Synthesis, Characterization, and Reactivity of a Rhenium Complex with a Corannulene-Based Ligand

Robert M. Chin,* Benjamin Baird, Michael Jarosh, Shane Rassman, and Brian Barry

Department of Chemistry, University of Northern Iowa, Cedar Falls, Iowa 50614-0423

William D. Jones

Department of Chemistry, University of Rochester, Rochester, New York 14627

Received August 14, 2003

Summary: A new rhenium carbonyl complex, exo-(η5- C20H17)Re(CO)3 (3), containing a corannulene-derived ligand has been synthesized in 12% yield. The X-ray structure determination of 3 shows that the rhenium center is bound to the exo face of the bowl-shaped ligand. The reaction of 3 with PPh3 in benzene at 70 °*C produces trans,mer-Re(H)(PPh₃)₂(CO)₃ and C₂₀H₁₆ (4), a bowlshaped dibenzofulvene type molecule. The reaction of 3 with PPh3 proceeds via an η5-η3-η¹ ring slip followed by a â-hydride elimination.*

Introduction

Due to recent improvements in the synthesis of corannulene, $C_{20}H_{10}$ (1),¹⁻⁵ the transition metal chemistry of corannulene has received a great deal of attention in recent years.

Examples of corannulene transition metal complexes include [(Cp*)Ru(*η*6-C20H10)]O3SCF3, ⁶ [Cp*Ir (*η*6-C20H10)]- $(BF_4)_2$,⁷ and $[(Rh_2(O_2CCF_3)_4)_m$ ['] $(C_{20}H_{10})_n]$ (*m*:*n* = 1:1 and 3.2) ⁸ 3:2).8

We are interested in using the inner five-membered ring of the corannulene core as a cyclopentadienyl mimic. To do this, corannulene has to be partially hydrogenated to have a removable proton to generate the anionic center. Recent work by Rabideau and coworkers provided the starting point for our studies.⁹ Reaction of corannulene in a $Na/THF/NH_3$ mixture at -33 °C, followed by an inverse ammonium chloride quench, yields the partially hydrogenated corannulene, hexahydrocorannulene. We recently reported the hydrogenation of hexahydrocorannulene to give C20H18 (**2**), which is electronically similar to a 1,4,5,8,9-pentaalkylated fluorene.¹⁰

Deprotonation of **2** with *n*-BuLi yields the analogous fluorenyl anion, which can then bind to $CpZrCl₂$ to form exo - $(\eta^5$ -C₂₀H₁₇ $)(\eta^5$ -C₅H₅ $)ZrCl_2$. Herein we report the use of **2** in synthesizing a new rhenium tricarbonyl complex.

Results and Discussion

Deprotonation of 2 with *n*-BuLi in Et₂O/C₆H₆ followed by addition of [Re(CO)3(THF)Br]2 afforded *exo*-(*η*5- $C_{20}H_{17}$)Re(CO)₃, **3**, in 12% yield as a bright yellow powder (eq 1).

The synthesis of **3** requires a fairly nonpolar solvent medium, as attempted syntheses in THF and ether yielded only uncharacterizable products in the corresponding 1H NMR spectra. The 1H and 13C NMR spectral data of **3** are consistent with the predicted *Cs* symmetry. The CO stretching frequencies for **3** are at lower energy (v_{CO} = 2009, 1896 cm⁻¹) than (η^5 -C₁₃H₉)- $Re(CO)_{3}$ (v_{CO} = 2027, 1935 cm⁻¹),¹¹ which is consistent with **2** being a better electron donor than the unsubstituted fluorenyl ligand. An X-ray structure study was undertaken in order to determine which face of the bowlshaped ligand the rhenium was attached to, the *exo* (convex) or *endo* (concave) face. The study revealed that the rhenium metal center was on the *exo* side of the bowl, which is the same side for the previously reported $exo-(\eta^5-C_{20}H_{17})(\eta^5-C_5H_5)ZrCl_2$ (Figure 1).

Corresponding author. E-mail: martin.chin@uni.edu.

⁽¹⁾ Scott, L. T.; Cheng, P. C.; Hashemi, M. M.; Bratcher, M. S.; Meyer, D. T.; Warren, H. B. *^J*. *Am*. *Chem*. *Soc*. **¹⁹⁹⁷**, *¹¹⁹*, 10963- 10968.

⁽²⁾ Sygula, A.; Rabideau, P. W. *^J*. *Am*. *Chem*. *Soc*. **¹⁹⁹⁹**, *¹²¹*, 7800- 7803.

⁽³⁾ Seiders, T. J.; Elliott, E. L.; Grube, G. H.; Siegel, J. S. *J*. *Am*.

Chem. *Soc*. **¹⁹⁹⁹**, *¹²¹*, 7804-7813. (4) Sygula, A.; Rabideau, P. W. *^J*. *Am*. *Chem*. *Soc*. **²⁰⁰⁰**, *¹²²*, 6323- 6324.

⁽⁵⁾ Sygula, A.; Xu, G.; Marcinow, Z.; Rabideau, P. W. *Tetrahedron* **²⁰⁰¹**, *⁵⁷*, 3637-3644. (6) Seiders, T. J.; Baldridge, K. K.; O'Connor, J. M.; Siegel, J. S. *J*.

Am. *Chem*. *Soc*. **¹⁹⁹⁷**, *¹¹⁹*, 4781-4782. (7) Alvarez, C. M.; Angelici, R. J.; Sygula, A.; Sygula, R.; Rabideau, P. W. *Organometallics*, **²⁰⁰³**, *²²*, 624-626.

⁽⁸⁾ Petrukhina, M. A.; Andreini, K. W.; Mack, J.; Scott, L. T. *Angew*. *Chem*. *Int*. *Ed*. **²⁰⁰³**, *⁴²*, 3375-3379.

⁽⁹⁾ Rabideau, P. W.; Marcinow, Z.; Sygula, R.; Sygula, A. *Tetrahe-dron Lett*. **¹⁹⁹³**, *³⁴*, 6351-6354.

⁽¹⁰⁾ Chin, R. M.; Jarosh, M. S.; Russell, J. D.; Lachicotte, R. J. *Organometallics* **²⁰⁰²**, *²¹*, 2027-2029.

Figure 1. ORTEP plot of **3** (30% probability level).

Table 1. Selected List of Bond Lengths (Å) and Angles (deg) for 3

$Re(1) - C(21)$	1.881(9)	$C(21) - O(1)$	1.167(10)
$Re(1) - C(23)$	1.911(4)	$C(22)-O(1)$	1.147(11)
$Re(1) - C(22)$	1.928(8)	$C(23)-O(1)$	1.148(5)
$Re(1) - C(5)$	2.290(5)	$C(1)-C(2)$	1.401(8)
$Re(1) - C(2)$	2.337(6)	$C(2)-C(3)$	1.420(7)
$Re(1) - C(3)$	2.346(5)	$C(3)-C(4)$	1.388(6)
$Re(1) - C(1)$	2.352(5)	$C(4)-C(5)$	1.434(6)
$Re(1) - C(4)$	2.374(4)	$C(1) - C(5)$	1.431(8)
$C(21) - Re(1) - C(23)$ $C(21) - Re(1) - C(22)$	89.7(4) 91.01(17)	$C(4)-C(3)-C(14)$ $C(4)-C(3)-C(2)$	124.2(4) 108.0(5)
$C(23)-Re(1)-C(22)$	92.8(4)	$C(14)-C(3)-C(2)$	124.8(5)
$C(2)-C(1)-C(8)$	121.9(5)	$C(3)-C(4)-C(17)$	121.9(4)
$C(2)-C(1)-C(5)$	109.8(6)	$C(3)-C(4)-C(5)$	109.9(4)
$C(8)-C(1)-C(5)$	127.2(5)	$C(17)-C(4)-C(5)$	126.5(4)
$C(1)-C(2)-C(11)$	123.6(5)	$C(4)-C(5)-C(1)$	104.3(5)
$C(1)-C(2)-C(3)$	107.2(5)	$C(4)-C(5)-C(20)$	124.4(4)
$C(11) - C(2) - C(3)$	125.1(5)	$C(1)-C(5)-C(20)$	123.0(5)

Selected bond lengths and angles of **3** are given in Table 1.

The η^5 binding is confirmed by the Re-C bond lengths $(2.29-2.374)$, which are similar in value to the reported values for $(\eta^5$ -C₁₃H₉)Re(CO)₃ (2.288–2.351 Å).¹² Also the average OC-Re-CO bond angle for **³** (91.2°) is similar to that of $(\eta^5$ -C₁₃H₉)Re(CO)₃ (90.5°), which suggests that even though **2** is larger than fluorene, the steric footprint of **2** around the rhenium center is roughly the same as that of fluorene. This similar spatial occupancy around the metal center can be attributed to the fact that the bowl-shaped ligand curves away from the metal center.

The curvature of the coordinated ligand was determined using the *π*-orbital axis vector (POAV1, $\theta_{p} = \theta_{\sigma \pi}$ $-$ 90) method.^{13,14} The pyramidalization angles for the inside ring of the modified corannulene ligand are shown in Figure 2. C5 has the largest θ_p angle of 9.6°, while C1 and C4 have the smallest pyramidalization angles of 3.5° and 4.3°, respectively. The average pyramidalization angle of the inner Cp core is 6.0° compared with 5.9° for $exo-(\eta^5-C_{20}H_{17})(\eta^5-C_5H_5)ZrCl_2$.

Reaction of 3 with PPh3. The CO substitution reactions of indenyl and fluorenyl manganese carbonyl complexes have been reported to proceed via an associative ring slip mechanism by Basolo and co-workers.¹⁵ Therefore, we were interested in determining the steric

(14) Haddon, R. C. *^J*. *Am*. *Chem*. *Soc*. **¹⁹⁹⁰**, *¹¹²*, 3385-3389.

Figure 2. POAV1 angles (deg) of corannulene-based ligand in **3**.

effect that **2** would have on CO substitution reaction in **3**. We initially predicted that **3** would have a slower rate of substitution than $(\eta^5$ -C₁₃H₉)Re(CO)₃ due to the larger size of **2**. However, heating a mixture of **3** and PPh₃ (2.5) equiv) in a Teflon-capped NMR tube at 70 °C for 1 h did not yield a CO substitution reaction. The 1H NMR spectrum of the reaction mixture showed that the corannulene-based ligand had left the metal center to form a dibenzofulvene type molecule, $C_{20}H_{16}$ (4), and *trans*, *mer*-Re(H)(PPh₃)₂(CO)₃ (eq 2).

The ¹H NMR spectrum for *trans*, *mer*-Re(H)(PPh₃)₂- $(CO)_3$ matched the spectral data reported by Jones and Maguire, with the rhenium hydride having a chemical shift of δ -4.51 and $J_{\rm P-H}$ = 18.2 Hz.¹⁶

We have previously synthesized **4** by an acid-catalyzed isomerization of hexahydrocorannulene. Heating a solution of hexahydrocorannulene with trifluoroacetic acid in benzene at 110 °C for 20 h afforded **4** in 50% yield (eq 3).

The lack of *exo* and *endo* resonances in the 1H NMR spectrum of **4** at 20 °C indicates that **4** either is undergoing a rapid bowl-to-bowl inversion or is planar. Cooling a CD_2Cl_2 solution of **4** to -90 °C broadened the methylene resonances, thereby indicating that **4** is undergoing a rapid bowl-to-bowl inversion. However, we were unable to reach the low-temperature limit to resolve the *exo* and *endo* 1H resonances. Also in the 1H NMR spectrum of **4**, the aromatic region has only one resonance, a singlet, rather than the expected two doublets for the two nonequivalent hydrogens. We believe this apparent inconsistency is due to the hydrogens being chemical shift equivalent, where $\delta v / J = 0$. The 13C NMR spectrum of **4** is consistent with the proposed structure, displaying 11 different 13C resonances.

Our proposed mechanism for the formation of **4** and (11) Young, K. M.; Miller, T. M.; Wrighton, M. S. *J. Am. Chem. Soc.*
trans,*mer*-Re(H)(PPh₃)₂(CO)₃ in the reaction of **3** with

¹⁹⁹⁰, *¹¹²*, 1529-1537.

⁽¹²⁾ Mejdrich, A. L.; Hanks, T. W. *Synth*. *React*. *Inorg*. *Met*.-*Org*.

Chem. **¹⁹⁹⁸**, *²⁸*, 953-973. (13) Haddon, R. C.; Scott, L. T. *Pure Appl*. *Chem*. **¹⁹⁸⁶**, *⁵⁸*, 137- 142.

⁽¹⁵⁾ Ji, L. N.; Rerek, M. E.; Basolo, F. *Organometallics* **¹⁹⁸⁴**, *³*, 740- 745.

⁽¹⁶⁾ Jones, W. D.; Maguire, J. A. *Organometallics* **¹⁹⁸⁷**, *⁶*, 1728- 1737.

PPh₃ includes an $η^{5}$ - $η^{3}$ - $η^{1}$ ring slip of the fluorenyl type ligand, followed by a *â*-hydride elimination of the hydrogen on the *â*-carbon to the Re metal center (Scheme 1).

 η^5 - η^1 ring slip of a fluorenyl rhenium complex has been previously reported by Hanks and co-workers in the reaction of $(\eta^5$ -C₁₃H₉)Re(CO)₃ with 1 atm of CO to yield (η¹-C₁₃H₉)Re(CO)₅.¹² Other examples of (η⁵-X)Re- $(CO)_3$ $(X = C_5H_5^-$, $C_9H_7^-$ complexes undergoing $\eta^5 \cdot \eta^1$
ring slip have been reported by Casey and co-workring slip have been reported by Casey and co-workers.^{17,18} In those examples, added PMe₃ to the corresponding $(\eta^5\text{-}X)$ Re(CO)₃ complexes gave $fac\text{-}Re(\eta^1\text{-}X)$ - $(CO)₃(PMe₃)₂$.

To test the proposed *â*-hydride elimination step, we synthesized $(\eta^5$ -C₂₀H₁₆D)Re(CO)₃, **3-d**₁, where the deuterium was in the *â*-position (Scheme 2).

The first step in the synthesis of **3**-*d***¹** was achieved by deuteration of the hexahydrocorannulene using Crabtree's catalyst and D_2 to give $2-d_2$. The mass spectrum of **2**-*d***²** (*m*/*z* 260) confirmed the presence of the two deuteriums. Dedeuteration of **2**-*d***²** with 1 equiv of *n*-BuLi followed by addition of $[Re(CO)_3(THF)Br]_2$ gave **3**-*d***¹** in 18% yield. The 2H NMR spectrum of **3**-*d***¹** (δ 3.51, C_6H_6/C_6D_6) confirmed that the deuterium was at the β -carbon when the Re metal center slips to the *η*¹ configuration.

Reaction of $3-d_1$ with PPh₃ at 70 °C for 13 min in a 1:1 mixture of C_6H_6/C_6D_6 yielded the corresponding *trans, mer-Re(D)*(PPh_3)₂(CO)₃ and **4** (eq 4). The presence of the metal deuteride was confirmed by ${}^{2}H$ NMR spectroscopy ($\delta = -4.45$, C_6D_6/C_6H_6), with no noticeable deuterium remaining on **4**.

Therefore, the results of the labeling study are consistent with **3** undergoing successive ring slips in the presence of PPh₃ followed by a β -hydride elimination.

Conclusion

To summarize, the reaction of $C_{20}H_{18}$ (2), a partially hydrogenated corannulene ligand, with *n*-BuLi and [Re- $(CO)_{3}$ (THF)Br]₂ yields exo -(η^{5} -C₂₀H₁₇)Re(CO)₃ (3), a new rhenium complex with a bowl-shaped ligand. Reaction of **3** with PPh₃ yields *trans*, *mer*-Re(H)(PPh₃)₂(CO)₃ and $C_{20}H_{16}$ (4), a dibenzofulvene type molecule, rather than the expected CO substitution reaction. A deuterium labeling study is consistent with the proposed mechanism of an η^5 - η^3 - η^1 ring slip followed by a β -hydride elimination step.

Experimental Section

General Procedures. Reactions that required inert conditions were performed using modified Schlenk techniques or in a MBraun Unilab glovebox under a nitrogen atmosphere. ¹H and ¹³C NMR spectra were recorded on a GE-QE300 MHz spectrometer running Tecmag Aquarius software. ¹H and ¹³C NMR chemical shifts are given relative to the residual proton or 13C solvent resonances. Mass spectra were recorded on a Hewlett-Packard 6890-5973 GC-MS.

Solvents and Reagents. Unless otherwise indicated, all chemicals were used as received (reagents from Aldrich, Acros, or Strem Chemical Company). Deuterated solvents and deuterium gas (D, 99.8%) were obtained from Cambridge Isotope Laboratories. Tetrahydrofuran (THF), toluene, and diethyl ether were distilled from dark purple solutions of sodium benzophenone ketyl. Methylene chloride was distilled from CaH2 before use. Benzene-*d*⁶ was distilled under vacuum from sodium benzophenone ketyl. $CDCl₃$ and $CD₂Cl₂$ were distilled under vacuum from CaH₂. Elemental analyses were performed by Atlantic Microlab Inc., Norcross, GA. Re(CO)₅Br was purchased from Strem Chemical Co. and used as received. Corannulene (**1**), hexahydrocorannulene, and octahydrocorannulene (2) were prepared according to literature methods.^{4,9,10} Crabtree's catalyst, $[Ir(cod)py(PCy₃)]PF₆$, was either purchased from Strem Chemical Co. or prepared according to the method described by Stork et al.19 [ReBr(CO)3(THF)]2 was prepared as described.20

Preparation of $e\mathbf{x}\sigma$ **(** η^5 **-C₂₀H₁₇)Re(CO)₃ (3). 2 (889.0 mg,** 3.45 mmol) was dissolved in 25 mL of C_6H_6 and 5 mL of ether. *n*-BuLi (2.5 M in hexane, 1.24 mL) was added to the solution. The color of the solution changed to a dark red. The solution was stirred for 5 min at 20 °C. $[ReBr(CO)_3(THF)]_2$ (1.2974 g, l.54 mmol) was then added, and the reaction mixture was stirred for 15 min at 20 °C. The solvent was removed under reduced pressure, and CH2Cl2 was added to the resulting residue. The CH₂Cl₂ solution was filtered through a Celite pad, the filtrate collected, and the solvent removed. The crude product was dissolved in C_6H_6 and filtered through a silica gel packed frit. The resulting filtrate was collected and the solvent removed. The crude orange-yellow solid was washed 2×1 mL of toluene, yielding a bright yellow powder (262.4 mg, 12% yield). 1H NMR (CDCl3, 20 °C): *δ* 6.82 (m, 4H), 3.64 (m, 2H), 3.56 (m, 1H), 3.09 (m, 4H), 2.81 (m, 2H), 2.52 (m, (17) Casey, C. P.; O'Connor, J. M.; Jones, W. D.; Haller, K. J.

Organometallics **¹⁹⁸³**, *²*, 535-538.

⁽¹⁸⁾ Casey, C. P.; O'Connor, J. M. *Organometallics* **¹⁹⁸⁵**, *⁴*, 384- 388.

⁽¹⁹⁾ Stork, G.; Kahne, D. E. *^J*. *Am*. *Chem*. *Soc*. **¹⁹⁸³**, *¹⁰⁵*, 1072-1073. (20) Vitali, D.; Calderazzo, F. *Gazz. Chim. Ital.* **¹⁹⁷²**, *¹⁰²*, 587-596.

2H), 0.96 (m, 2H). 13C{1H} NMR (CDCl3, 20 °C): *δ* 193.55 (CO), 134.61 (quat C), 131.99 (quat C), 125.52 (CH), 121.27 (CH), 116.97 (quat C), 99.58 (quat C), 74.15, 35.19 (CH2), 29.74 (CH), 28.23 (CH2), 28.15 (CH2). IR (KBr) *ν* (cm-1): 2009, 1896. Anal. Calcd for C23H17O3Re: C, 52.36; H, 3.25 Found: C, 51.97; H, 3.28.

Reaction of 3 with PPh₃. 3 (30 mg, 0.0569 mmol) and PPh3 (37.3 mg, 0.1423 mmol) were dissolved in ∼0.5 mL of C_6D_6 and placed in a Teflon-capped NMR tube. The mixture was heated at 70 °C for 1 h, at which time the 1H NMR spectrum showed no starting material remaining. A mixture of $trans, mer-Re(H)(PPh₃)₂(CO)₃$ and **4** was observed in a 1:1 ratio.

Preparation of C₂₀H₁₆ (4). In the glovebox, hexahydrocorannulene (298.0 mg, 1.164 mmol) was dissolved in benzene (33 g) and trifluoroacetic acid (679 mg) added to the resulting solution. The mixture was placed into a Teflon-stoppered ampule and heated to 110 °C for 20 h. The solvent was removed under reduced pressure, and the residue was sublimed at 105 °C for 24 h, yielding a white solid (149 mg, 50%). ¹H NMR (300 MHz, CDCl₃, 25 °C): δ 6.89 (s, 4H), 3.12 (s, 4H), 3.06 (t, $J = 7.4$ Hz, 4H), 2.41 (t, $J = 7.6$ Hz, 4H). ¹³C{¹H} NMR (CDCl3, 20 °C): *δ* 139.2 (quat C), 138.9 (quat C), 137.5 (quat C), 131.1 (quat C), 130.5 (quat C), 126.8 (CH), 126.5 (CH), 121.8 (quat C), 32.9 (CH2), 28.1 (CH2), 27.3 (CH2). Anal. Calcd for $C_{20}H_{16}$: C, 93.71; H, 6.29 Found: C, 92.73; H, 6.66. HRMS: calc 256.1252, found 256.1249.

Preparation of 2-*d***2. 4** (170.5 mg, 0.666 mmol), Crabtree's catalyst, $[Ir(PCy)_{3}(cod)py]PF_{6}$ (80.1 mg, 0.1 mmol), and 5 mL of CH2Cl2 were placed in a 25 mL Schlenk flask. A 250 mL round-bottom flask was inverted over the Schlenk flask and the apparatus evacuated and refilled with D_2 gas three times. After 2.5 h at 20 °C, the solvent was removed and the product extracted with 30 mL of $\rm{C_6H_6}$ and filtered through a silica gel packed frit. The crude product was sublimed at 100 °C for 2 days and afforded pure **2-***d*₂ (113.8 mg, 66%). ²H NMR (CDCl₃/ CHCl3, 20 °C): 4.01 (br s, 1D), 2.73 (br s, 1D). GC-MS: *^m*/*^z* 260.

Preparation of 3-*d***1. 2**-*d***²** (199.1 mg, 0.766 mmol) was dissolved in 5.7 mL of C₆H₆ and 1.10 mL of ether. *n*-BuLi (2.5 M in hexane, 0.28 mL) was added to the solution. The color of the solution changed to a dark red. The solution was stirred for 3 min at 20 °C. [ReBr(CO)₃(THF)]₂ (290.7 g, 0.344 mmol) was then added and the reaction mixture stirred for 5 min at 20 °C. The solvent was removed under reduced pressure, and CH_2Cl_2 was added to the resulting residue. The CH_2Cl_2 solution was filtered through a Celite pad, the filtrate collected, and the solvent removed. The crude product was dissolved in C_6H_6 and filtered through a silica-packed frit. The resulting filtrate was collected and the solvent removed. The crude orange-yellow solid was recrystallized using 1 mL of toluene at - 40 °C (72.0 mg, 18%). 2H NMR (C6H6/C6D6, 20 °C): *^δ* 2.81.

Reaction of 3-*d***¹ with PPh3. 3**-*d***¹** (38.2 mg, 0.0722 mmol) and PPh₃ (44.8 mg, 0.171 mmol) were dissolved in ~1.0 mL of a 1:1 mixture of $\rm C_6H_{6}/C_6D_6$ and placed in a Teflon-capped NMR tube. The mixture was heated for 13 min at 70 °C. 2H NMR (C6H6/C6D6, 20 °C): *^δ* -4.45.

X-ray Structural Determination of 3. A yellow crystal of approximate dimensions $0.12 \times 0.2 \times 0.4$ mm was mounted under Paratone-8277 on a glass fiber and immediately placed in a cold nitrogen stream at -80 °C on the X-ray diffractometer. The X-ray intensity data were collected on a standard Siemens SMART CCD area detector system equipped with a normal focus molybdenum-target X-ray tube operated at 2.0 kW (50 kV, 40 mA). A total of 1321 frames of data (1.3 hemispheres) were collected using a narrow frame method with scan widths of 0.3° in *ω* and exposure times of 30 s/frame using a detector-to-crystal distance of 5.09 cm (maximum 2*θ* angle of 56.5°). The total data collection time was approximately 12 h. Frames were collected and integrated to a maximum 2*θ* angle of 46.5° with the Siemens SAINT program

Table 2. Summary of Crystal Data for 3

	rabic <i>m</i> . Banninary or erybear bata for 0
empirical formula	$C_{23}H_{17}O_3$ Re
fw	527.57
temp	193(2) K
wavelength	0.71073 Å
cryst syst	monoclinic
space group	P2(1)
unit cell dimens	$a = 7.7279(3)$ Å
	$b = 14.1402(6)$ Å
	$c = 8.3068(4)$ Å
	$\alpha = 90^{\circ}$
	$\beta = 92.1560(10)$ °
	$\nu = 90^{\circ}$
volume, Z	$907.08(7)$ \AA^3 , 2
density (calcd)	1.932 Mg/m^3
abs coeff	6.719 mm ⁻¹
F(000)	508
cryst size	$0.12 \times 0.20 \times 0.40$ mm
θ range for data collection	2.45 to 28.27°
limiting indices	$-10 \le h \le 10, -18 \le k \le 18,$
	$-3 \le l \le 10$
no. of reflns collected	5367
no. of ind reflns	3777 [$R(int) = 0.0129$]
abs corr	Sadabs
max. and min. transmn	0.928 and 0.625
refinement method	full-matrix least-squares on F^2
no. of data/restraints/params	3777/1/246
goodness-of-fit on F^2	1.346
final R indices $[I>2\sigma I]$	$R1 = 0.0198$, $wR2 = 0.0508$
R indices (all data)	$R1 = 0.0200$, $wR2 = 0.0509$
abs structure param	0.234(10)
extinction coeff	0.0100(5)
largest diff peak and hole	1.174 and -1.034 e Å ⁻³

to yield a total of 5367 reflections, of which 3777 were independent (R_{int} = 1.29%).²¹ Laue symmetry revealed a monoclinic crystal system, and the final unit cell parameters (at -80 °C) were determined from the least-squares refinement of three-dimensional centroids of 5367 reflections. Data were corrected for absorption with the SADABS²² program.

The space group was assigned as $P2_1$, and the structure was solved by using direct methods and refined employing fullmatrix least-squares on F^2 (Siemens, SHELXTL,²³ version 5.04). For a *Z* value of 2, there is one molecule in the asymmetric unit. All of the atoms were refined with anisotropic thermal parameters, and hydrogen atoms were included in idealized positions giving a data to parameter ratio of slightly greater than 10:1. The structure refined to a goodness of fit $(GOF)^{24}$ of 1.346 and final residuals²⁵ of $R_1 = 1.98\%$ ($I > 2\sigma$ -(*I*)), $wR_2 = 2.92\%$ ($I > 2\sigma(I)$). A summary of crystallographic data for **3** is given in Table 2.

Acknowledgment. We thank the Research Corporation (CC-5024) for funding this work and Kirk Manfredi for help in obtaining the 2H NMR spectra. We also thank Lynne Teesch and Vic Parcell at the University of Iowa for the HRMS data and Jason Telford for the VT-NMR data on **4**.

Supporting Information Available: X-ray structural data (PDF and CIF file) for **3**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM034111T

 2 – F_{0}^{2} (mean)| $/\Sigma[F_{0}^{2}]$.

⁽²¹⁾ $R_{int} = \sum |F_0^2 - F_0^2$ (mean)|/ $\Sigma [F_0^2]$.
(22) The SADABS program is based on the method of Blessing; see: Blessing, R. H. *Acta Crystallogr., Sect. A* **1995**, *51*, 33. (23) *SHELXTL: Structure Analysis Program, version 5.04*; Siemens

Industrial Automation Inc.: Madison, WI, 1995.

(24) GOF = $[\Sigma [w(F_0^2 - F_c^2)^2]/(n - p)]^{1/2}$, where *n* and *p* denote the

number of data and parameters

number of data and parameters.

(25) $R_1 = (\Sigma||F_6| - |F_c||)/\Sigma|F_6|$; $wR_2 = [\Sigma[w(F_6^2 - F_c^2)^2]/\Sigma[w(F_6^2)^2]]^{1/2}$

where $w = 1/[{\sigma}^2(F_6^2) + (aP)^2 + bP]$ and $P = [\text{Max}; 0, F_6^2) + 2F_c^2]/3$.