(Cyclopentadienylamine)scandium(2,3-dimethyl-1,3-butadiene): A 1,3-Diene Complex of Scandium with Sc(I)- and Sc(III)-like Reactivity

Dirk J. Beetstra, Auke Meetsma, Bart Hessen,* and Jan H. Teuben

Dutch Polymer Institute/Center for Catalytic Olefin Polymerization, Stratingh Institute for Chemistry and Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received April 14, 2003

Summary: The scandium 2,3-dimethyl-1,3-butadiene complex $[\eta^5, \eta^1 - C_5H_4(CH_2)_2NMe_2]Sc(C_6H_{10})$ (2) reacts with PhCN via initial nitrile insertion into the Sc- diene bond to give a dimeric μ^2 -imido species, but with a 2,2bipyridine via the elimination of the free diene. The latter shows that 2 can be used to generate the reactive fragment $[\eta^5, \eta^1 - C_5H_4(CH_2)_2NMe_2]Sc^1$.

Transition-metal complexes of the 1,3-butadiene ligand and its various substituted derivatives display very interesting features with respect to structure and bonding as well as reactivity. In its complexes, the s-cis-1,3butadiene ligand has been observed to adopt a range of intergraded bonding modes between the η^4 -diene (A) and σ^2 , π -metallacyclopentene (**B**) extremes.¹ These two structures are related by an oxidative addition operation in which the diene in structure **B** is effectively doubly reduced to a but-2-ene-1,4-diyl dianion. The relative importance of the diene or metallacyclopentene character depends on several factors, especially the reducing power of the low-valent metal fragment. Reactivity corresponding to this σ^2 , π -metallacyclopentene character includes the insertion of unsaturated substrates into the metal-methylene bond² and the attack of Lewis acids such as $B(C_6F_5)_3$ on the diene methylene carbon to yield zwitterionic metal allyl species (which can act as single-component olefin polymerization catalysts).³ Reactivity associated with η^4 -diene character includes the displacement of the neutral diene ligand by various reagents, which can then undergo oxidative addition or oxidative coupling reactions on the resultant low-valent transition-metal species.^{2c,d} Many transition-metal diene complexes with intermediate bonding modes show both types of reactivity behavior, depending on the type of reagent used. In contrast, only very few 1,3-diene complexes of the group 3 and lanthanide metals are known. These are practically limited to 1,4-diphenyl-1,3-butadiene derivatives, in which the ligand predominantly has dianionic character and of which little reactivity has been reported.⁴ In addition, several naphthalene–lanthanide complexes show structural features consistent with 1,3-diene character.⁵

The group 3 metal scandium has a strong preference for the trivalent oxidation state, although some compounds with the metal in the monovalent oxidation state are known, e.g., in solid ScCl.⁶ Recently a Sc^IBr unit sandwiched between two (β -diketiminato)MgBr fragments was reported by Roesky et al.⁷ We are exploring the chemistry of Sc diene complexes to see whether "lowvalent" behavior for Sc may be induced by the presence of a diene ligand. Here we describe the synthesis and characterization of the first 1,3-butadiene complex of scandium, [η^5 , η^1 -C₅H₄(CH₂)₂NMe₂]Sc(2,3-dimethyl-1,3butadiene), with some aspects of its reactivity. It is shown that this compound can behave as a source of the reactive [η^5 , η^1 -C₅H₄(CH₂)₂NMe₂]Sc^I fragment.

The colorless cyclopentadienylamine scandium dichloride {[$C_5H_4(CH_2)_2NMe_2$]ScCl₂}_x (1) was obtained in 80% yield from the reaction of the corresponding lithium cyclopentadienide with ScCl₃(THF)₃, followed by vacuum sublimation.⁸ Reaction of the dichloride 1 with (2,3dimethyl-1,3-butadiene)Mg·(THF)₂ in ether, followed by workup at or below 0 °C, afforded the complex [C_5H_4 -(CH₂)₂NMe₂]Sc(C₆H₁₀) (2) as red crystals in 48% yield by crystallization from pentane.⁹

 $[\]ast$ To whom correspondence should be addressed. E-mail: hessen@ chem.rug.nl.

⁽¹⁾ See for a recent discussion of the bonding of 1,3-diene ligands to early transition metals: (a) Spencer, M. D.; Wilson, S. R.; Girolami, G. S. Organometallics **1997**, *16*, 3055. (b) Del Rio, D.; Galindo, A. J. Organomet. Chem. **2002**, *655*, 16, and references therein.

⁽²⁾ For examples involving mono(cyclopentadienyl) group 4 metal 1,3-diene complexes, see: (a) Hessen, B.; Blenkers, J.; Teuben, J. H.; Helgesson, G.; Jagner, S. *Organometallics* **1989**, *8*, 2809. (b) Ausema, J. B.; Hessen, B.; Teuben, J. H. *Recl. Trav. Chim. Pays-Bas* **1987**, *106*, 465. (c) Hessen, B.; Blenkers, J.; Teuben, J. H.; Helgesson, G.; Jagner, S. Organometallics **1989**, *8*, 830. (d) Hessen, B.; Teuben, J. H. *J. Organomet. Chem.* **1988**, *358*, 135.

^{(3) (}a) Temme, B.; Erker, G.; Karl, J.; Luftmann, R.; Fröhlich, R.;
Kotila, S. Angew. Chem., Int. Ed. Engl. 1995, 34, 1755. (b) Temme,
B.; Karl, J.; Erker, G. Chem. Eur. J. 1996, 2, 919. (c) Jiménez Pintado,
G.; Thornton-Pett, M.; Bouwkamp, M.; Meetsma, A.; Hessen, B.;
Bochmann, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2358. (d) Devore,
D. D.; Timmers, F. J.; Hasha, D. L.; Rosen, R. K.; Marks, T. J.; Deck,
P. A.; Stern, C. L. Organometallics 1995, 14, 3132.

^{(4) (}a) Mashima, K.; Sugiyama, H.; Nakamura, A. J. Chem. Soc., Chem. Commun. **1994**, 1581. (b) Kretschmer, W.; Thiele, K.-H. Z. Anorg. Allg. Chem. **1995**, 621, 1093. (c) Kretschmer, W.; Thiele, K.-H. Z. Anorg. Allg. Chem. **1995**, 621, 1304. (d) Emelyanova, N. S.; Trifonov, A. A.; Zakharov, L. N.; Shestakov, A. F.; Struchkov, Y. T.; Bochkarev, M. N. J. Organomet. Chem. **1997**, 540, 1.

⁽⁵⁾ For a recent review, see: Bochkarev, M. N. *Chem. Rev.* 2002, *102*, 2089.

⁽⁶⁾ Poeppelmeier, K. R.; Corbett, J. D. Inorg. Chem. 1977, 16, 294–297.

⁽⁷⁾ Neculai, A. M.; Neculai, D.; Roesky, H. W.; Magull, J.; Baldus,
M.; Andronesi, O.; Jansen, M. Organometallics 2002, 21, 2590.
(8) Synthesis of 1: A solution of 1.74 g (12.2 mmol) of [C₅H₄(CH₂)₂-

⁽⁸⁾ Synthesis of 1: A solution of 1.74 g (12.2 mmol) of $[C_5H_4(CH_2)_2$ -NMe₂]Li and 4.20 g (11.4 mmol) of ScCl₃(THF)₃ in 50 mL of THF was stirred overnight. Removal of the volatiles followed by sublimation (42 mTorr, 150 °C) of the residual solid afforded 2.31 g (9.14 mmol, 80%) of 1 as a white crystalline solid. Anal. Calcd $C_{13}H_{22}NCl_2Sc: C$ 50.67, H 7.19, N 4.54, Sc 14.59, Found: C 50.27, H 7.05, N 4.37, Sc 14.40. The analogous complex [C₅Me₄(CH₂)₂NMe₂]ScCl₂ was reported previously: Christopher, J. N.; Squire, K. R.; Canich, J. A. M.; Schaffer, T. D. World Pat. WO 00/18808.

Figure 1. Molecular structure of **2**. Selected interatomic distances (Å) and angles (deg): Sc-N = 2.358(2), Sc-C(10) = 2.249(3), Sc-C(11) = 2.401(2), Sc-C(12) = 2.400(2), Sc-C(13) = 2.251(2), C(10)-C(11) = 1.455(3), C(11)-C(12) = 1.386(3), C(12)-C(13) = 1.464(3), Sc-C(10)-C(11) = 77.6(2), Sc-C(13)-C(12) = 77.3(1).

A crystal structure determination of **2** (Figure 1)¹⁰ showed that the prone-oriented butadiene fragment has considerable 2-ene-1,4-diyl character, as indicated by the relatively short central C–C bond of 1.386(3) Å and relatively long C–CH₂ bonds of 1.455(3) and 1.464(3) Å. In the ¹H and ¹³C NMR spectra of **2**, the resonances for the diene methylene groups are observed at δ 1.76 and 2.58 ppm (d, ²*J*_{HH} = 6.8 Hz) and δ 59.0 ppm ($\Delta \nu_{1/2}$ = 183 Hz, broadened by the quadrupolar ⁴⁵Sc nucleus, *I* = 7/2), respectively.

In its structural features, the diene complex **2** thus predominantly displays Sc(III) σ^2 , π -metallacyclopentene character. In line with this, **2** reacts readily with polar unsaturated substrates to give products that derive from insertion into the Sc-methylene bonds. With 1 equiv of benzonitrile, **2** reacts to give the colorless μ^2 -imido complex {[C₅H₄(CH₂)₂NMe₂]Sc[μ^2 -NC(Ph)C₆H₁₀]}₂ (**3**), which was characterized by single-crystal X-ray diffraction of crystals of its benzene solvate (Figure 2).¹¹ The Cp-amine ligands adopt a trans geometry around the central Sc₂N₂ core, which is practically equilateral. Although common for many transition metals, M₂(μ^2 -NR)₂ species of group 3 metals to our knowledge have not yet been reported and have only very recently been observed for lanthanide metals.¹²

The formation of this product can be explained by the sequence depicted in Scheme 2, in which the nitrile initially inserts into one of the $Sc-CH_2$ bonds, followed

(10) Crystal data for **2**: $C_{15}H_{24}$ NSc, space group C2/c, monoclinic, a = 17.707(1) Å, b = 8.4651(6) Å, c = 19.903(1) Å, $\beta = 105.984(1)^\circ$, V = 2868.0(3) Å³; T = 125(1) K, Z = 8, μ (Mo K α) = 4.93 cm⁻¹, 13 775 reflections measured (3544 unique), final refinement converged at $R_w(F^2) = 0.0975$ with 250 parameters.

The returns measured (3544 unique), that remement converged at $R_w(F^2) = 0.0975$ with 250 parameters. (11) Crystal data for $\mathbf{3} \cdot (C_6H_6)$: $(C_{22}H_{29}N_2Sc)_2 \cdot C_6H_6$, space group $P\overline{I}$, triclinic, a = 8.7222(8) Å, b = 10.5565(9) Å, c = 12.580(1) Å, $\alpha = 70.455(2)^\circ$, $\beta = 88.427(2)^\circ$, $\gamma = 88.719(2)^\circ$, V = 1091.05(16) Å³; T = 110(2) K, Z = 2, μ (Mo K α) = 3.50 cm⁻¹, 5899 reflections measured (4441 unique), final refinement converged at $R_w(F^2) = 0.1232$ with 381 parameters.

(12) (a) Chan, H.-S.; Li, H.-W.; Xie, Z. *Chem. Commun.* 2002, 652.
(b) Gordon, J. C.; Giesbrecht, G. R.; Clark, D. L.; Hay, P. J.; Keogh, D. W.; Poli, R.; Scott, B. L.; Watkin, J. G. *Organometallics* 2002, *21*, 4726.

Figure 2. Molecular structure of **3**. Selected interatomic distances (Å) and angles (deg): Sc(1)-N(1) = 2.375(3), Sc(1)-N(2) = 2.017(2), Sc(1)-N(2a) = 2.056(2), N(2)-C(10) = 1.465(3), N(2)-Sc(1)-N(2a) = 87.14(9), Sc(1)-N(2)-Sc(1a) = 92.86(9), Sc(1)-N(2)-C(10) = 138.2(2), Sc(1a)-N(2)-C(10) = 127.6(3).

Scheme 1

by an attack of the other diene methylene group on the carbon atom of the imide intermediate. This yields an electronically unsaturated metal imido species that will readily dimerize. A similar reaction sequence was earlier observed in our group in the reaction of (C_5Me_5)-Hf(2,3-dimethyl-1,3-butadiene)Cl with acetylene, in which case a μ -alkylidene complex was formed.¹³

In contrast with the insertion chemistry described above for the reaction of **2** with benzonitrile, the reaction of **2** with 2 equiv of 4,4'-dimethyl-2,2'-bipyridine leads to liberation of free 2,3-dimethyl-1,3-butadiene (as seen by NMR spectroscopy). From a reaction in toluene, followed by crystallization from hexane, the resulting bis(4,4'-dimethyl-2,2'-bipyridine) adduct $[C_5H_4(CH_2)_2-$ NMe₂]Sc(η^2 -N₂C₁₂H₁₂)₂ (**4**) was isolated as a black

⁽⁹⁾ Synthesis of **2**: A suspension of **1** (220 mg, 0.87 mmol) and $(C_6H_{10})Mg(THF)_2$ (295 mg, 1.17 mmol) in 30 mL ether was stirred at 0 °C for 1.5 h. At 0 °C the volatiles were removed in vacuo, and the residue was extracted with pentane. Concentrating the solution and cooling to -80 °C afforded **2** (110 mg, 0.42 mmol, 42%) as red crystals. ¹H NMR (C_6D_6 , 25 °C): δ 6.20 (ps.t, J = 2.8 Hz, 2H, C_5H_4), 6.01 (ps.t, J = 2.8 Hz, 2H, C_5H_4); 2.58 (d, J = 6.8 Hz, 2H, C_5H_4), 6.01 (ps.t, J = 6.2 Hz, 2H, CH_2), 1.87 (t, J = 6.2 Hz, 2H, CH_2), 1.87 (t, J = 6.2 Hz, 2H, CH_2), 1.87 (t, J = 6.2 Hz, 2H, CH_2), 1.82 (s, 6H, Me), 1.76 (d, J = 6.8, 2H, anti-CH₂), 1.71 (s, 6H, Me). Anal. Calcd for $C_{15}H_{24}$ NSc: C 68.66, H 9.22, N 5.34, Sc 16.79. Found: C 68.00, H 9.27, N 5.23, Sc 16.68.

⁽¹³⁾ Hessen, B.; Van Bolhuis, F.; Teuben, J. H. Organometallics 1987, 6, 1352.

crystalline material (Scheme 3), which nevertheless was persistently contaminated with free bipyridine.

A crystal structure determination¹⁴ of the compound revealed that the metal center is pseudo-six-coordinate, with one η^5 -cyclopentadienyl group, two η^2 -bipyridine ligands, and the coordinated pendant amine (Figure 3). The Sc–N(amine) distance of 2.564(4) Å is 0.2 Å longer than that in 2 or 3 in response to the high coordination number of the metal center in 4. Inspection of the C-C and C-N distances within the 4,4'-dimethyl-2,2'-bipyridine ligands reveals that both ligands appear to be reduced to their radical monoanions (e.g., as seen from the central bipyridine C–C bonds in **4** of 1.41-1.42 Å as compared to 1.48 Å in neutral bipyridine¹⁵). This indicates that the effective oxidation state of the Sc metal center in 4 is Sc(III), a tribute to the strong reducing power of lower oxidation states of Sc.¹⁶ ¹H NMR spectra of solutions of 4 in C_6D_6 show only resonances of some free 4,4'-dimethyl-2,2'-bipyridine (which always seems to be present in samples of 4), suggesting that the compound is paramagnetic. An Evans method¹⁷ determination of the magnetic moment of 4 on a benzene solution of 4 generated in situ from 2 and 2 equiv of 4,4'-dimethyl-2,2'-bipyridine yielded μ_{eff} = 1.54 (expected spin-only for an S = 1 system: $\mu_{\text{eff}} =$ 2.83). This indicates either a degree of magnetic coupling between the bipyridyl radical anion ligands in 4

(16) Several lanthanide complexes with multiple bipyridyl radical anion ligands have been reported; see for example: Fedushkin, I. L.; Petrovskaya, T. V.; Girgsdies, F.; Nevodchikov, V. I.; Weimann, R.; Schumann, H.; Bochkarev, M. N. *Russ. Chem. Bull.* **2000**, *49*, 1869. (17) (a) Evans, D. F. *J. Chem. Soc.* **1959**, 2003. (b) Schubert, E. M.

J. Chem. Educ. **1992**, 69, 62.

Figure 3. Molecular structure of **4.** Selected interatomic distances (Å) and angles (deg): Sc(1)-N(1) = 2.564(4), Sc(1)-N(2) = 2.272(3), Sc(1)-N(3) = 2.252(3), Sc(1)-N(4) = 2.219(3), Sc(1)-N(5) = 2.228(3), N(2)-C(14) = 1.385(5), N(3)-C(16) = 1.374(5), C(14)-C(16) = 1.410(5), N(4)-C(26) = 1.364(5), N(5)-C(28) = 1.368(5), C(26)-C(28) = 1.422(5), N(1)-Sc(1)-N(4) = 154.3(1), N(2)-Sc(1)-N(5) = 147.5(1), N(2)-Sc-N(4) = 85.6(1).

or partial decomposition of **4** (e.g., by partial loss of free ligand, a possible source of the persistent presence of 4,4'-dimethyl-2,2'-bipyridine in solid samples). Attempts to drive such a reaction by removal of 4,4'-dimethyl-2,2'-bipyridine from **4** by, for example, vacuum sublimation did not yield well-defined organometallic products.

The scandium diene complex **2** is thus found to be able to eliminate the neutral diene ligand and can act in this way as a precursor for the $[C_5H_4(CH_2)_2NMe_2]Sc^I$ fragment. Preliminary experiments in which **2** was reacted with reagents that are known to give facile oxidative addition to low-valent transition-metal centers (I₂, PhSSPh) showed that also in these cases the diene ligand is readily eliminated, yielding species that, by ¹H NMR spectroscopy, appear to be C_s symmetric $[C_5H_4(CH_2)_2NMe_2]ScX_2$ compounds (X = I, SPh). Presently we are investigating the scope of this approach with other group 3 and lanthanide metals.

Supporting Information Available: Experimental details of the preparation and characterization of compounds **1–4**, NMR data of preliminary reactivity studies on **2** and X-ray structural data for compounds **2–4**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM030267H

⁽¹⁴⁾ Crystal data for 4: C₃₃H₃₈N₅Sc, space group *P*2₁/*a*, monoclinic, *a* = 9.277(2) Å, *b* = 17.315(3) Å, *c* = 17.786(3) Å, *β* = 100.951(3)°, *V* = 2805.0(9) Å³; *T* = 100(1) K, *Z* = 4, μ (Mo Kα) = 2.94 cm⁻¹, 16 598 reflections measured (3885 unique), final refinement converged at $R_w(F^2) = 0.1316$ with 504 parameters.

⁽¹⁵⁾ See for example: Echegoyen, L.; DeCain, A.; Fischer, J.; Lehn, J.-M. Angew. Chem., Int. Ed. Engl. **1991**, *30*, 838.