Downloaded by CARLI CONSORTIUM on June 29, 2009
Published on October 16, 2003 on http://pubs.acs.org | doi: 10.1021/om0301583 Published on October 16, 2003 on http://pubs.acs.org | doi: 10.1021/om0301583Downloaded by CARLI CONSORTIUM on June 29, 2009

Activation of a C-**H Bond in a Pyridine Ring. Reaction of 6-Substituted 2,2**′**-Bipyridines with Methyl and Phenyl Platinum(II) Derivatives: N**′**,C(3)-"Rollover" Cyclometalation**

Giovanni Minghetti, Sergio Stoccoro, Maria Agostina Cinellu, Barbara Soro, and Antonio Zucca*

Dipartimento di Chimica, Universita` *di Sassari, Via Vienna 2, I-07100 Sassari, Italy*

Received March 5, 2003

The reaction of the electron-rich derivatives *cis*- $[Pt(R)_2(DMSO)_2]$ ($R = Me$, Ph) with a series of 6-substituted-2,2′-bipyridines, HL, occurs with loss of methane or benzene, respectively, to yield cyclometalated platinum(II) species [Pt(R)(L)(DMSO)] where L is an anionic ligand ^N′,C(3) coordinated. The unusual C-H activation entails a consecutive reaction process through a detectable intermediate. The reaction is peculiar of 6-substituted ligands: for comparison no reaction occurs with $6.6'$ -Me₂-2,2'-bipy and an adduct, $[Pt(R)_2(HL)]$, is obtained with 5-Me-2,2′-bipy.

Introduction

Cyclometalated complexes arising from direct C-^H activation of 6-substituted 2,2′-bipyridines are well known: they include both $N, N, C(\text{sp}^2)$ -M as well as N,N,C(sp3)-M species, the former ones being more common.1

In contrast, although reported first several years ago, still very rare is the direct metal-mediated activation of a C-H bond of a pyridyl ring. As far as we know, N′,C(3) five-membered rings have been observed in an Ir(III) 2,2'-bipyridine (bipy) complex,² in some platinum derivatives with N-substituted-2,2′-bipyridines,3 and quite recently in a palladium and a platinum species,

 $[PdCl(L)]_2$ and $[PtCl(L)(SMe_2)]$, respectively⁴ (HL = 6-alkyl-2,2′-bipy). Furthermore the formation of Ar-^H in a process of thermal rearrangement of $[Pt(Ar)_2(bipy)]$ derivatives was explained assuming activation of a C-^H bond of the bipy ligand.⁵

In platinum(II) chemistry examples of activation of a ^C-H bond of the heterocyclic ring promoted by platinum(II) chlorides such as $[PtCl_4]^{\bar{2}-}$ or $[PtCl_2(L)_2]$ adducts have not been reported. In the case of the intermediates *trans*-[Pt(R)Cl(SMe₂)₂] (R = Me, Ph) the reaction with 6-substituted-2,2′-bipyridines, HL, mostly gives adducts [Pt(R)Cl(HL)] or cyclometalated species $[PtCl(L)]$ where L is the anionic N,N,C ligand arising from activation of a C-H bond of the substituent.⁶ Only with $HL = 6-C(Me)₃-2,2′-bipy$ does the methyl-chloro intermediate trans-[Pt(Me)Cl(SMe₂)₂] give the aforementioned rollover N′,C(3) cyclometalated species [PtCl- $(L)(SMe₂)$] with loss of methane.⁴ Here we report on the reaction of the electron-rich $[Pt(Me)_2(DMSO)_2]$ and $[Pt(Ph)₂(DMSO)₂]$ derivatives with 6-alkyl-, benzyl-, and aryl-substituted 2,2′-bipyridines, HL, to give new "rollover" cyclometalated species [Pt(Me)(L)(DMSO)] and [Pt(Ph)(L)(DMSO)] through methane or benzene elimination.

A preliminary communication relevant to 6-Ph-2,2′ bipy has been recently reported.⁷

Aspects of the reactivity of the new species will also be discussed.

Results and Discussion

The ligands HL*ⁿ*, shown in Scheme 1, include alkyl-, benzyl-, and phenyl-6-substituted-2,2′-bipyridines.

^{*} Corresponding author. E-mail: zucca@uniss.it. Fax: +39 079 229559.

⁽¹⁾ N,N,C(sp2)-M derivatives: (a) Minghetti, G.; Cinellu, M. A.; Chelucci, G.; Gladiali, S.; Demartin, F.; Manassero, M. *J. Organomet. Chem.* **1986**, *307*, 107. (b) Constable, E. C.; Henney, R. P. G.; Leese, T. A.; Tocher*,* T. A. *J. Chem. Soc., Chem. Commun.* **1990**, 513. (c) Constable, E. C.; Henney, R. P. G.; Leese, T. A.; Tocher, T. A. *J. Chem. Soc., Dalton Trans.* **1990**, 443. (d) Cheung, T. C.; Cheung, K. K.; Peng,
S. M.; Che, C. M*. J. Chem. Soc., Dalton Trans* **1996**, 1645–1651. (e)
Sanna, G.; Minghetti, G.; Zucca, A.; Pilo, M. I.; Seeber, R.; Laschi, F. *Inorg. Chim. Acta* **2000**, 305/2, 189–205. N,N,C(sp³)-M derivatives:
(f) Newkome, G. R.; Evans, D. W.; Kiefer, G. E.; Theriot, K. J.
Organometallics **1988**, 7, 2537–2542. (g) Stoccoro, S.; Chelucci, G.;
Cinellu, M. A. A.; Stoccoro, S.; Cinellu, M. A.; Minghetti, G.; Manassero, M.; Sansoni, M. *Eur. J. Inorg. Chem.* **2002**, 3336–3346. N,N,C(sp²)-M and N,N,C. M. *Eur. J. Inorg. Chem.* **2002**, 3336–3346. N,N,C(sp²)-M and N,N,C-
(sp³)-M derivatives: (j) Cinellu, M. A.; Zucca, A.; Stoccoro, S.; Minghetti,
G.; Manassero, M.; Sansoni, M. *J. Chem. Soc., Dalton Trans.* **1996**,
42 Manassero, M. *J. Chem. Soc., Dalton Trans.* **1999**, 3431. (l) Zucca, A.; Cinellu, M. A.; Pinna, M. V.; Stoccoro, S.; Minghetti, G.; Manassero,

M.; Sansoni, M.; *Organometallics* **2000**, 199, 4295–4304.
(2) (a) Nord, G.; Hazell, A. C.; Hazell R. G.; Farver, O. *Inorg. Chem.*
1983, *22*, 3429. (b) Spellane, P. J.; Watts, R. J.; Curtis, C. J. *Inorg. Chem.* **1983** J.; Noble, B. C.; Peacock, R. D.; Yellowlees, L. J. *Inorg. Chem*. **1984**, *23*, 3425.

^{(3) (}a) Dholakia, S.; Gillard, R. D.; Wimmer*,* F. L. *Inorg. Chim. Acta* **1983**, *69*, 179. (b) Castan, P.; Dahan, F.; Wimmer, F. L.; Wimmer, S. *J*. *Chem. Soc., Dalton Trans*, **1990**, 2971. (c) Castan, P.; Labiad, B.; Villemin, D.; Wimmer, F. L.; Wimmer, S. *J. Organomet. Chem*. **1994**, *⁴⁷⁹*, 153-157.

⁽⁴⁾ Minghetti, G.; Doppiu, A.; Zucca, A.; Stoccoro, S.; Cinellu, M. A.; Manassero, M.; Sansoni, M. *Chem. Heterocycl. Compd.* (N.Y.) **1999**, *35* (8), 992.

⁽⁵⁾ Skapski, A. C.; Sutcliffe, V. F.; Young, G. B. *Chem. Commun*. **1985**, 609.

⁽⁶⁾ Doppiu, A.; Cinellu, M. A.; Minghetti, G.; Stoccoro, S.; Zucca, A.; Manassero, M.; Sansoni, M. *Eur. J. Inorg. Chem.* **²⁰⁰⁰**, 2555-2563. (7) Zucca, A.; Doppiu, A.; Cinellu, M. A.; Minghetti, G.; Stoccoro,

S.; Manassero, M. *Organometallics* **²⁰⁰²**, *²¹*, 783-785.

Table 1. Selected 1H NMR Data*^a*

^a Room temperature, solvent CDCl3, chemical shifts in ppm from internal SiMe4, coupling constants in Hz, *^J*(H-H) in parentheses, *^J*(Pt-H) in square brackets. *^b*Signals partially overlapping.

The reaction of *cis*- $[Pt(Me)_2(DMSO)_2]$ with the ligands has been carried out both in acetone at room or reflux temperature and in toluene at 70-90 °C with a Pt/L 1:1 molar ratio.

With the ligands HL^{1-6} the reaction is straightforward and yields, at least in acetone solution, are fairly good.⁸ In toluene at 70-90 °C, partial decomposition to metal occurs. The isolated species, **1a**-**6a**, are stable in the solid state, soluble in several organic solvents, and not electrolytes in acetone. They have been fully characterized by elemental analyses and by ¹H NMR and FAB-MS spectroscopy. In the FAB-MS spectra, besides the molecular ions, $[M]^+$, both the $[M - Me]^+$ and $[M -$ DMSO]⁺ ions are observed (compounds **2a**, **3a**, **5a**, and **6a**). The ¹H NMR spectra provide evidence for only one out of the two possible isomers. The resonance of the methyl bonded to the platinum atom, at high field (*δ* $0.66-0.75$, CDCl₃ solution), is a singlet with satellites: the 195Pt-H coupling constants, ca. 82 Hz, fit a methyl *trans* to a nitrogen atom.9 On the other hand, the rather small ³*J*(Pt-H) values, ca. 18 Hz, relative to the protons of DMSO, are consistent with a ligand *trans* to a $C(sp^2)$.^{7,10} The aromatic region shows six resonances: an AB system due to H(4) and H(5) with satellites (e.g., compound **3a**: δ (H₄) 7.89, ³*J*(Pt-H) = 51.9 Hz; δ (H₅) 7.21, $4J(Pt-H) = 18.0 Hz$ confirms coordination of platinum to the $C(3)$ atom. The $H(6')$ proton is remarkably deshielded, ca. 9.6-9.7 ppm (see Table 1), and coupled to 195Pt: the ³*J*(Pt-H) values, ca. 14 Hz, reflect the high *trans* influence of the methyl group. The resonances of the aliphatic protons in the substituent, which are far away from the platinum atom, are very slightly affected by coordination. Compound **3a** has been fully characterized by means of ${}^{1}H$, ${}^{1}H$ NOE difference, ${}^{13}C{^1H}$, ${}^{13}C$ APT, and ${}^{1}H$ single frequency decoupled $13C$ NMR experiments, allowing a full assignment of $1H$ and 13C resonances. Finally, 1H NOE difference experiments agree with the proposed geometry of the complex (e.g., irradiation of the Pt-Me at 0.69 ppm gives enhancement at 3.23 (coordinated DMSO) and 7.89 ppm $(H(4)).$

In agreement with the ¹H NMR data, the ¹³C{¹H} NMR spectrum of **3a** shows an aromatic carbon atom bonded to platinum at 141.31 ppm, with $^1J_{\text{Pt-C}} = 1086$ Hz, to be compared with previously reported data for N , C (sp²) cyclometalated Pt(II) derivatives.¹¹ In addition the 13C APT spectrum shows in the aromatic region only six tertiary and four quaternary carbon atoms, the metalated one included. In the aliphatic region two resonances, at -13.91 ppm $(^1J(^{13}C - ^{195}Pt) = 763.8$ Hz)) and 43.69 ppm $(^{2}J(13C-195Pt) = 42.5$ Hz), give clear evidence for coordinated Me and DMSO groups, respectively.

A series of ¹H single frequency decoupled ¹³C NMR spectra allowed us to assign the C resonances, showing that the 195Pt-13C coupling constants of the carbon atoms of the metalated pyridine are much larger than those of the N-bonded pyridinic ring (e.g., C5, *^J*(Pt-C) $= 59.7$ Hz; C5', $J(Pt-C) = 9.9$ Hz).

The N', C(3) metalation seems to be peculiar of electronrich derivatives. To point out the role of the substitution of a methyl for a chloride, the behavior of the strictly homologous species $[Pt(Me)_2(DMSO)_2]$, $[PtCl(Me)(DM-S)$

⁽⁸⁾ An additional ligand was investigated, namely, 6-(1-methylbenzyl)2,2′-bipyridine: although 1H NMR spectra give evidence for N′,- $C(3)$ metalation, a number of other species are formed, hampering isolation of a pure compound

⁽⁹⁾ Monaghan, P. K.; Puddephatt, R. J. *Inorg. Chim. Acta* **1982**, *65*, L59-L61.

⁽¹⁰⁾ Doppiu, A.; Minghetti, G.; Cinellu, M. A.; Stoccoro, S.; Zucca, A.; Manassero, M. *Organometallics* **²⁰⁰¹**, *²⁰*, 1148-1152*.*

⁽¹¹⁾ Chassot, L.; von Zelewsky, A. *Inorg. Chem*. **¹⁹⁸⁷**, *²⁶*, 2814- 18.

(acetone, reflux temperature, 5 h)

 SO_{2} , and $[PtCl_{2}(DMSO)_{2}]$ toward ligand HL¹ has been compared under the same conditions, Scheme 2. As can be seen C(3)-H activation is achieved only with the dimethyl derivative, at least under these experimental conditions.

A substituent in 6 position is of paramount importance to achieve N′,C(3) metalation. By comparison, the reaction of $[Pt(Me)_2(DMSO)_2]$ with 5-Me-2,2'-bipyridine $(HL⁷)$ or the unsubstituted 2,2'-bipy (HL⁸), carried out under the same experimental conditions (acetone, reflux), affords the adducts $[Pt(Me)_2(HL^n)]$ ($n = 7, 8$) (7, **8**); with the disubstitued $6.6'$ -Me₂-2,2'-bipyridine no reaction occurs at room temperature, whereas heavy decomposition is observed in refluxing acetone.

The nature of the electronic and steric properties of the 6-substituent of HL*ⁿ* does not remarkably affect the reaction, which in most cases, e.g., $n = 1, 2, 3$, and 6, occurs even at room temperature.

The progress of the $N'(C(3))$ metalation was investigated following by ¹H NMR spectroscopy the reaction of $[Pt(Me)_2(DMSO)_2]$ with the ligands HL^1 and HL^2 in acetone at room temperature (see Experimental Section).

The ¹H NMR spectrum ($(CD_3)_2CO$) of the starting complex $[Pt(Me)_2(DMSO)_2]$ shows a sharp peak at δ 3.12 (12H) with ¹⁹⁵Pt satellites ($3J$ (Pt-H) = 13.3 Hz), due to the S-bonded Me₂SO, and a singlet at δ 0.56 due to Pt-Me $(^{2}$ *J*(Pt-H) = 80.2 Hz). After addition of the ligand $HL¹$ a rapid decrease of these signals is observed; in the aliphatic region of the spectra the signal of coordinated DMSO, *δ* 3.12, partially converts into a singlet characteristic of free DMSO, *δ* 2.52. At the same time a new species, **i**, is formed, characterized by a H(6′) resonance at low field (*δ* 9.11), with no coordinated DMSO. After a few minutes after the mixing of the reactants, the spectra show, in low concentration, the final reaction products, $[Pt(L^1)(Me)(DMSO)]$ and methane ($\delta = 0.16$).

Figure 1. (a) ¹H NMR progress of the reaction of $[Pt(Me)_2DMSO_2]$ with HL¹ (1:1 molar ratio) in $(CD_3)_2CO$, $[Pt] = [Pt(Me)_2(DMSO)_2]$; (b) plot of $ln[Pt(Me)_2(DMSO)_2]$ vs time with a large excess of HL1.

The reaction is almost complete after 24 h. Conversion of species **i** to complex **1a** or **3a** is relatively slow, but not enough to allow isolation of the intermediates.

On the whole in the progress of the reaction only three platinum(II) species are detected in solution: the reactant ($[Pt(Me)_2(DMSO)_2]$), the final product ($[Pt(L)(Me)_2]$ (DMSO)]), and the new complex **i**. No other DMSOcontaining Pt(II) complex is observed.

The 1H NMR spectrum of the intermediate species **i** shows only the signals of two Pt-Me groups and of a coordinated HL unit. The resonances of the Pt-methyl protons are very close, e.g., for HL^1 , δ 1.02, s, ²J(Pt-H) $= 89$ Hz; 1.03, s, ²*J*(Pt-H) $= 87$ Hz. Both the nitrogen donors of the bipyridine seem to be coordinated: the H(6′) proton is shifted to low field and coupled to platinum (e.g., for HL¹ δ 9.11 d, H₆['], ³*J*(Pt-H) = 23 Hz) and the 6-Me protons resonate at *δ* 2.83, a value very similar to that previously observed for the isomer of $[Pt(HL¹)(Me)I]$, having the coordinated Me group close to the 6-Me (*δ* 2.87). It is worth noting that in the rollover species the chemical shift of the latter protons is usually very similar to that of the free ligand (e.g., δ (Me): **1a**, 2.46; HL¹, 2.57). On the whole, the spectrum of complex **i** strictly reminds us of those of the isolated adducts **7** and **8** (see Experimental Section), so that we feel confident to identify compound **i** as the adduct $[Pt(Me)₂(HL¹)$. Attempts to isolate the adduct by reaction of $[Pt(Me)_2(COD)]$ with HL^1 were unsuccessful: no reaction occurs even at reflux temperature.

A plot of the concentrations of $[Pt(Me)_2(DMSO)_2]$, **i**, and **1a** versus time (see Figure 1a) shows a pattern consistent with a two-step consecutive reaction (Scheme 3). 1H NMR follow-up of the reaction with a large excess of the ligand HL^1 indicates that overall the reaction is first order in $[Pt(Me)_2(DMSO)_2]$ with $k_{obs} = 0.16$ s⁻¹ at 18.5 °C. A plot of $ln[Pt(Me)_2(DMSO)_2]$ versus time is shown in Figure 1b.

A plausible pathway for the conversion of the adduct to the N′,C(3) cyclometalated species is shown in

Scheme 4

Scheme 4. The steric hindrance due to the substitution in 6 makes the adduct A unstable and allows the cleavage of a Pt-N bond weakened by the strong *trans* influence of the methyl group. Rotation of a pyridine ring around the $C(2)-C(2)$ bond brings a C-H bond close to the metal, B. The pseudo coordinatevely unsaturated intermediate B^{12} promotes the C(sp²)-H oxidative addition to yield the pentacoordinated hydridoplatinum(IV), $C.$ ^{13,14} From C, loss of methane eventually leads to the platinum(II) N′-C(3) cyclometalated species as the thermodynamically stable isomer D. An oxidative addition from B to C is supported by the observation that the formation of Ar-H in the thermal rearrangement of [Pt(Ar)₂(bipy)] is strongly favored in the case of $Ar = 4-CMe₃-C₆H₄$ versus $Ar = 4-CF₃-C₆H₄$ (the former reacts 62 times faster than the latter).^{5,15}

Accordingly, the cis - $[Pt(Ph)_2(DMSO)_2]$ complex seems to be somewhat less prone than the corresponding dimethyl derivative to give N′-C(3) cyclometalation: indeed this can be achieved under more severe conditions such as refluxing acetone for HL3 or toluene at 90 °C for HL.6 Under mild conditions adducts, e.g., $[Pt(Ph)₂(HL⁶)]$ and $[Pt(Ph)₂(HL⁸)]$, are obtained.

On the whole, the 1H NMR spectra of **3b** and **6b** are similar to those of the corresponding methyl derivatives. Evidence for the isomer having the phenyl *trans* to the nitrogen atom is provided by the upfield shift with respect to **3a** and **6a** $(\Delta \delta \ 1.12 - 1.13 \text{ ppm})$ of the resonances of the H(4) protons, due to the shielding effect of the adjacent phenyl ring.

In complexes **3a** and **6a** the platinum– $C(sp^3)$ bond was cleaved by reaction with HCl in acetone at room temperature (reaction *2*):

The metal-carbon bond inside the five-membered N,C cycle is unaffected. One isomer is selectively formed; the correct assignment of the isomer can be attained through the IR and NMR spectra. In the IR spectrum (complex $3c$) a strong absorption at 276 cm^{-1} is consistent with the stretching vibration of a Pt-Cl bond *trans* to a ligand with a high *trans* influence.16 In the 1H NMR spectra the ³*J*(Pt-H) relevant to the methylic protons of DMSO, 24.7 Hz, agrees with a DMSO *trans* to a nitrogen atom.

The mononuclear chloride species are accompanied by a minor product, $[PtCl(L)]_2$, formed by elimination of DMSO and poorly soluble, as often observed for this type of chloro-bridged dimers. In its turn the bridge can be opened by DMSO to restore the mononuclear complexes.

⁽¹²⁾ The X-ray structure of a 14-electron platinum(II) complex stabilized by an agostic interaction has been quite recently reported: Baratta, W.; Stoccoro, S.; Doppiu, A.; Herdtweck, E.; Zucca, A.; Rigo, P. *Angew. Chem.* **²⁰⁰³**, *⁴²* (1), 105-109.

⁽¹³⁾ Puddephatt, R. J. *Coord. Chem. Rev*. **²⁰⁰¹**, *²¹⁹*-*221*, 157-185. (14) Sixteen-electron platinum(IV) species have been recently characterized by X-ray structure: (a) Fekl, U.; Kaminsky, W.; Goldberg,
K. I. *J. Am. Chem. Soc.* **2001**, *123*, 6423. (b) Reinartz, S.; White, P. S.;
Brookhart, M.; Templeton, J. L. *J. Am. Chem. Soc.* **2001**, *123*, 6425.

⁽¹⁵⁾ Ryabov, A. D. *Chem. Rev.* **¹⁹⁹⁰**, *⁹⁰*, 403-424. (16) Appleton, T. G.; Clark, H. C.; Manzer, L. E. *Coord. Chem. Rev.* **¹⁹⁷³**, *¹⁰*, 335-422.

Reaction 2 is likely to occur through oxidative addition of HCl followed by fast reductive elimination of CH_4 : no hydrido-alkyl species is detected.13 The different *trans* influence of the donors accounts for the isomer having a *trans* Cl-Pt-C arrangement.

As shown, inter alia, by the reaction with HCl, the N′,C(3) five-membered ring is rather robust, and a variety of species can be obtained by substitution of DMSO with neutral ligands, e.g., CO , 3.5 -Me₂pyridine, and PPh₃, reactions $3-5$.

Reactions 3-5 occur in dichloromethane solution at room temperature, i.e., in very mild conditions. Compounds containing a single molecule of DMSO have been reported to be rather inert¹⁷ to substitution; in complexes such as **3a** and **6a**, the easy displacement of DMSO by neutral ligands is promoted by the metalcarbon *^σ*-bond in *trans* position. Compounds **¹³**-**¹⁵** contain four different groups coordinated to the metal center. Complex **13** in particular is not trivial, having three different metal-carbon bonds, $M-C(sp^3)$, $M-C$ - $(sp²)$, and M-C(sp), respectively. ¹H NMR data are consistent with the isomer having an N-Pt-Me arrangement. A NOE difference experiment supports this assignment: irradiation of the resonance of the methyl bound to the platinum atom, *δ* 1.19, gives enhancement of the signal of H(4), *δ* 7.96.

The present results point out that an interesting intramolecular activation of a C-H bond of 6-substituted pyridine rings can be attained by reaction of electron-rich platinum(II) derivatives. Although the presence of a substituent in 6-position is crucial in driving the reaction toward the N′,C(3) metalation, we have evidence (1H NMR spectroscopy) that in the case of $[Pt(Me)_2(DMSO)_2]$ activation of a C-H bond of a pyridine ring occurs even with the unsubstituted 2,2′ bipyridine. However, the process requires harsh conditions, e.g., refluxing toluene, 5 and is accompanied by heavy decomposition to metal. A dynamic behavior implying dissociation-association of a nitrogen donor has been previously observed in some palladium(II) 2,2′ bipy complexes.¹⁸

Finally it is worth mentioning that with the 6-alkyland benzyl-substituted ligands, HL^1-HL^5 , we were unable to attain multiple C-H bond activation, as recently reported in the case of 6-phenyl-2,2′-bipyridine, HL.6,7 Nevertheless, the FAB mass spectra of compounds **2a**, **3a**, and **5a** provide evidence for dinuclear species (e.g., $2a$, m/z 613 $[Pt_2(L-2H)^+]$ in the vapor phase.

Experimental Section

The ligands were prepared according to literature methods.19

All the reactions were carried out under argon. The solvents have been purified and dried according to standard methods.²⁰ Compounds *cis*-[Pt(Me)₂(DMSO)₂], cis -[Pt(Ph)₂(DMSO)₂], and *trans*-[Pt(Me)Cl(DMSO)₂] were prepared according to literature procedures.21 Elemental analyses were performed with a Perkin-Elmer 240B elemental analyzer by Mr. A. Canu (Dipartimento di Chimica, Universita` di Sassari). Infrared spectra were recorded with a Perkin-Elmer 983 using Nujol mulls. ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded with a Varian VXR 300 spectrometer operating at 300.0, 75.4, and 121.4 MHz, respectively.

Chemical shifts are given in ppm relative to internal TMS (${}^{1}H$, ${}^{13}C$) and external 85% H_3PO_4 (${}^{31}P$). NOE difference spectra were performed by means of standard pulse sequences. The mass spectrometric measurements were performed on a VG 7070EQ instrument, equipped with a PDP 11-250J data system and operating under positive ion fast atom bombardment (FAB) conditions with 3-nitrobenzyl alcohol as supporting matrix.

Preparations. General Procedures for Preparation of Compounds 1a-**6a. Method A.** To a suspension of cis -[Pt(Me)₂(DMSO)₂] (88 mg, 0.231 mmol) in toluene (7 mL) were added under stirring 0.236 mmol of HLⁿ ($n = 1-6$). The yellow solution was heated to ⁷⁰-80 °C, then evaporated to dryness. The crude product was dissolved in CH_2Cl_2 , filtered over Celite, and treated with pentane. The precipitate obtained was filtered, washed with pentane, and vacuum-dried to give the analytical sample as a pale yellow solid.

Method B. To a solution of the ligand HLⁿ ($n = 1-6$, 0.30 mmol) in acetone (15 mL) was added under stirring 114 mg of cis - $[Pt(Me)_2(DMSO)_2]$ (0.30 mmol). The yellow solution was refluxed, then concentrated to small volume and treated with pentane. The precipitate obtained was filtered, washed with pentane, and vacuum-dried to give the analytical sample as a pale yellow solid.

[Pt(Me)(L1)(DMSO)], 1a. Compound **1a** was obtained according to method B $(5 h)$, yield 68%, mp 140-3 °C. Anal. Calcd for $C_{14}H_{18}N_2$ OPtS: C 36.76, H 3.97, N 6.12. Found: C 37.13, H, 3.65, N, 6.06. 1H NMR (CDCl₃): *δ* 0.69 (s, 3H, Me-Pt, ² J_{Pt-H} = 82.0 Hz), 2.52 (s, 3H, Me-bipy), 3.24 (s, 6H, Me(DMSO), ${}^{3}J_{\text{Pt-H}} =$

^{(17) (}a) Monsù Scolaro, L.; Mazzaglia, L.; Romeo, A.; Plutino, M.
R.; Castriciano, M.; Romeo, R. *Inorg. Chim. Acta* **2002**, 330, 189–196.
(b) Romeo, R.; Cusumano, M. *Inorg. Chim. Acta* **1981**, 49, 167.
(18) Markies, B.

^{(19) (}a) Kauffmann, T.; Konig, J.; Woltermann, A. *Chem. Ber*. **1976**, 109, 3864. (b) Azzena, U.; Chelucci, G.; Delogu, G.; Gladiali, S.; Marchetti, M.; Soccolini F.; Botteghi, C. *Gazz. Chim. Ital.* **1986**, 116, 307. (c) Botteghi, C.; Glencici, G.; Chelucci, G.; Chelucci, G.; Gladiali S.; So

Schmohel, E.; Balzani, V. *Synthesis* **¹⁹⁹⁸**, 321-324. (20) *Vogel's Textbook of Practical Organic Chemistry*, 5th ed.; Longman Scientific and Technical: Harlow, 1989.

^{(21) (}a) Eaborn, C.; Kundu, K.; Pidcock, A. *J. Chem. Soc., Dalton Trans.* **1981**, 933. (b) Romeo, R.; Monsu` Scolaro, L. *Inorg. Synth.* **1998**, *32*, 153.

19.3 Hz), 7.04 (d, 1H, H₅, ${}^{3}J_{H-H} = 8.0$ Hz, ${}^{4}J_{Pt-H} = 18.6$ Hz), 7.31 (m, 1H, H_{5'}), 7.88 (d, 1H, H₄, ${}^{3}J_{H-H} = 8.0$ Hz, ${}^{3}J_{\text{Pt-H}} = 53.0 \text{ Hz}$), 7.91 (td, 1H, H_{4'} (partially overlapping)), 8.31 (d, 1H, H₃['], ${}^{3}J_{H-H}$ = 7.6 Hz), 9.67 (d, 1H, $H_{6'}$, ${}^{3}J_{H-H} = 5.9$ Hz, ${}^{3}J_{Pt-H} = ca$. 14 Hz).

[Pt(Me)(L2)(DMSO)], 2a. Method A (80 °C, 16 h), yield 60%; method B, yield 81%; mp 145 °C (dec). Anal. Calcd for $C_{18}H_{26}N_2$ OPtS \cdot 0.5DMSO: C 41.29, H 5.29, N 5.07. Found: C 40.98, H 5.12, N 5.11. 1H NMR (CDCl₃): δ 0.70 (s, 3H, Me-Pt, ² $J_{\text{Pt-H}}$ = 82.0 Hz), 0.96 (s, 9H, (Me)3C); 2.65 (s, 2H, CH2), 3.24 (s, 6H, Me- $(DMSO)^3 J_{Pt-H} = 18.3$ Hz), 6.98 (d, 1H, H₅, ${}^3 J_{H-H} =$ 7.6 Hz, ${}^4J_{\text{Pt-H}} = 18.9$ Hz) 7.32 (td, 1H, H₅^{\prime}) 7.88 (d, 1H, H_4 , ${}^3J_{H-H} = 7.6$ Hz, ${}^3J_{Pt-H} = 52.6$ Hz), 7.91 (1H, H₄^{\prime} (overlapping)); 8.34 (d, 1H, H₃[']; ³J_{H-H} = 7.9 Hz), 9.66 (d, 1H, H_6 ['], ${}^3J_{H-H} = 6.1$ Hz, ${}^3J_{Pt-H} = 14.1$ Hz). MS-FAB⁺ (*m*/*z*): 513 [M]+, 498 [M - Me]+, 435 [M - DMSO]+, 419 $[M - DMSO - CH₄]$ ⁺, 403 $[M - DMSO - 2 CH₄]$ ⁺, 363 $[M - DMSO - C(Me)₃ - Me]^{+}$.

[Pt(Me)(L3)(DMSO)], 3a. Method A (70 °C, 14 h), yield. 61%; method B, yield 88%; mp 187 °C. Anal. Calcd for $C_{17}H_{24}$ N₂OPtS: C 40.87, H 4.84, N 5.61. Found: C 40.51, H 4.54, N 5.42. 1H NMR (CDCl3): *δ* 0.69 (s, 3H, Me-Pt, ²J_{Pt-H} = 82.3 Hz), 1.38 (s, 9H, (Me)₃C); 3.23
(s, 6H, Me(DMSO)³J_{Pt-H} = 18.1 Hz); 7.21 (d, 1H, H₅, ${}^{3}J_{\text{H-H}}$ = 8.1 Hz, ${}^{4}J_{\text{Pt-H}}$ = 18.0 Hz), 7.31 (ddd, 1H, H_{5′}, 3 ${}^{3}J_{\text{H-H}}$ = 7.3 Hz, ${}^{3}J_{\text{H-H}}$ = 5.6 Hz, ${}^{4}J_{\text{H-H}}$ = 1.5 H), 7.89 (d, 1H, H₄, ${}^{3}J_{\text{Pt-H}} = 51.9$ Hz, ${}^{3}J_{\text{H-H}} = 8.1$ Hz), 7.91 (m, 1H, H₄^{*r*} (overlapping)), 8.36 (d, 1H, H₃^{*,* 3} J_{H-H} = 8.1 Hz), 9.65 (d, 1H, H_6 , ${}^3J_{\text{Pt-H}} = 19.8 \text{ Hz}, {}^3J_{\text{H-H}} = 5.6 \text{ Hz}$). ¹³C- 1H NMR: δ -13.91 (*C*H₃-Pt, ¹*J*_{Pt-C} = 763.8 Hz), 30.21 $(C$ ⁻(CH₃)), 43.69 (CH₃ (DMSO), ² $J_{\text{Pt-C}}$ = 42.5 Hz), 119.37 $((C5), J_{Pt-C} = 59.7 \text{ Hz})$, 121.35 $(C3', J_{Pt-C} = 24.2 \text{ Hz})$, 124.07 (C5', $J_{\text{Pt-C}} = 9.9 \text{ Hz}$), 138.25 (C4', $J_{\text{Pt-C}} = \text{n.r.}$), 140.21 (C4, $J_{\text{Pt-C}} = 90.8 \text{ Hz}$), 141.31 (C3, $^1J_{\text{Pt-C}} = 1086$ Hz), 150.11 (C6', $J_{\text{Pt-C}} = 7.7$ Hz). MS-FAB⁺ (*m*/*z*): 499 $[M]^+, 484 [M - Me]^+, 421 [M - DMSO]^+, 405 [M DMSO - CH₄]$ ⁺, 390 [M - DMSO - CH₄ - Me]⁺, 375 [M - DMSO - 2Me - CH₄]⁺, 349 [M - DMSO $-C(Me)₃ - Me$ ⁺.

[Pt(Me)(L4)(DMSO)], 4a. Method B (1.5 h), yield 99%; mp 172-174 °C. Anal. Calcd for $C_{22}H_{26}N_2$ OPtS: C 47.05, H 4.67, N 4.99. Found: C 46.72, H 4.39, N 5.38. ¹H NMR (CDCl₃): δ 0.66 (s, 3H, Me-Pt, ² $J_{\text{Pt-H}}$ = 82.0 Hz), 0.90 (t, 3H, $MeCH_2$, ${}^3J_{H-H} = 7.3$ Hz), 2.08 (m, 1H, CH2), 2.37 (m, 1H, CH2), 3.21 (s, 6H, Me(DMSO), ${}^{3}J_{\text{Pt-H}} = 18.1 \text{ Hz}$), 3.90 (t, 1H, CH, ${}^{3}J_{\text{H-H}} = 7.7 \text{ Hz}$), 7.01 (d, 1H, H₅, ${}^{3}J_{H-H} = 7.8$ Hz, ${}^{4}J_{Pt-H} = 18.1$ Hz), $7.12-$ 7.37 (m, 6H, aromatics), 7.85 (d, 1H, H₄, ${}^{3}J_{H-H} = 7.8$ Hz, ${}^{3}J_{\text{Pt-H}} = 52.9$ Hz), 7.92 (td, 1H), H_{4'}, ${}^{3}J_{\text{H-H}} = 7.6$ Hz, ${}^4J_{H-H} = 1.5$ Hz), 8.39 (d, 1H, H₃', ${}^3J_{H-H} = 7.6$ Hz), 9.66 (dd, 1H, $H_{6'}$, ${}^{3}J_{H-H} = 6.6$ Hz, ${}^{3}J_{Pt-H} = 13.8$ Hz).

[Pt(Me)(L5)(DMSO)], 5a. Method B (2.5 h): yield 73%; mp dec 155 °C. Anal. Calcd for $C_{22}H_{26}N_2$ OPtS: C 47.05, H 4.67, N 4.99. Found: C 46.55, H, 4.24, N, 5.10. ¹H NMR (CDCl₃): δ 0.66 (s, 3H, Me-Pt, ²*J*_{Pt-H} = 82.0 Hz), 1.77 (s, 6H, (Me)2C), 3.23 (s, 6H, Me(DMSO), $3J_{\text{Pt-H}} = 18.1 \text{ Hz}$, 6.84 (d, 1H, H₅, $3J_{\text{H-H}} = 8.1 \text{ Hz}$, ⁴ $J_{\text{Pt-H}}$ = 17.6 Hz), 7.04-7.26 (m, 6H), 7.75 (d, 1H, H₄, 3

³ $J_{\text{H-H}}$ = 8.1 Hz, ³ $J_{\text{Pt-H}}$ = 51.8 Hz), 7.83 (td, 1H, H₄, 3

³ $J_{\text{H-H}}$ = 7.8 Hz, ⁴ $J_{\text{H-H}}$ = 1.3 Hz), 8.27 (d, 1H, H₃, 3

³ $J_{\text{H$ ${}^{3}J_{\text{Pt-H}} = 13.7 \text{ Hz}$). MS-FAB⁺ (*m*/*z*): 561 [M]⁺, 546 [M –

Me]+, 483 [M - DMSO]+, 467 [M - DMSO - CH4]+, 453 [M - DMSO - $2Me$ ⁺.

[Pt(Me)(L6)(DMSO)], 6a. Method A (2 h), yield 93%; method B $(1 h,$ reflux temp), yield 89%; mp $174-176$ °C. Anal. Calcd for $C_{19}H_{20}N_2$ OPtS: C 43.93, H 3.88, N 5.39. Found: C 43.73, H 3.63, N 5.20. 1H NMR (CDCl₃): δ 0.75 (s, 3H, Me-Pt, ²J_{Pt-H} = 81.8 Hz), 3.26 $(s, 6H, (Me)₂SO, ³J_{Pt-H} = 18.3 Hz$, 7.32-7.54 (m, 4H, aromatics), 7.65 (d, 1H, H₅, ${}^{3}J_{H-H} = 8.1$ Hz, ${}^{4}J_{Pt-H} =$ 17.8 Hz), 7.97 (dt, 1H, H_{4'}, $^{4}J_{H-H} \approx 1$ Hz $^{3}J_{H-H} = 7.8$ Hz), 8.07 (d, 1H, H₄, ${}^{3}J_{H-H} = 8.1$ Hz, ${}^{3}J_{Pt-H} = 52.0$ Hz), 8.14 (d, 2H, H_o (Ph), ${}^{3}J_{H-H} = 7.8$ Hz), 8.50 (ddd, 1H, $H_{3'}$, ${}^{3}J_{H-H} = 7.3$ Hz), 9.71 (ddd, 1H, $H_{6'}$, ${}^{3}J_{H-H} = 5.6$ Hz, ${}^{3}J_{\text{Pt-H}} = 13.7 \text{ Hz}$). ¹³C NMR (DMSO- d_{6}): δ -13.83 $(s, J_{C-Pt} = 772.5 \text{ Hz})$, 120.06 $(s, J_{C-Pt} = 60.0 \text{ Hz})$, 121.12 $(S, J_{C-Pt} = 20.0 \text{ Hz})$, 125.09 (s), 125.93 (s), 128.46 (s), 128.67 (s), 138.87 (s, $J_{C-Pt} = 90.6$ Hz), 139.28 (s), 140.78 $(s, J_{C-Pt} = 90.2 \text{ Hz})$, 145.52 (s), 149.86 (s), 151.35 (s, $J_{C-Pt} = 214.7$ Hz), 161.65 (s, $J_{C-Pt} = 56.4$ Hz), 164.01 (s, *^J*^C-Pt) 25.0 Hz). MS-FAB⁺ (*m*/*z*): 519 [M]+, 504 $[M - Me]^+, 441 [M - DMSO]^+, 426 [M - DMSO - Me]^+.$

[Pt(Ph)(L3)(DMSO)], 3b. Complex **3b** was obtained according to method B (5 h) using $[Pt(Ph)₂(DMSO)₂]$ instead of $[Pt(Me)_2(DMSO)_2]$, pale yellow, yield 44%; mp 225 °C. Anal. Calcd for $C_{22}H_{26}N_2$ OPtS: C 47.05, H 4.67, N 4.99. Found: C 47.36, H 4.57, N 4.99. 1H NMR (CDCl₃): δ 1.32 (s, 9H, (Me)₃C), 2.95 (s, 3H, Me(DMSO), ${}^{3}J_{\text{Pt-H}} = 17.6 \text{ Hz}$), 6.77 (d, 1H, H₄, ${}^{3}J_{\text{H-H}} = 8.1 \text{ Hz}$, ${}^{3}J_{\text{Pt-H}} = 61.0 \text{ Hz}$), 6.94 (d, 1H, H₅, ${}^{3}J_{\text{H-H}} = 8.1 \text{ Hz}$, $^{4}J_{\text{Pt-H}}$ = 16.6 Hz), 6.98–7.11 (m, 3H), 7.34 (m, 1H), 7.48 (dd, 2H, H_o (Ph), ${}^{3}J_{H-H} = 8.1$ Hz, ${}^{4}J_{H-H} = 1.5$ Hz, ${}^{3}J_{\text{Pt-H}} = 66.9$ Hz), 7.93 (td, 1H, H_{4'}, ${}^{3}J_{\text{H-H}} = 7.6$ Hz, $^{4}J_{\text{H-H}} = 1.4$ Hz), 8.37 (dd, 1H, H₃', $^{3}J_{\text{H-H}} = 7.6$ Hz, $^{4}J_{\text{H-H}} = 0.7 \text{ Hz}$), 9.56 (ddd, 1H, H₆', $^{3}J_{\text{Pt-H}} = 12.6 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.6 \text{ Hz}, {}^{4}J_{\text{H-H}} = 1.4 \text{ Hz}, {}^{5}J_{\text{H-H}} = 0.7 \text{ Hz}. \text{ MS}$ FAB⁺ (*m*/*z*): 562 [MH]⁺, 483 [M - DMSO]⁺, 406 [M - $DMSO - Ph$]⁺, 391 [M - DMSO - Ph - Me]⁺.

Synthesis of [Pt(Ph)(L6)(DMSO)], 6b. Complex **6b** was obtained according to method A $(90 °C, 8.5 h)$, using $[Pt(Ph)₂(DMSO)₂]$ instead of $[Pt(Me)₂(DMSO)₂]$; pale yellow, yield 51%; mp 240 °C. Anal. Calcd for $C_{24}H_{22}N_{2}$ -OPtS: C 49.56, H 3.81, N 4.82. Found: C 49.43, H 3.85, N 4.72. 1H NMR (CDCl3): *δ* 2.98 (s, 6H, Me(DMSO), ${}^{3}J_{\text{Pt-H}} = 17.6$ Hz), 6.94 (d, 1H, H₄, ${}^{3}J_{\text{H-H}} = 7.8$ Hz, ${}^{3}J_{\text{Pt-H}} = 62.8$ Hz), 7.03-7.47 (m, 8H, aromatics), 7.51 (d, 2H, H_o (Ph-Pt), ${}^{3}J_{H-H} = 6.8$ Hz, ${}^{3}J_{Pt-H}$ 65.0 Hz), 7.98 (t, 1H, H_4 , ${}^3J_{H-H} = 7.7$ Hz), 8.02 (d, 2H, H_o Ph bipy, ${}^{3}J_{H-H}$ = 7.8 Hz), 9.63 (d, 1H, H₆′, ${}^{3}J_{H-H}$ = 5.4 Hz, ${}^{3}J_{\text{Pt-H}} = 12.7 \text{ Hz}$). MS-FAB⁺ (*m*/*z*): 503 [M - DMSO]⁺, 426 $[M - DMSO - Ph]$ ⁺.

 $[Pt(Cl)(L^3)(DMSO)]$ (3c) and $[Pt_2(\mu\text{-}Cl)_2(L^3)_2]$ (3d). To a solution of **3a** (157.0 mg, 0.315 mmol) in acetone (20 mL) was added under stirring 3.2 mL of 0.1 M HCl (0.320 mmol). The color of the solution changed immediately to orange-yellow and a precipitate was formed. The suspension was stirred for 4 h; after that the precipitate was filtered and washed with acetone, to give compound **3d** as a yellow solid. The filtered solution was concentrated to small volume. The precipitate formed was filtered and washed with H_2O , EtOH, and Et₂O to give compound **3c**.

3d, $[Pt_2(\mu\text{-}Cl)_2(L^3)_2]$ **:** yield 15%; mp > 260 °C. Anal. Calcd for $C_{28}H_{30}Cl_2N_4Pt_2 \cdot H_2O$: C 37.32, H 3.55, N 6.22. Found: C 36.73, H 3.20, N 5.93. IR (Nujol,*ν*max/cm-1): 330 (s), 347 (s), 371 (s), 393 (s). 1H NMR (CDCl3): *δ* 1.38 (s, 18H, $(Me)_3C$), 7.06 (d, 2H), ca. 7.3 (2H, partially hidden by the solvent), 7.58 (d, 2H), 7.91 (t, 2H, H_4 [']), 8.08 (d, 2H), 8.80 (d ⁺ d, 2H, H6′). MS-FAB⁺ (*m*/*z*): 884 $[M + 2H]^+$, 848 $[MH - Cl]^+$, 441 $[M/2]^+$, 405 $[M/2 HCl$ ⁺, 390 [M/2 - HCl - Me]⁺.

3c, [Pt(Cl)(L3)(DMSO)] yield 60%; mp 210 °C. Anal. Calcd for $C_{16}H_{21}CIN_2OPtS·H_2O$: C 35.72, H 4.31, N 5.21. Found: C 35.47, H 3.99, N 4.95. IR (Nujol,*ν*max/ cm-1): 276 (s), 316 (m). 1H NMR (acetone-*d*6): *δ* 1.38 (s, 9H, (Me)₃C), 3.63 (s, 6H, Me(DMSO), ${}^{3}J_{\text{Pt-H}} = 24.7$ Hz), 7.19 (d, 1H, H_5 , ${}^4J_{Pt-H} = 13.2$ Hz, ${}^3J_{H-H} = 8.3$ Hz), 7.62 (m, 1H, H_5 [']), 8.22 (td, 1H, H_4 [']), 8.29 (dd, 1H, H_3 [']), 8.53 (d, 1H, H₄, ${}^{3}J_{\text{Pt-H}} = 41.0 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 8.3 \text{ Hz}$), 9.57 (d, 1H, $H_{6'}$, ${}^{3}J_{\text{Pt-H}} = 35.4 \text{ Hz}$, ${}^{3}J_{\text{H-H}} = 5.8 \text{ Hz}$).

[Pt(Cl)(L6)(DMSO)], 6c. To a solution of **6a** (46.1 mg; 0.089 mmol) in acetone (15 mL) was added, under vigorous stirring, 0.9 mL of 0.1 M HCl (0.09 mmol). The color of the solution became immediately orange-yellow and a precipitate formed. The suspension was stirred for 6 h and concentrated to small volume. The precipitate was filtered, washed with acetone, and vacuumdried to give the analytical sample. Yield 58%; mp 215 °C. Anal. Calcd for $C_{18}H_{17}C1N_2OP$ tS: C 40.04, H 3.17, N 5.19. Found: C 39.86, H 3.12, N 5.27. 1H NMR (CDCl₃): δ 3.67 (s, 6H, Me(DMSO), ${}^{3}J_{\text{Pt-H}} = 24.2$ Hz), 7.38-7.51 (m, 4H, aromatics), 7.55 (d, 1H, H₅, ${}^{3}J_{\text{H-H}}$ = 8.3 Hz, ${}^4J_{\text{Pt-H}} = 13.0$ Hz), 8.01 (dt, 1H, H_{4'}, ${}^3J_{\text{H-H}} = 7.7$ Hz, ⁴*J*^H-^H) 1.5 Hz), 8.10 (d, 2H, H*^o* Ph), 8.39 (d, 1H, $H_{3'}$, ${}^{3}J_{H-H} = 7.2$ Hz), 8.64 (d, 1H, H_{4} , ${}^{3}J_{H-H} = 8.3$ Hz, $3J_{\text{Pt-H}} = 42.0 \text{ Hz}$), 9.59 (ddd, 1H, H₆['], $3J_{\text{H-H}} = 5.8$ Hz , $3J_{Pt-H} = 31.1$ Hz).

[Pt(Me)₂(HL⁷)], 7. Method B: yield 90%; mp 152– 154 °C. Anal. Calcd for $C_{13}H_{16}N_2Pt$: C 39.49, H 4.08, N 7.09. Found: C 39.13, H 4.34, N 6.77. 1H NMR (CDCl3): *δ* 2.89 (s, 3H, bipy-Me), 0.94 (s, 3H, Pt-Me, $^{2}J_{\text{Pt-H}} = \text{ca. } 85 \text{ Hz}$), 0.95 (s, 3H, Pt-CH₃, $^{2}J_{\text{Pt-H}} = \text{ca. } 85$ Hz), 7.63 (m, 1H), 8.09 (d, 1H), 8.22-8.36 (m, 3H), 8.98 (s (br), 1H, H₆, ${}^{3}J_{\text{Pt-H}} = 21$ Hz), 9.20 (dd, 1H, H_{6',} ${}^{3}J_{\text{Pt-H}} = 22 \text{ Hz}.$

 $[Pt(Me)₂(HL⁸)],$ 8. Method B: 30 min, room temperature, yield 92%. Spectroscopic data in agreement with those reported in ref 22.²²

[Pt Cl2 (HL1)], 9. Complex **9** was obtained according to method B (30 h) using $[PtCl_2(DMSO)_2]$ instead of $[Pt(Me)₂(DMSO)₂]$. Yield: 89%, mp: on heating a change of color from yellow to brick red occurs at 230-232 °C; no further decomposition up to 270 °C. Anal. Calcd for $C_{11}H_{10}Cl_2N_2Pt$: C 30.29, H 2.31, N 6.42. Found: C 30.15, H 2.39, N 6.20. 1H NMR (CDCl3): *δ* 3.18 (s, 3H, Me), 7.40 (dd, 1H), 7.48 (m, 1H), 7.91-7.99 (m, 3H), 8.13 (td, 1H), 9.69 (d, 1H, ${}^{3}J_{\text{Pt-H}} = \text{ca.} 33 \text{ Hz}$).

[PtCl(Me)(HL1)], 10. Complex **10** was obtained according to method B (30 h) using *trans*-[PtCl(Me)- $(DMSO)_2$] instead of $[Pt(Me)_2(DMSO)_2]$. Spectroscopic and analytical data in agreement with those reported in ref 6.

 $[Pt(Ph)_2(HL^6)]$, 11. Complex 11 was obtained according to method B (2.5 h, at room temperature) using $[Pt(Ph)₂(DMSO)₂]$ instead of $[Pt(Me)₂(DMSO)₂]$. Yield: 90%; mp 180 °C (dec). Anal. Calcd for $C_{28}H_{22}N_2Pt$ 0.5DMSO: C 56.12, H 4.06, N 4.51. Found: C 56.10, H

3.93, N 4.64. 1H NMR (CD2Cl2): *^δ* 6.34-8.17 (m, 21H, aromatics), 8.38 (d, 1H, $H_{6'}$).

 $[Pt(Ph)₂(HL⁸)], 12. Complex 12 was obtained ac$ cording to method B, 30 min, room temperature, yield 95%. Spectroscopic data in agreement with those reported in ref 23.23

[Pt(Me)(L3)(CO)], 13. CO (1 atm) was bubbled for 3 h into a solution of **3a** (81.9 mg, 0.164 mmol) in CH_2Cl_2 (15 mL). The solution was concentrated to small volume, then Et_2O was added. The precipitate formed was filtered, washed with $Et₂O$, and vacuum-dried to give the analytical sample as a yellow solid. Yield: 75%; mp 160 °C. Anal. Calcd for $C_{16}H_{18}N_2$ OPt: C 42.76, H 4.04, N 6.23. Found: C 42.69, H 3.70, N 6.04. IR (Nujol,*ν*max/ cm⁻¹): 1159 (w), 1259 (w), 1569 (m), 1608 (m), 2049 (s). ¹H NMR (CDCl₃): δ 1.19 (s, 3H, Me-Pt, ² $J_{\text{Pt-H}}$ = 86.2 Hz), 1.38 (s, 9H, (Me)₃C), 7.29 (d, 1H, H₅, ${}^{3}J_{H-H} = 7.8$ Hz (partially overlapping)), 7.31 (m, 1H, H_{5'}, (partially overlapping)), 7.96 (d, 1H, H₄, ${}^{3}J_{\text{Pt-H}} = 45.9$ Hz, ${}^{3}J_{\text{H-H}}$ = 7.8 Hz), 8.00 (td, 1H, H_{4'}, ${}^{3}J_{\text{H-H}}$ = 7.8 Hz, $^{4}J_{\text{H-H}} = 1.6 \text{ Hz}$), 8.39 (ddd, 1H, H₃', $^{3}J_{\text{H-H}} = 8.0 \text{ Hz}$), 8.61 (ddd, 1H, $H_{6'}$, ${}^{3}J_{H-H} = 5.4$ Hz, ${}^{3}J_{Pt-H} = 19$ Hz). MS-FAB⁺ (*m*/*z*): 450 [MH]⁺, 434 [M – Me]⁺, 421 [M – CO], 405 [M – H – Me – CO]⁺, 391 [M – 2Me – CO]⁺.

 $[Pt(Me)(L^3)(3,5-(Me)_2py)], 14.$ To a solution of **3a** $(70.6 \text{ mg}; 0.141 \text{ mmol})$ in CH_2Cl_2 (15 mL) was added, under vigorous stirring, 93.9 mg (0.876 mmol) of 3,5- (Me) ₂py. The solution was stirred for 3.5 h, then concentrated to small volume and treated with hexane. The precipitate formed was filtered, washed with hexane, and vacuum-dried to give the analytical sample as a yellow solid. Yield: 50%. Anal. Calcd for $C_{22}H_{27}N_3Pt$: C 49.99, H 5.15, N 7.95. Found: C 49.60, H 4.82, N 7.66. ¹H NMR (CDCl₃): δ 0.93 (s, 3H, Me-Pt, ² $J_{\text{Pt-H}} = 84.0$ Hz), 1.37 (s, 9H, (Me)₃C), 2.38 (s, 6H, Me (lutidine)), 7.08 $(m, 1H, H₅)$, 7.13 (d, 1H, H₅, ${}^{3}J_{\text{Pt-H}} = 11.4 \text{ Hz}$, ${}^{3}J_{\text{H-H}} =$ 8.0 Hz), 7.48 (s, 1H, H₄ (lutidine)), 7.72 (d, 1H, H₆[']), 7.84 $(\text{td}, 1H, H_4)$, 7.96 (d, 1H, H₄, ${}^3J_{\text{Pt-H}} = 54.6 \text{ Hz}, {}^3J_{\text{H-H}} =$ 8.0 Hz), 8.32 (d, 1H, H3′), 8.51 (s, 2H, H2(lutidine) ${}^{3}J_{\text{Pt-H}} = 21 \text{ Hz}.$

[Pt(Me)(L6)(PPh3)], 15. To a solution of **6a** (55.2 mg, 0.106 mmol) in CH_2Cl_2 (15 mL) was added, under vigorous stirring, 28.6 mg of PP h_3 (0.109 mmol). The solution was stirred for 4 h, then concentrated to small volume and treated with hexane. The precipitate formed was filtered, washed with hexane, and vacuum-dried to give the analytical sample as a pale yellow solid. Yield: 76%; mp 245 °C. Anal. Calcd for $C_{35}H_{29}N_2PPt \cdot 0.5$ CH_2Cl_2 : C 57.15, H 4.05, N 3.75. Found: C 56.85, H 3.84, N 3.96. IR (Nujol,*ν*max/cm-1): 654 (s),774 (s), 1097 (s), 1569 (m), 1604 (m). 1H NMR (CDCl3): *δ* 0.79 (d, 3H, Me-Pt, ² J_{Pt-H} = 83.0 Hz, ³ J_{P-H} = 7.7 Hz), 6.68 (m, 1H), 7.35-7.80 (m, 21H, aromatics), 8.15 (d, 2H, ${}^{3}J_{H-H}$ = 7.6 Hz), 8.31 (dd, 1H, H₄, ${}^{3}J_{H-H} = 8.1$ Hz, ${}^{4}J_{P-H} =$ 5.1 Hz, ${}^{3}J_{\text{Pt-H}} = 46.5$ Hz), 8.53 (dd, 1H, H₃['], ${}^{3}J_{\text{H-H}} =$ 7.8 Hz). ³¹P{¹H} NMR (CDCl₃): δ 33.01 (s, ¹J_{P-Pt} = 2233 Hz).

NMR Follow-Up Experiments. The rollover metalation was monitored by ${}^{1}H$ NMR spectroscopy. In a typical experiment 10.0 mg of $[Pt(Me)_2(DMSO)_2]$ and an equimolar amount of HL^n ($n = 1, 3$) were dissolved in 1.0 mL of acetone- d_6 . The solution was rapidly mixed,

⁽²²⁾ Monaghan, P. K.; Puddephatt, R. J. *Organometallics* **1984**, *3*, $444 - 449.$

⁽²³⁾ Rashidi, M.; Fakhroeian, Z.; Puddephatt, R. J. *J. Organomet. Chem*. **¹⁹⁹⁰**, *⁴⁰⁶*, 261-267.

and 1H NMR spectra were recorded at regular intervals until completion of the reaction at room temperature (18.5 °C, HL¹ and HL²) and at -60 °C (HL²). Selected peaks (e.g., H(6′) or Pt-Me) were integrated, and the values obtained were reported versus time.

The study was repeated with a large excess of ligand in the case of HL^1 (>10:1), and $ln[Pt(Me)_2(DMSO)_2]$ was plotted versus time, showing a pseudo-first-order rate.

In solution the presence of the starting reactants $([Pt(Me)₂(DMSO)₂]$ and HLⁿ), the reaction products (the rollover species [Pt(Me)(L*ⁿ*)(DMSO)], free DMSO, and methane (δ = 0.16 ppm)), and a reaction intermediate, formulated as the adduct species $[Pt(Me)_2(HL^n)]$, was observed.

 $[Pt(Me)₂(HL¹)]:$ ¹H NMR δ 1.02 (s, Pt-Me, ² J_{Pt-H} = 89 Hz), 1.03 (s, Pt-Me, ² $J(Pt-H) = 87$ Hz), 2.83 (s, Me), 8.06-8.29 (m, 4H, H3, H3′, H4, H4′), 7.56-7.63 (m, 2H, H₅, H₅'), 9.11 (d, H₆', ³ $J(Pt-H) = 23 Hz$).

[Pt(Me)₂(HL²)]: ¹H NMR δ ca. 1.0 (m (signals overlapping), Pt-Me, C(Me)₃), 3.41 (s, CH₂), 8.10-8.35 (m, 4H, H₃, H₃′, H₄, H₄[′]), 7.56-7.63 (m, 2H, H₅, H₅′), 9.07 (d, H₆[′], $^{3}J_{\text{Pt-H}} = 23$ Hz).

Acknowledgment. Financial support from Università di Sassari is gratefully acknowledged. We thank one of the reviewers for helpful suggestions.

OM0301583