ -15 \leq h \leq 15, \\ -17 \leq k \leq 22, \\ -23 \leq l \leq 20 \\ 22 966 \\ 8299 \\ 0.0667, 0.1555 \\ 0.1357, 0.1787 \\ 0.901 \\ 8200/7/207 \\ \end{array}$	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P1 \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84 - 28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15, \\ -19 \leq l \leq 15 \\ 11 765 \\ 8186 \\ 0.0364, 0.0789 \\ 0.0594, 0.0859 \\ 0.904 \\ 8186(0.052) \end{array}$
formula fw color cryst syst space group $a(\hat{A})$ $b(\hat{A})$ $c(\hat{A})$ $\alpha(\deg)$ $\beta(\deg)$ $\gamma(\deg)$ $\gamma(\deg)$ $\gamma(deg)$ $\gamma(deg)$ $\gamma(\hat{A}^3)$ Z $d_{calcd}(g cm^{-3})$ $\mu(mm^{-1})$ F(000) cryst size (mm) 2θ range (deg) index range no. of reflns collected no. of indep reflns R1, wR2 ($I \ge 2(\sigma)I$) R1, wR2 (all data) goodness of fit, F^2 no. of data/restraints/params how route diff maches $= \delta^{n-3}$	$\begin{array}{c} \textbf{6} \\ \hline \\ C_{62}H_{76}N_4Ge_2P_4S_2Si_2 \\ 1322.81 \\ \text{white} \\ \text{triclinic} \\ \hline P\overline{1} \\ 10.1970(6) \\ 11.5672(7) \\ 15.9241(9) \\ 79.1130(10) \\ 88.5170(10) \\ 69.3700(10) \\ 1724.49(18) \\ 1 \\ 1.274 \\ 1.133 \\ 688 \\ 0.50 \times 0.17 \times 0.17 \\ 1.30-28.02 \\ -13 \leq h \leq 13, \\ -15 \leq k \leq 11, \\ -20 \leq l \leq 21 \\ 11 \\ 921 \\ 8215 \\ 0.0616, 0.1336 \\ 0.1510, 0.1682 \\ 0.879 \\ 8215/0/352 \\ 0.642 \\ to 0.570 \\ $	7 $C_{62}H_{76}N_4Ge_2P_4Se_2Si_2$ 1418.62 yellow monoclinic $P2_1/c$ 11.8491(14) 16.902(2) 17.737(2) 90 105.057(3) 90 3430.3(7) 2 1.373 2.140 1452 1.00 × 0.18 × 0.16 1.69-28.07 -15 ≤ h ≤ 15, -17 ≤ k ≤ 22, -23 ≤ l ≤ 20 22 966 8299 0.0667, 0.1555 0.1357, 0.1787 0.901 8299/7/397 1.444 to 1 077	$\begin{array}{c} \textbf{8} \\ \hline C_{62}H_{76}N_4Ge_2P_4Si_2Te_2 \\ 1513.89 \\ red \\ triclinic \\ \hline P1 \\ 10.4130(5) \\ 11.6373(6) \\ 15.0654(7) \\ 103.7030(10) \\ 90.9820(10) \\ 101.5030(10) \\ 1734.05(15) \\ 1 \\ 1.450 \\ 1.891 \\ 760 \\ 0.45 \times 0.26 \times 0.24 \\ 1.84 - 28.00 \\ -13 \leq h \leq 13, \\ -9 \leq k \leq 15, \\ -19 \leq l \leq 15 \\ 11.765 \\ 8186 \\ 0.0364, 0.0789 \\ 0.0594, 0.0859 \\ 0.904 \\ 8186/0/352 \\ 0.937 to 0.504 \\ \end{array}$

C–P are similar. This shows considerable delocalization throughout the N–P–C–P–N backbone of the ligand. The Ge–N distances of 1.983(4) and 2.002(4) Å in **3** are similar to those distances reported for typical Ge–N single bond distances ranging from 1.910 to 2.042 Å.¹⁷ The Ge–Cl bond distance of 2.334(2) Å in **3** is longer than that of 2.203(10) Å in [Ge(C₆H₃-2,6-Trip₂)Cl]¹⁸ and 2.295(12) Å in [{HC(CMeNAr)₂}GeCl].¹⁹

The molecular structure of **5** is shown in Figure 3. Selected bond distances (Å) and angles (deg) of **5** are listed in Table 2. Compound **5** is comprised of two germenes joined by the "Ph₂P=N" bridges to form an eight-membered heterocyclic ring. The geometry around the germanium atom is tetrahedral. The Ge–C distance of 1.915(5) Å is slightly longer than those of 1.905(8) and 1.908(7) Å in **4**. The Ge–O distance of 1.759(4) Å is relatively shorter when compared with the Ge–O bond distance of 1.792 Å in [(2,6-Mes₂H₃C₆)₂Ge-(OH)₂],¹³ 1.805 Å in [{(Me₃Si)₂N}₂Ge(μ -O)]₂,¹² and the sum of the covalent radii of germanium (1.22 Å) and oxygen (0.66 Å).

⁽¹⁷⁾ Foley, S. R.; Zhou, Y.; Yap, G. A. P.; Richeson, D. S. *Inorg. Chem.* **2000**, *39*, 924.

⁽¹⁸⁾ Pu, L.; Olmstead, M. M.; Power, P. P.; Berthold, S. Organometallics **1998**, *17*, 5602.

⁽¹⁹⁾ Ding, Y.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.; Power, P. P. Organometallics **2001**, *20*, 1190.

Figure 2. Crystal structure of **3** with atomic numbering scheme.

Table 2.	Selected Bond Distances (A) and Angles	5
	(deg) for Compounds 2, 3, and 5	

$[HC(PPh_2=NSiMe_3)_2Li,THF]$ (2)							
Li(1)-O(1)	1.892(10)	P(1) - N(1)	1.572(4)				
Li(1)-C(55)	2.622(9)	P(2)-N(2)	1.575(3)				
Li(1)-N(1)	1.980(9)	P(1)-C(55)	1.722(4)				
Li(1)-N(2)	2.017(9)	P(2)-C(55)	1.717(4)				
O(1)-Li(1)-N(1)	122.2(5)	N(1)-P(1)-C(55)	113.51(19)				
O(1) - Li(1) - N(2)	122.8(5)	N(2)-P(2)-C(55)	113.19(18)				
N(1)-Li(1)-C(55)	72.1(3)	P(1)-C(55)-Li(1)	74.3(2)				
N(2) - Li(1) - C(55)	71.3(3)	P(2) - C(55) - Li(1)	74.8(2)				
Li(1) - N(1) - P(1)	99.2(3)	P(1) - C(55) - P(2)	130.3(2)				
Li(1) - N(2) - P(2)	98.3(3)						
$[UC(DDb_{a}-NS(Ma_{a}))-CaC]]$ (9)							
Ge(1) - Cl(1)	2334(2)	P(1) - N(1)	1 640(4)				
Ge(1) - N(1)	1.983(4)	P(2) - N(2)	1.637(4)				
Ge(1) - N(2)	2 002(4)	C(1) - P(1)	1 719(4)				
	2.002(1)	C(1) - P(2)	1.710(4) 1 700(4)				
		$C(1) = I(\lambda)$	1.700(4)				
N(1)-Ge(1)-N(2)	102.52(15)	Ge(1) - N(1) - P(1)	120.0(2)				
Cl(1) - Ge(1) - N(1)	99.41(12)	N(2) - P(2) - C(1)	113.58(19)				
Cl(1) - Ge(1) - N(2)	98.04(11)	N(1) - P(1) - C(1)	114.2(2)				
Ge(1) - N(2) - P(2)	120.54(19)	P(1)-C(1)-P(2)	119.2(2)				
$[(\mu - N = Ph_2P)(Me_3SiN = Ph_2P)C = Ge(OSiMe_3)]_2$ (5)							
C(1A)-Ge	1.915(5)	P(2) - N(2)	1.574(5)				
Ge(1) - O(1)	1.759(4)	Ge(1)-N(2)	1.745(5)				
O(1) - Si(1)	1.633(4)	P(1) - N(1)	1.642(4)				
C(1A) - P(1)	1.720(6)	N(1)-Ge(1)	1.956(5)				
C(1)-P(2)	1.716(6)						
O(1)-Ge(1)-C(1A)	112.0(2)	P(2)-C(1)-P(1A)	133.4(3)				
O(1)-Ge(1)-N(2)	108.3(2)	N(1) - P(1) - C(1A)	97.4(2)				
P(2)-N(2)-Ge(1)	131.0(3)						

Compounds **6**–**8** are isostructural and comprised of the chalcogen-bridged germaketene dimers. The molecular structure of **8** is shown in Figure 4. Selected bond distances (Å) and angles (deg) of **6**–**8** are listed in Table 3. The Ge–C(1) bond distances of 1.875(5) Å in **6** and 1.873(2) Å in **7** are shorter than those of 1.905(8) and 1.908(7) Å in **4**. The Ge–C(1) distance of 1.912(3) Å in **8** is slightly longer compared with those of 1.905(8) and 1.908(7) Å in **4**. The average germanium–chalcogen distances [2.233 Å (**6**), 2.364 Å (**7**), and 2.581 Å (**8**)]

Figure 3. Crystal structure of **5** with atomic numbering scheme.

Figure 4. Crystal structure of **8** with atomic numbering scheme.

 Table 3. Selected Bond Distances (Å) and Angles

 (deg) for Compounds 6–8

	$[(Me_3SiN=PPh_2)_2C=Ge(\mu-E)]_2$			
	$\mathbf{E} = \mathbf{S} \ \mathbf{(6)}$	E = Se (7)	E = Te (8)	
Ge(1)-E(1)	2.230(2)	2.357(4)	2.585(4)	
Ge(1)-E(1A)	2.236(2)	2.370(4)	2.577(4)	
Ge(1)-C(1)	1.875(5)	1.873(2)	1.912(3)	
P(1)-N(1)	1.552(5)	1.531(2)	1.560(3)	
P(2)-N(2)	1.645(4)	1.655(2)	1.664(3)	
Ge(1)-N(2)	1.895(4)	1.911(2)	1.938(2)	
P(1)-C(1)	1.748(5)	1.744(2)	1.735(3)	
P(2)-C(1)	1.713(5)	1.701(2)	1.721(3)	
Ge(1)-E(1)-Ge(1A)	84.67(5)	83.73(1)	81.42(1)	
E(1)-Ge(1)-E(1A)	95.33(5)	96.28(1)	98.58(1)	
N(2) - Ge(1) - C(1)	82.1(2)	81.53(8)	81.93(12)	
Ge(1)-C(1)-P(2)	90.7(2)	91.74(10)	90.32(14)	
C(1) - P(2) - N(2)	95.0(2)	94.81(10)	96.43(13)	
P(2)-N(2)-Ge(1)	92.1(2)	91.89(8)	91.18(12)	
P(1)-C(1)-P(2)	121.9(3)	126.95(13)	124.71(17)	

increase with the covalent radii of chalcogens. One of the imino groups of the ligand in **6–8** coordinates to the germanium center, the others remaining uncoordinated. The differences in the P–N bond distances [1.552(5), 1.645(4) Å (6); 1.531(2), 1.655(2) Å (7); and 1.560(3), 1.664(3) Å (8)] suggest the delocalization of π -electrons resulted from the conjugation of P=N and C=Ge double bonds in germavinylidene.

The Ge–S distances of 2.230(2) and 2.236(2) Å in **6** are longer than the Ge=S bond distance of 2.049(3) Å

in [Tbt(Tip)Ge=S], but similar to those distances reported for typical Ge–S single bonds (2.17–2.25 Å).²⁰ The Ge–Se distances of 2.357(4) and 2.370(4) Å in **7** are in the range 2.337–2.421 Å for some Ge–Se single bonds reported, but slightly shorter than the Ge–Se distance of 2.426(2) Å in [{CPh(SiMe_3)_2C_5H_4N-2}_2Ge=Se].⁵ The Ge–Te bond distances of 2.585(4) and 2.577(4) Å in **8** are slightly shorter than that in alkylidene–telluragermirane (2.591(3) Å)²¹ and [Ge{N(SiMe_3)_2}(μ -Te)]₂ (2.595(2), 2.596(2) Å).^{14d}

Experimental Section

General Procedures. All manipulations were carried out under an inert atmosphere of dinitrogen gas by standard Schlenk techniques. Solvents were dried over and distilled from CaH₂ (hexane) and/or Na (Et₂O, toluene, and THF). Sulfur, selenium, and tellurium powders were purchased from Aldrich Chemicals and used without further purification. GeCl₂·dioxane²² and [Ge{N(SiMe₃)₂}₂]²³ were prepared by reported procedures. The ¹H, ¹³C, ³¹P, ⁷⁷Se, and ¹²⁵Te NMR spectra were recorded on Brüker WM-300 or Varian 400 spectrometers. The NMR spectra were recorded in benzene*d*₆ or THF-*d*₈, and the chemical shifts δ are relative to SiMe₄, 85% H₃PO₄, Ph₂Se₂, and Me₂Te₂ for ¹H, ¹³C, ³¹P, ⁷⁷Se, and ¹²⁵Te NMR, respectively.

[HC(PPh₂=NSiMe₃)₂Li·THF] (2). BuⁿLi (6.3 mL, 10.11 mmol, 1.6 M solution in *n*-hexane) was added slowly to the solution of [(Me₃SiN=PPh₂)₂CH₂] (5.65 g, 10.11 mmol) in THF (60 mL) at -90 °C. The brown suspension was raised to ambient temperature and stirred overnight. Volatiles were removed under reduced pressure, and the residue was extracted by Et₂O. The precipitate was filtered. Hexane was added to the filtrate and concentrated under reduced pressure. Compound 2 was obtained as pale yellow crystals. Yield: 4.52 g (70%). Mp: 128-131 °C. Anal. Found: C, 65.68; H, 7.57; N, 4.49. Calcd for C₃₅H₄₇N₂LiOP₂Si₂: C, 66.01; H, 7.44; N, 4.40. ¹H NMR (C₆D₆): δ 0.22 (s, 18H, SiMe₃), 1.22–1.26 (m, 4H, THF), 1.67 (t, $J_{P-H} = 2.7$ Hz, 1H, PC(H)P), 3.61–3.65 (m, 4H, THF), 7.02-7.08 (m, 12H, Ph), 7.74-7.81 (m, 8H, Ph). ¹³C-{¹H} NMR (C₆D₆): δ 4.35 (SiMe₃), 23.56 (t, ¹J_{P-C} = 128.8 Hz, PCP), 25.31, 68.66 (THF), 127.77 (s, p-Ph), 129.23 (s, m-Ph), 131.37 (t, ${}^{2}J_{P-C} = 5.2$ Hz, o-Ph), 142.08 (d, ${}^{1}J_{P-C} = 95.5$ Hz, *ipso*-Ph). ${}^{31}P{}^{1}H}$ NMR (C₆D₆): δ 29.42.

[HC(PPh₂=NSiMe₃)₂GeCl] (3). A solution of [HC-(PPh2=NSiMe3)2Li·THF] (2) (0.91 g, 1.43 mmol) in Et2O (20 mL) was added slowly to the solution of GeCl₂·dioxane (0.33 g, 1.43 mmol) in Et₂O (20 mL) at 0 °C. The yellow suspension was raised to ambient temperature and stirred for 18 h. The precipitate was filtered. Hexane was added to the filtrate and concentrated under reduced pressure. Compound 3 was obtained as pale yellow crystals. Yield: 0.70 g (73%). Mp: 254 °C (dec). Anal. Found: C, 57.08; H, 6.15; N, 4.24. Calcd for C₃₁H₃₉ClGeN₂P₂Si₂·1/2 hexane: C, 57.68; H, 6.40; N, 3.96. ¹H NMR (THF- d_8): δ -0.15 (s, 18H, SiMe₃), 3.50 (t, $J_{P-H} = 12$ Hz, 1H, PC(H)P), 7.29-7.37 (m, 13H, Ph), 7.66-7.72 (m, 7H, Ph). ¹³C{¹H} NMR (THF- d_8): δ 3.01 (SiMe₃), 37.14 (t, ¹ J_{P-C} = 270.9 Hz, PCP), 128.58 (t, ${}^{2}J_{P-C} = 24.0$ Hz, *m*-Ph and *p*-Ph), 131.14 (s, *o*-Ph), 132.31 (t, ${}^{2}J_{P-C} = 21.0$ Hz, *ipso*-Ph). ${}^{31}P{}^{1}H{}$ NMR (THF- d_8): δ 13.97.

[(Me₃SiN=PPh₂)₂C=Ge→Ge=C(PPh₂=NSiMe₃)₂] (4).⁴ Method A: A solution of **3** (1.30 g 1.95 mmol) in toluene (30 mL) was added to a stirred solution of $[Ge{N(SiMe_3)_2}_2]$ (0.49 g, 1.25 mmol) in toluene (30 mL) at room temperature. The reaction was stirred for 2 days. The volatiles were removed under reduced pressure, and the residue was extracted with hexane/Et₂O, 1:1. After filtration and concentration of the filtrate, compound **4** was obtained as orange-red crystals. Yield: 0.63 g (79%).

Method B: A solution of **2** (1.16 g, 1.82 mmol) in Et₂O (30 mL) was added slowly to a stirred solution of GeCl₂·dioxane (0.21 g, 0.91 mmol) in Et₂O (30 mL) at -90 °C. The yellow suspension was raised to ambient temperature and stirred for 2 days. The precipitate was filtered. Hexane was added to the filtrate and concentrated under reduced pressure. **4** was obtained as orange-red crystals. Yield: 0.24 g (42%).

 $[(\mu - N = Ph_2P)(Me_3SiN = Ph_2P)C = Ge(OSiMe_3)]_2$ (5). A solution of 4 (0.70 g, 0.55 mmol) in toluene (30 mL) was added to Me₃NO (0.095 g, 1.27 mmol) in toluene (30 mL) at -90 °C with stirring. The reaction mixture faded gradually when raised to ambient temperature. The pale yellow solution was stirred at room temperature for 17 h. The volatiles were removed under reduced pressure, and the residue was extracted with Et₂O. It was filtered and concentrated, yielding pale yellow crystals of 5. Yield: 0.33 g (46%). Mp: 196 °C (dec). Anal. Found: C, 57.27; H, 5.73; N, 4.03. Calcd for C₆₂H₇₆N₄P₄O₂-Si₄Ge₂: C, 57.69; H, 5.93; N, 4.34. ¹H NMR (C₆D₆): δ -0.02 (s, 18H, SiMe₃), 0.71 (s, 18H, OSiMe₃), 6.51-8.73 (m, 40H, Ph). $^{13}C{^{1}H}$ NMR (C₆D₆): δ 2.29 (SiMe₃), 3.76 (OSiMe₃), 127.03 (m, Ph), 129.36 (m, Ph), 130.95 (d, ${}^{1}J_{P-C} = 60.6$ Hz, *p*-Ph'), 132.21 (d, ${}^{1}J_{P-C} = 45.6$ Hz, *m*-Ph'), 133.18 (s, *o*-Ph'), 133.40 (d, ${}^{1}J_{P-C} = 42.9$ Hz, *ipso*-Ph'). ${}^{31}P{}^{1}H$ NMR (C₆D₆): δ 18.66, 44.61.

[(Me₃SiN=PPh₂)₂C=Ge(µ-S)]₂ (6). A solution of 4 (0.34 g, 0.27 mmol) in THF (30 mL) was added dropwise to the colorless solution of powdered sulfur (0.017 g, 0.53 mmol) in THF (30 mL) at 0 °C with stirring. The resultant yellow solution was raised to room temperature and stirred for 36 h. After filtration and concentration of the filtrate, compound **6** was obtained as white crystals. Yield: 0.11 g (30%). Mp: 175-176 °C. Anal. Found: C, 56.16; H, 5.80; N, 4.05. Calcd for C62H76N4Ge2P4S2Si2: C, 56.29; H, 5.79; N, 4.24. 1H NMR (THF d_8): $\delta - 0.46$ (s, 18H, SiMe₃), -0.32 (s, 18H, SiMe₃), 7.17 - 7.40(m, 24H, Ph), 7.41-7.44 (m, 4H, Ph), 7.61-7.72 (m, 8H, Ph), 7.80–7.88 (m, 4H, Ph). ${}^{13}C{}^{1}H{}$ NMR (THF- d_8): δ 2.16, 4.14 (SiMe₃), 128.20 (d, ${}^{1}J_{P-C} = 48.3$ Hz, m-Ph), 128.58 (t, ${}^{2}J_{P-C} =$ 24.0 Hz, o-Ph), 128.87 (d, ${}^{1}J_{P-C} = 50.4$ Hz, *ipso*-Ph), 130.08 (s, *p*-Ph), 131.15 (s, *p*-Ph'), 132.32 (s, *m*-Ph'), 132.59 (d, ${}^{1}J_{P-C} =$ 67.2 Hz, o-Ph'), 133.71 (d, ${}^{1}J_{P-C} = 46.2$ Hz, *ipso*-Ph'). ${}^{31}P{}^{1}H{}$ NMR (THF-d₈): δ 10.69, 57.52. FAB-MS: m/z found 663.1040; calcd for $C_{31}H_{38}N_2GeP_2SSi \ 663.1054 \ ([M/2 + H]^+).$

[(Me₃SiN=PPh₂)₂C=Ge(µ-Se)]₂ (7). A solution of 4 (0.68 g, 0.54 mmol) in THF (30 mL) was added dropwise to the colorless solution of powdered selenium (0.089 g, 1.13 mmol) in THF (30 mL) at 0 $^\circ\mathrm{C}$ with stirring in the absence of light. The resultant orange solution was raised to room temperature and stirred for 2 days. It was filtered and concentrated, obtaining yellow crystals of 7. Yield: 0.17 g (23%). Mp: 328 °C (dec). Anal. Found: C, 51.87; H, 5.58; N, 3.95. Calcd for C₆₂H₇₆N₄Ge₂P₄Se₂Si₂: C, 52.49; H, 5.54; N, 3.95. ¹H NMR (THF- d_8): $\delta -0.48$ (s, 18H, SiMe₃), -0.25 (s, 18H, SiMe₃), 7.18-7.42 (m, 24H, Ph), 7.49-7.58 (m, 4H, Ph), 7.61-7.68 (m, 8H, Ph), 7.78–7.85 (m, 4H, Ph). ${}^{13}C{}^{1}H$ NMR (THF- d_8): δ 2.50, 4.39 (SiMe₃), 128.49 (d, ${}^{1}J_{P-C} = 47.7$ Hz, m-Ph), 128.81 (s, o-Ph), 129.18 (d, ${}^{1}J_{P-C} = 50.7$ Hz, *ipso*-Ph), 130.37 (s, p-Ph), 131.46 (s, p-Ph'), 132.68 (s, m-Ph'), 132.90 (d, ${}^{1}J_{P-C} = 43.8$ Hz, o-Ph'), 133.91 (d, ${}^{1}J_{P-C} = 46.8$ Hz, *ipso*-Ph'). ${}^{31}P{}^{1}H$ NMR (THF-d₈): δ 13.97, 60.80. ⁷⁷Se NMR (THF-d₈): δ 860.88. FAB-MS: m/z found 711.0510; calcd for C₃₁H₃₈N₂GeP₂SeSi₂ 711.0499 $([M/2 + H]^+).$

[(Me₃SiN=PPh₂)₂C=Ge(\mu-Te)]₂ (8). A solution of 4 (0.72 g, 0.57 mmol) in THF (30 mL) was added slowly to the colorless solution of powdered tellurium (0.15 g, 1.18 mmol) in THF (30 mL) at 0 °C with stirring in the absence of light. The resultant red solution was raised to room temperature and stirred for 2

⁽²⁰⁾ Tokitoh, N.; Matsumoto, T.; Manmaru, K.; Okazaki, R. J. Am. Chem. Soc. 1993, 115, 8855.

⁽²¹⁾ Kishikawa, K.; Tokitoh, N.; Okazaki, R. Organometallics 1997, 16, 5127.

⁽²²⁾ Fjeldberg, T.; Haaland, A.; Schilling, B. E. R.; Lappert, M. F.; Thorne, A. J. *J. Chem. Soc., Dalton Trans.* **1986**, 1551.

days. The unreacted tellurium power was filtered off; the filtrate was concentrated, yielding red crystals of **8**. Yield: 0.31 g (36%). Mp: 258 °C (dec). Anal. Found: C, 48.48; H, 4.85; N, 3.90. Calcd for $C_{62}H_{76}N_4Ge_2P_4Si_2Te_2$: C, 49.19; H, 5.06; N, 3.70. ¹H NMR (THF- d_8): δ –0.48 (s, 18H, SiMe₃), -0.15 (s, 18H, SiMe₃), 7.21–7.42 (m, 22H, Ph), 7.45–7.53 (m, 4H, Ph), 7.67–7.78 (m, 14H, Ph). ¹³C{¹H} NMR (THF- d_8): δ 2.38, 4.12 (SiMe₃), 128.21 (d, ¹*J*_{P-C} = 46.5 Hz, *m*-Ph), 128.58 (t, ²*J*_{P-C} = 24.0 Hz, *o*-Ph), 128.85 (d, ¹*J*_{P-C} = 49.8 Hz, *ipso*-Ph), 130.00 (s, *p*-Ph), 131.14 (s, *p*-Ph'), 132.46 (m, *m*-Ph' and *o*-Ph'), 133.36 (d, ¹*J*_{P-C} = 46.2 Hz, *ipso*-Ph'). ³¹P{¹H} NMR (THF- d_8): δ 11.78, 58.97. ¹²⁵Te NMR (THF- d_8): δ 1025.53. FAB-MS: *m*/*z* found 761.0409; calcd for C₃₁H₃₈N₂GeP₂Si₂Te 761.0396 ([M/2 + H]⁺).

X-ray Crystallography. Single crystals were sealed in 0.3 or 0.5 mm Lindemann glass capillaries under nitrogen. X-ray data of **2**, **3**, and **5–8** were collected on a Rigaku R-AXIS II imaging plate using graphite-monochromatized Mo K α radiation (I = 0.71073 Å) from a rotating-anode generator operating at 50 kV and 90 mA. Crystal data for **2**, **3**, and **5–8** are summarized in Table 1. The structures were solved by direct phase determination using the computer program SHELXTL-PC²⁴ on a PC 486 and refined by full-matrix least squares with anisotropic thermal parameters for the non-hydrogen atoms.

Hydrogen atoms were introduced in their idealized positions and included in structure factor calculations with assigned isotropic temperature factor calculations. Full details of the crystallographic analysis of 2, 3, and 5-8 are given in the Supporting Information.

Acknowledgment. This work was supported by the Hong Kong Research Grants Council (Project No. CUHK 4023/02P).

Supporting Information Available: Details of the X-ray crystal structures, including ORTEP diagrams and tables of crystal data and structure refinement, atomic coordinates, bond lengths and angles, and anisotropic displacement parameters for **2**, **3**, and **5–8**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM034071T

⁽²³⁾ Chorley, R. W.; Hitchcock. P. B.; Lappert, M. F.; Leung, W.-P.; Power, P. P.; Olmstead, M. M. *Inorg. Chim. Acta* **1992**, 198.

⁽²⁴⁾ Sheldrick, G. M. In *Crystallographic Computing 3: Data Collection, Structure Determination, Proteins, and Databases*, Sheldrick, G. M., Krüger, C., Goddard, R., Eds.; Oxford University Press: New York, 1985; p 175.