Organomagnesates from Reactions of Dialkylmagnesium Compounds with Alkali-Metal Alkoxides, Potassium Hydride, and Other Salts

Erin M. Hanawalt, Julius Farkas, Jr., and Herman G. Richey, Jr.*

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802

Received July 21, 2003

Reactions of R₂Mg and KOR' in benzene form solutions containing organomagnesates that incorporate equal amounts of the reactants. NMR spectra of preparations in which the choice of R and R' leads to stereoisomers are consistent with a dimeric organomagnesate structure in which the magnesium atoms of two R_2Mg units are bridged by the oxygen atoms of two OR' groups. Similar species result when NaOR' is the salt or diethyl ether is the solvent. When less than 1 equiv of KOR' is used, other species also are present. Reactions in benzene of R_2Mg with some other salts, including tetrabutylammonium halides and LiNR'₂ compounds, also furnish 1:1 organomagnesates, but reactions with KH can lead to solutions of R₃MgK.

Organomagnesate ions such as R₃Mg⁻ are known in crystalline solids and in solutions.¹ Solutions containing such organomagnesates exhibit reactivities different from those of RMgX (Grignard reagents) or R₂Mg.¹ With ketones, for example, such solutions furnish addition products but very much less of the reduction products that often are significant or even major products when the organic group of RMgX or R₂Mg has a β -hydrogen.² Reaction of R_2Mg with a salt having an anion (A⁻) that might bind to the magnesium (eq 1) is a possible way

$$R_2Mg + M^+A^- \rightarrow R_2MgA^- + M^+$$
(1)

of generating an organomagnesate ion and the associated reactivities. Indeed, addition to R₂Mg of an alkalimetal alkoxide^{2,3} or a tetraalkylammonium halide^{2,4} increases the addition/reduction ratio in R₂Mg-ketone reactions. This paper describes efforts to determine compositions and structures of species in solutions formed by combining R₂Mg and salts.

Results and Discussion

 $\mathbf{R}_{2}\mathbf{Mg} + \mathbf{KOR}'$ (1:1).⁵ Much of the work concerned solutions containing the elements of equimolar amounts of R₂Mg and an alkali-metal alkoxide (or aryloxide). The cation usually was potassium, the temperature was ca.

Table 1. R₂Mg-MOR' Preparations^a

R	Μ	OR'	¹ H NMR, $\delta(\alpha$ - or <i>o</i> -H)		
Hex	Κ	OMe	-0.76		
Hex	Κ	OEt	-0.79		
Hex	Κ	O-t-Bu	-0.82		
Hex	Κ	OPh	-0.74		
Hex	Κ	OCHMePr	-0.80^{c}		
Hex	Κ	OCH ₂ CMe ₃	-0.75		
Hex	Κ	OC(Me ₂)Et	-0.80		
Np	Κ	OMe	-0.59		
Np	Κ	O-t-Bu	-0.49		
Np	Na	OMe	-0.28		
2-ĒtBu	Κ	OMe	-0.93		
2-EtBu	Κ	OPh	-0.78		
3,3-Me ₂ Bu	Κ	OEt	-0.99		
3,3-Me ₂ Bu	Κ	OPh	-0.90		
s-Bu	Κ	OMe	-0.99^{c}		
s-Bu ^b	Κ	OMe	-0.92^{c}		
<i>s</i> -Bu	Na	OMe	-1.02^{c}		
<i>p-t</i> -BuPh	Κ	OMe	8.12		

^{*a*} Except where noted, the solvent is benzene- d_6 . NMR absorption areas of all preparations are consistent with an R:OR' ratio of 2. ^b The solvent is Et_2O-d_{10} . ^c Average position of a cluster of absorptions (see text).

23 °C, and, except where specifically noted, the solvent was benzene (benzene- d_6).

When a benzene solution of an R₂Mg compound was stirred with ≥ 1 equiv of a KOR' compound that is relatively insoluble in benzene (e.g., KOMe, KOEt, KONp (Np = neopentyl = $(CH_3)_3CCH_2$), KOPh), R:OR' ratios of 2 found from relative areas of ¹H NMR absorptions indicate that 1 equiv but never more of KOR' dissolved. Significant amounts of some R₂Mg compounds relatively insoluble in benzene (e.g., Et₂Mg, (2-EtBu)₂Mg $(2-EtBu = 2-ethylbutyl), (3,3-Me_2Bu)_2Mg (3,3-Me_2Bu = 2-ethylbutyl))$ 3,3-dimethylbutyl)) dissolved in the presence of some KOR' compounds.⁶ Table 1 lists solutions that were prepared. Aliquots of some solutions were hydrolyzed and then analyzed for base, K, and Mg. For a solution

^{*} To whom correspondence should be addressed. E-mail: hgr@ chem.psu.edu.

⁽¹⁾ Richey, H. G., Jr. In Comprehensive Supramolecular Chemistry, Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F., Eds.; Pergamon: Oxford, U.K., 1996; Vol. 1 (Gokel, G. W., Vol. Ed.), Chapter 21.

⁽²⁾ Richey, H. G., Jr.; DeStephano, J. P. J. Org. Chem. 1990, 55, 3281

⁽³⁾ Georgoulis, C.; Gross. B.; Ziegler, J.-C. *C. R. Hebd. Seances Acad. Sci., Ser. C* **1971**, *273*, 378. Ziegler, J.-C. Doctoral Dissertation, L'Université de Nancy I (undated).

⁽⁴⁾ Chastrette, M.; Amouroux, R. *Bull. Soc. Chim. Fr.* **1970**, 4348.
(5) Some preliminary work with alkoxides: Hanawalt, E. M.; Richey, H. G., Jr. *J. Am. Chem. Soc.* **1990**, *112*, 4983.

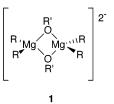
⁽⁶⁾ Ph_2Mg , itself insoluble in benzene, was reported to dissolve in the presence of some alkali-metal alkoxide salts.

prepared from Np₂Mg and excess KOMe in benzene, total base:Mg:K was 3:1:1. Since the base determination includes RMg and OR' groups, these results combined with the R:OR' ratio of 2 indicate the solution to have a 1:1 R₂Mg:KOR' composition. The rate of dissolution depended on the alkoxide. With Hex₂Mg (Hex = hexyl), for example, dissolution took as long as 24 h with KOMe and 5 h with KOEt but 30 min with KOPh and only a few minutes with KONp, KOCHMePr, or KOCMe₂Et; even with KOMe, which is particularly insoluble, concentrations of at least 0.4 M were ultimately obtained. The rate of dissolution also depended on R₂Mg; dissolution of KOMe took as long as 24 h with Hex₂Mg but only 30 min with Np₂Mg and 5 min with *s*-Bu₂Mg.

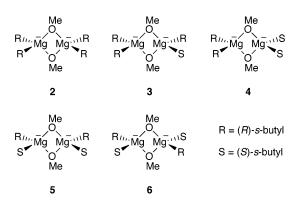
One entry in Table 1 is for *s*-Bu₂Mg and KOMe in diethyl ether- d_{10} ; although excess KOMe (a compound not significantly soluble in diethyl ether) was used, the solution's composition is 1:1. Analysis of solutions prepared in diethyl ether from Np₂Mg and excess KOMe and from Et₂Mg and excess KOMe or KOPh found total base:Mg:K to be 3:1:1.⁸

A ¹H NMR absorption of each 1:1 solution is listed in Table 1. Except for solutions (prepared with s-Bu₂Mg or KOCHMePr as one component) in which a reactant has a chiral group, only a single ¹H NMR absorption is found for each structural type of H. Concentrations were mainly in the range 0.1-0.8 M, and the spectra vary little with concentration. Absorptions generally are as sharp as expected for routine small molecules;⁹ this contrasts to broader absorptions of some of the R_2Mg compounds (especially Hex₂Mg) in the absence of alkoxides, probably due to the presence of associated species, between which exchange of R groups is not very rapid relative to the NMR time scale. ¹³C NMR spectra of Hex2Mg-KOR' solutions also show only a single sharp absorption for each structural type of C. The ¹H NMR absorptions of CH₂CH₂Mg in the solutions with Hex₂-Mg and (3,3-Me₂Bu)₂Mg generally are of the type AA'XX' rather than A_2X_2 , indicating that inversion of the hexyl groups is slow relative to the NMR time scale.10

Monitoring ¹H NMR absorptions indicated that many solutions underwent little decomposition over a period of several days. Some solutions prepared with *s*-Bu₂Mg and with Np₂Mg, however, decomposed slowly. Mes₂-Mg (Mes = 2,4,6-trimethylphenyl) preparations were unstable; the principal NMR absorptions were of mesi-tylene. Preparations of Np₂Mg with KOCH(CH₂NMe₂)₂, an alkoxide with N atoms that might coordinate to K, also led to decomposition (even when excess Np₂Mg was used).


(9) (*p*-tolyl)₂Mg (itself not very soluble in benzene) dissolved in the presence of some KOR' compounds, but ¹H NMR absorptions of the resulting solutions were broad. Absorptions of solutions prepared with (*p*-tert-butylphenyl)₂Mg also were broad.

(10) The AA'XX' pattern is particularly striking for the 3,3-Me₂Bu systems; because there is no additional coupling to their H's, the two CH₂ groups exhibit identical patterns. Some observations of AA'XX' spectra for RCH₂CH₂Mg compounds: Whitesides, G. M.; Witanowski, M.; Roberts, J. D. J. Am. Chem. Soc. **1965**, 87, 4878. Witanowski, M.; Roberts, J. D. J. Am. Chem. Soc. **1966**, 88, 737.


The solubility of KO-*t*-Bu in benzene permits the preparation of solutions containing more KO-*t*-Bu than R_2Mg . While 1:1 KO-*t*-Bu-Np₂Mg solutions underwent significant decomposition within 1 h, preparations with excess KO-*t*-Bu decomposed much more rapidly: within 15 min the CH₂Mg absorption had disappeared and a large neopentane absorption had appeared.

The NMR and analytical results indicate that a species having a 1:1 MOR'/ R_2Mg composition is the only significant component in many solutions. The positions of the CHMg absorptions in ¹H NMR spectra are consistent with such species being organomagnesates. These absorptions are significantly upfield from the corresponding absorptions¹¹ of R₂Mg (for example, the CH₂Mg absorption of Hex₂Mg is at δ 0.19 but those of 1:1 KOR'–Hex₂Mg preparations are between δ –0.7 and -0.8) just as CHZn absorptions of 1:1 KO-*t*-Bu-R₂Zn organozincates are significantly upfield from those of R₂Zn.¹² Reports by Screttas and Micha-Screttas are relevant.13 They found, for example, that PhK and PhNa, themselves insoluble in benzene, dissolve in benzene solutions of Mg(OCH₂CH₂OEt)₂ to form solutions with K:Mg and Na:Mg ratios of 1 and 2, respectively.¹⁴ For the sodium case, an identical solution was prepared from Ph₂Mg and NaOCH₂CH₂OEt (1:2).¹⁵ ¹H and ¹³C NMR spectra of the solutions they studied had only single sets of absorptions, however, and hence provided no structural information.¹⁶

As described below, NMR spectra of solutions in which the choice of R and R' leads to stereoisomeric 1:1 $R_2Mg-KOR'$ species are consistent with structure **1** for the organomagnesates.

R₂Mg (R Chiral) and KOR'. When R is chiral (e.g., *sec*-butyl), seven stereoisomers have structure **1**: two pairs of enantiomers (**2** and its S,S,S,S enantiomer; **3** and its R,S,S,S enantiomer) and three other stereoisomers (**4**-**6**). Table 2 lists the relative amounts of

these stereoisomers that are expected if R and S groups are distributed randomly (i.e., if isomers have equal stabilities). As indicated in the table, alkoxyl and R groups of some stereoisomers are diastereotopic; con-

⁽⁷⁾ Screttas, C. G.; Micha-Screttas, M. J. Organomet. Chem. 1985, 290, 1.

⁽⁸⁾ Reactions of Np₂Mg and KOPh in benzene or diethyl ether resulted in large amounts of precipitate; the remaining solutions had virtually no solute (analysis after hydrolysis found the solutions to contain no base, Mg, or K).

 Table 2. Properties of Stereosomers Having

 Structure 1 and a Chiral R Group

composition of R	statistical wt	NMR wt	OR' groups	R groups
$\frac{R,R,R,R(2)}{S,S,S,S}$	1	} 2	identical	identical
R, R, R, S (3) R, S, S, S	4 4	} 8	diastereotopic	diastereotopic (4)
R, R, S, S (4)	2	2	identical	identical
R, R, S, S (5)	2	2	identical	identical
R, R, S, S (6)	2	2	diastereotopic	identical

Table 3. ¹³C NMR (125 MHz) Absorptions of Methoxide in a Benzene-*d*₆ Solution Formed from *s*-Bu₂Mg and KOMe

$\delta(CH_3O)$	assignt	rel intens ^a
50.785 51.601	$\left. ight\} {f 6} \ { m and} \ { m enantiomer}^b$	1.81 (2)
$51.025 \\ 51.430$	$\left. ight\}$ 3 and enantiomer b	7.29 (8)
51.204 51.241 51.265	2, 4, or 5 2, 4, or 5 2, 4, or 5	2.17 (2) 2.30 (2) 2.43 (2)

^{*a*} The total of the values is normalized to 16. The numbers in parentheses are the values expected if isomers have identical stabilities. ^{*b*} Two absorptions are observed because the methoxyl groups of this pair of enantiomers are diastereotopic.

sequently, seven NMR absorptions of alkoxyl and eight of R are potentially distinguishable.

NMR spectra of solutions prepared from s-Bu₂Mg and KOMe have multiple absorptions, in accord with the expectations for structure 1. Seven methoxyl absorptions (Table 3)¹⁷ were resolved in ¹³C spectra (no more than five ¹³C NMR absorptions, however, were resolved for any sec-butyl carbon). The absorption areas are relatively close to those expected if isomers had equal stabilities, permitting some assignments: the two largest absorptions must be due to the diastereotopic methoxyl groups of the R,R,R,S (3) and R,S,S,S enantiomers and the two smallest absorptions to the diastereotopic methoxyl groups of 6. The average absorption position of each diastereotopic pair is close to the positions of the other three methoxyl absorptions, which must be due to the other three stereoisomers (2, 4, and 5). Except for the fact that the absorptions of 2, 4, and 5 coincide, the ¹H methoxyl absorptions mirror the ¹³C absorptions: four noncentral absorptions due to the diastereotopic groups of 3 and 6 and the average position of each diastereotopic pair close to the common absorptions of 2, 4, and 5. Both the ¹³C and ¹H NMR spectra suggest that internal differences in environment of methoxyl groups are greater within the R, R, S, Sisomer (6) and the R, R, R, S-R, S, S, S isomers (3 and its enantiomer) than between stereoisomers. Models indi-

Table 4. ¹H NMR Absorptions^a of Benzene-d₆ Solutions Formed from *s*-Bu₂Mg and MOMe in the Absence or Presence of TMEDA^b

	δ (<i>sec</i> -butyl)				δ (TMEDA)		
М	CH ₃ CH ^c	CH^d	CH_2^d	CH ₃ CH ₂	$\delta(OMe)^e$	$\overline{\operatorname{CH}_2^e}$	CH ₃ ^e
K	1.604 (1)	-0.99	1.95	1.33^{d}	3.53 (1)		
	1.595 (1)				3.51 (4)		
	1.592 (1)				3.49 (6)		
	1.582 (2)				3.47 (4)		
	1.573 (1)				3.45 (1)		
	1.569(1)						
	1.565(1)						
Na	1.534 (1)	-1.02	1.90	$1.26^{f}(1)$	3.43(1)		
	1.526(1)			$1.25^{f}(1)$	3.41 (4)		
					3.39 (6)		
					3.36 (4)		
					3.34(1)		
Κ	1.816(1)	-0.47	2.13	1.45^{d}	3.87 (1)	2.05	1.98
	1.809 (1)				3.85 (4)		
	1.809 (1)				3.83 (6)		
	1.804 (1)				3.81 (4)		
	1.791 (1)				3.79(1)		
Na	1.813 (1)	-0.63	2.16	1.44^{d}	3.86 (1)	2.11	2.04
	1.797 (1)				3.82 (4)		
	.,				3.80 (2)		
					3.79 (4)		
					3.76 (4)		
					3.73 (1)		
^a Spectra taken at 300 MHz. ^b s-Bu ₂ Mg (ca. 0.4 M). MOMe, and							

^{*a*} Spectra taken at 300 MHz. ^{*b*} *s*-Bu₂Mg (ca. 0.4 M), MOMe, and (when present) TMEDA were in the ratio 1:1:2.5. The approximate relative areas of absorptions for a particular hydrogen or group of hydrogens are given in parentheses. ^{*c*} All are doublets; $J \cong 7.7$ Hz. ^{*d*} Average position of a complex absorption. ^{*e*} All are singlets. ^{*f*} A triplet, $J \cong 7.2$ Hz.

cate that this is reasonable, as is the larger $\Delta \delta$ for the absorptions of the diastereotopic groups of **6** as compared to those of **3**. Surprisingly, more discrete absorptions for *sec*-butyl groups are evident in ¹H NMR spectra (Table 4) than in ¹³C NMR spectra: seven sets of CH_3 -CH absorptions are resolved.

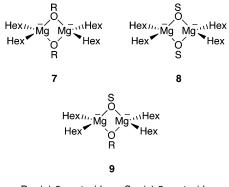
Processes that could destroy the stereochemical integrity of **2**–**6** include (1) inversion of *sec*-butyl groups, (2) cleavage of the dimer structures followed by recombination, (3) exchange of sec-butyl groups between dimers, and (4) exchange of *sec*-butyl groups within dimers. If the first three processes were rapid relative to the NMR time scale, then the absorptions of the stereoisomers would be averaged. Since seven methoxyl absorptions (¹³C NMR) and seven out of eight sec-butyl absorptions (¹H NMR) are resolved, none of these processes is rapid relative to the NMR time scale. The smallest $\Delta\delta$ resolved is 0.6 Hz (α -CH₃, ¹H NMR); thus, the configurations persist for at least 1 s. Even process 4, internal exchange of *sec*-butyl groups, cannot be rapid, since it would erase the diastereotopic differences in 3 and in **6** and result in identical absorptions for 4-6.

Spectra also were taken in diethyl ether- d_{10} . Solubility was less than in benzene, but the absorption positions and the absorption patterns due to the presence of stereoisomers are remarkably similar to those in the spectra of benzene solutions. Six of the seven possible ¹H NMR methoxyl absorptions are resolved versus only five in benzene, but only four of the eight possible CH_3 -CH doublets are resolved versus seven in benzene; in the ¹³C NMR spectrum six methoxyl absorptions are resolved versus all of the possible seven in benzene.

R₂Mg and KOR' (R' Chiral). When R' is chiral, stereoisomers **7–9** have structure **1**. NMR spectra potentially have one set of alkoxide absorptions for the

⁽¹¹⁾ This could not be verified for those R_2Mg compounds (Et₂Mg, (2-EtBu)₂Mg, (3,3-Me₂Bu)₂Mg) too insoluble in benzene for NMR spectra.

⁽¹²⁾ Fabicon, R. M.; Richey, H. G., Jr. *J. Chem. Soc., Dalton Trans.* **2001**, 783.

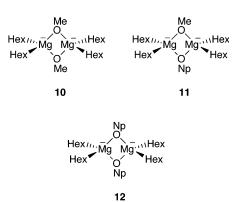

⁽¹³⁾ A recent review, including applications in synthesis: Screttas,
C. G.; Steele, B. R. Appl. Organomet. Chem. 2000, 14, 653.
(14) Screttas, C. G.; Micha-Screttas, M. Organometallics 1984, 3,

⁽¹⁴⁾ Screttas, C. G.; Micha-Screttas, M. Organometallics **1984**, *3*, 904.

⁽¹⁵⁾ Screttas, C. G.; Micha-Screttas, M. J. Organomet. Chem. 1985, 290, 1.

⁽¹⁶⁾ A study of the use of R₂Mg–KOC(Me)₂Et systems in cyclohexane-hexane as polymerization catalysts concluded that R₃MgK or RK was formed (Patterson, D. B.; Halasa, A. F. *Macromolecules* **1991**, *24*, 1583).

⁽¹⁷⁾ The ¹H and ¹³C NMR absorptions of OMe are shown in ref 5.



R = (R)-2-pentoxide S = (S)-2-pentoxide

7 and 8 pair of enantiomers and another for 9. If R and S groups are distributed randomly, then 7:8:9 would be 1:1:2 and the two sets of absorptions would be of equal intensity. In fact, when Hex₂Mg and racemic KOCH-MePr were used, the ¹H NMR spectrum (benzene- d_6) had two doublets (δ 1.14 and 1.15) of equal intensity for CH₃CH of the alkoxide. Because the geminal hexyl groups of 9 are diastereotopic, there are potentially three sets of hexyl absorptions; if the stereoisomers have equal stabilities, these sets of absorptions would have 2:1:1 intensities (2 (7 + 8), 1 and 1 (9)). A 13 C NMR spectrum indeed has three CMg absorptions (δ 13.92, 13.98, 14.06) with the predicted 1:2:1 intensities. Discrete absorptions due to diastereotopic hexyl groups of 9, however, are not evident even in 500 MHz ¹H NMR spectra; ¹H NMR spectra show two overlapping triplets $(\delta -0.800 \text{ and } -0.810, \text{ reduced to two singlets by})$ irradiation of the CH_2CH_2Mg hydrogens) of equal intensity for CH₂Mg, corresponding to the diastereoisomeric hexyl groups of 7 and 8 and of 9.

Processes that might exchange hexyl groups among **7–9** include (1) cleavage of the dimers (7-9) followed by recombination of the monomeric units and (2) direct hexyl exchange among 7-9. A chemical shift difference of 1.5 Hz resolved for an absorption of diastereoisomeric hexyl groups indicates that any exchange of hexyl groups among 7-9 has a half-time >0.2 s. Similarly, resolution of a chemical shift difference of 1.3 Hz for an absorption of isomeric alkoxide groups indicates that any exchange of alkoxide groups also must have a halftime > 0.2 s. Rapid exchange of hexyl groups within 7–9 would not interconvert these isomers but would eliminate the distinction in NMR spectra between the diastereotopic hexyl groups of 9. Resolution of a chemical shift difference of 10.5 Hz for diastereotopic hexyl groups indicates that the lifetime of a hexyl group in a given position within **9** is >0.02 s.

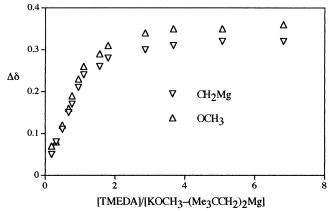
R₂Mg, KOR', and KOR". When two alkoxides (KOMe and KONp) and Hex2Mg are used, three constitutions (10-12) have structure 1: assuming equal stabilities, 10-12 would be in 1:2:1 amounts when equimolar amounts of the alkoxides are used. Indeed, the ¹³C NMR spectrum of such a solution shows ca. 1:2:1 absorptions for C₁, C₂, C₃, and C₄ of the hexyl group and ca. 1:1 absorptions for COMg of methoxyl and of neopentoxyl. Separations of 15-20 Hz resolved for these absorptions indicate that lifetimes of alkoxyl and hexyl groups in a given compound exceed 0.01 s, setting an upper limit to the rate to any process (e.g., cleavage of a dimer to monomeric units followed by recombination) interchang-

ing **10–12**. Slow interconversion occurs, however, since equilibrium concentrations of 10-12 had been reached when a solution prepared by combining solutions of 10 and of 12 was first examined after 24 h.

The H's of each hexyl CH₂ of **11** are diastereotopic, and consequences of this are evident, particularly in the CH₂Mg absorption.¹⁸ About half of the total CH₂Mg absorption corresponds to a superposition (ca. δ –0.75) of the absorptions observed for solutions prepared using only one alkoxide. This absorption of 10 and 12 is flanked, however, by two equal multiplets (δ –0.65 and -0.85) that constitute the other half of the total CH₂-Mg absorption. Irradiation of the CH_2CH_2Mg H's to remove the vicinal coupling provides simpler spectra exhibiting only a single (coincident) CH₂Mg absorption for **10** and **12**, but doublets (J = 12 Hz, geminal)coupling) remain for the diastereotopic CH₂Mg hydrogens of 11.19

R₂Mg + **NaOR' or LiOR' (1:1).** NMR spectra (Table 4) of solutions of *s*-Bu₂Mg with NaOMe in benzene are remarkably similar to those with KOMe.²⁰ LiOMe did not dissolve in benzene solutions of Np₂Mg or s-Bu₂Mg. LiO-t-Bu is soluble in benzene, but NMR spectra of LiO*t*-Bu–Np₂Mg preparations had many *t*-Bu absorptions and only feeble absorptions that might be due to CH₂-Mg (or CH₂Li).

R₂Mg + **MOR** (1:1) + **TMEDA**. Solutions obtained by adding TMEDA to 1:1 Np₂Mg-KOMe solutions were stable.²¹ Figure 1 shows plots of the positions of the CH₂-Mg and OCH₃ ¹H NMR absorptions as a function of the TMEDA:Np₂Mg-KOMe ratio.²² The observations are consistent with conversion of most of the K to K(T- $MEDA)_2^+$ by sufficient TMEDA. Absorptions (Table 4) of 1:1 s-Bu₂Mg-KOMe and s-Bu₂Mg-NaOMe solutions to which excess TMEDA was added are very similar (as are the absorptions of the solutions without TMEDA) but not identical.


⁽¹⁸⁾ The ¹H NMR absorptions of CH₂Mg are shown in ref 5.

⁽¹⁹⁾ Resolution of a 100 Hz difference between the absorptions of the diastereotopic CH2Mg H's indicates their stereochemistries to have a lifetime >0.002 s, setting an upper limit to the rate of any process that inverts the α -C of hexyl and hence exchanges these H's

⁽²⁰⁾ NaOPh did not dissolve in benzene solutions of Np₂Mg

⁽²¹⁾ Addition of 18-crown-6, 2,2,2-cryptand, or $Me_2N(CH_2)_2N(Me)$ -(CH₂)₂N(Me)(CH₂)₂NMe₂ to 1:1 Np₂Mg-KOMe solutions, however, led to decomposition (¹H NMR spectra had a large neopentane absorption and no absorption attributable to CH₂Mg). Solutions of these coordinating agents with Np₂Mg alone were stable. (22) When the TMEDA/Np₂Mg–KOMe ratio is low, the positions of

the two TMEDA absorptions are reversed compared to those of free TMEDA. The absorptions approach one another as the ratio increases, coincide at a ratio of ca. 2, and approach those of free TMEDA at higher ratios

Figure 1. Plot of the downfield change in positions of the ¹H NMR absorptions of CH₂Mg and CH₃O as TMEDA is added to a 1:1 benzene- d_6 solution of ((CH₃)₃CCH₂)₂Mg and KOCH₃ (the TMEDA is added as a 0.09 M benzene- d_6 solution to a 0.09 M KOCH₃-((CH₃)₃CCH₂)₂Mg solution).

 $R_2Mg + KOR'$ (1:(<1)). NMR spectra of solutions having KOR':R₂Mg ratios <1 often indicated the presence of several species. Spectra of solutions having the same ratio were identical regardless of the mode of preparation: (1) using <1 equiv of KOR', (2) stirring for insufficient time to dissolve 1 equiv of KOR', or (3) adding R₂Mg to a 1:1 KOR'-R₂Mg solution.

The complex observations are exemplified by some results with s-Bu₂Mg-KOMe preparations. Preparations having KOMe:s-Bu₂Mg ratios <0.5 (s-Bu₂Mg initially ca. 0.2 M) had two liquid phases, the denser considerably smaller than the other.²³ In a preparation with a KOMe:s-Bu₂Mg ratio of 0.33, for example, ¹H and ¹³C NMR spectra of the denser phase show only a single methoxyl absorption and a single set of sec-butyl absorptions; the ¹H NMR absorptions correspond to a OMe:s-Bu₂Mg ratio of ca. 0.3. Individual ¹H NMR absorptions seen for the two CH₂CHMg hydrogens (in contrast to the common absorption for these hydrogens in spectra of *s*-Bu₂Mg or 1:1 KOMe-*s*-Bu₂Mg solutions) indicate that inversion at the chiral center is slow relative to the NMR time scale.²⁴ The ¹H NMR spectrum of the less dense phase indicates a ca. 0.5 OMe:s-Bu₂-Mg ratio; broad, overlapping absorptions indicate several environments for methoxyl and butyl groups.

Preparations with KOMe:*s*-Bu₂Mg ratios >0.5 seemed to be homogeneous. As many as four CHMg absorptions were evident in the ¹H NMR spectra. A solution having a ratio of 0.7, for example, exhibited four absorptions having similar intensities. One (δ –0.96) was identical with that (assigned to **2**–**6**) of 1:1 solutions; the corresponding set of OMe absorptions was present. A second (δ 0.10) and a corresponding OMe absorption (δ 4.00) were similar to those observed for the dense phase. The third CHMg absorption (δ –0.29) was sharp; the fourth (δ ca. –0.5) shifted upfield upon addition of more KOMe, suggesting it to be an exchange-averaged absorption of species containing different amounts of KOMe.²⁵ Since the broadness of some absorptions complicated interpretation of these spectra, TMEDA was used as an additional component in some preparations in the hope that it might slow any exchange. ¹H NMR spectra of preparations having various KOMe:*s*-Bu₂Mg ratios and excess TMEDA had only two sets of absorptions: (1) the set assigned to 2-6 and (2) a set identical with that obtained when TMEDA is added to *s*-Bu₂Mg. When TMEDA was added to a *s*-Bu₂Mg–KOMe solution exhibiting four CHMg absorptions, the spectrum also showed only absorptions of 2-6 and of *s*-Bu₂Mg-(TMEDA). TMEDA evidently does not disrupt 2-6 but converts the other species to *s*-Bu₂Mg(TMEDA), an indication that these species are less stable than 2-6.

 R_2Mg + Other Salts. Exploratory reactions of R_2 -Mg compounds with several other salts (MA) also suggest the formation of organomagnesates having 1:1 compositions $((R_2MgA^-)_n)$. KPPh₂ has only limited solubility in benzene, but enough dissolved in dilute Hex₂Mg solutions to permit taking NMR spectra.²⁶ ¹H NMR absorption areas indicate a 1:1 ratio of the components of the reactants, and the CH₂Mg absorption is at δ –0.29. The absorptions are too broad to yield information about coupling to ³¹P. KS(*p*-tolyl), insoluble in benzene, dissolved in a dilute *s*-Bu₂Mg solution.²⁷ ¹H NMR absorption areas indicate a 1:1 composition, and the CHMg absorption is at δ –0.59; the broadness of the absorptions, however, obscures all coupling to CHMg. Because of its two O atoms, acetate might form magnesates with structures different from those formed with the other anions that were studied. A KOAc-Hex₂-Mg (1:1) preparation exhibited an upfield ¹H NMR absorption (δ –0.73) of CH₂Mg, but all other absorptions are broad and overlapping in the δ 1.0–2.0 region. An $LiNR_2$ compound (R = ethyl, isopropyl, cyclohexyl), itself soluble in benzene, when combined (1:1) with Hex₂Mg gave a solution having a significantly upfield ¹H NMR absorption of CH₂Mg (e.g., δ –0.47 when R = ethyl).²⁸ Other absorptions, however, were too broad and overlapping to provide additional information.²⁹

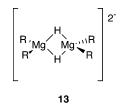
Reactions (1:1) of Bu₄NBr (which is quite soluble in benzene) and Et₂Mg, Hex₂Mg, Np₂Mg, or *s*-Bu₂Mg often led to two liquid phases (formation of two phases with Np₂Mg was noted over a concentration range of 0.10–1.0 M),³⁰ the denser containing most of the solute. ¹H NMR spectra of the denser phases show the components of R₂Mg and Bu₄N⁺ to be in a 1:1 ratio.³¹ ¹H NMR

⁽²³⁾ Separation into two phases was perhaps sometimes missed in experiments with other R_2Mg –KOR' preparations. Separation was sometimes not observed until after a sample had been sealed in an NMR tube, a procedure that involved submerging in liquid nitrogen, sealing, and then warming the NMR tube to ambient temperature.

⁽²⁴⁾ This does not rule out exchange of *sec*-butyl groups, since exchange of RMg groups can be much faster than inversion. For example: House, H. O.; Latham, R. A.; Whitesides, G. M. *J. Org. Chem.* **1967**, *32*, 2481.

⁽²⁵⁾ Preparations using Hex₂Mg and <1 equiv of a KOR' compound were homogeneous, but their ¹H NMR absorptions were too broad and overlapping to provide useful information. Preparations using Np₂Mg and between 0.5 and 1 equiv of KOMe generally exhibited two or three sets of ¹H NMR absorptions; one set corresponded to the spectrum of the 1:1 species (1). Preparations using Np₂Mg and 0.5 equiv of KO-*t*-Bu also exhibited multiple absorptions (as many as 4 for CH₂Mg) in contrast to the single set of absorptions for 1:1 preparations.

⁽²⁶⁾ Combination of KPPh₂ and a solution of *s*-Bu₂Mg led to precipitation. The only NMR absorptions were for traces of butane.


⁽²⁷⁾ KS(p-tolyl) did not dissolve significantly in a Hex₂Mg solution. (28) A similar combination of Hex₂Mg with KN(cyclohexyl)₂ resulted in decomposition (large hexane absorptions and only weak absorptions attributable to CH_2Mg).

⁽²⁹⁾ KF, CsF, or KBr did not dissolve in a Hex_2Mg solution, even if 18-crown-6 or TMEDA also was present. Similar results were obtained with KF, Np₂Mg, and 18-crown-6 or TMEDA.

⁽³⁰⁾ Some Np₂Mg–Bu₄NBr preparations having much lower concentration levels exhibited more than one set of absorptions and may have been homogeneous. Such preparations may merit further investigation.

absorptions of CHMg are broad and somewhat upfield from those of R_2Mg ,¹¹ but absorptions of Bu_4N^+ are little changed from those of Bu_4NBr . Combinations (1:1) of Bu_4NCl with *s*- Bu_2Mg or Hex_2Mg and of Bu_4NI with Np_2Mg also resulted in two phases. Decomposition of Bu_4N^+ (e.g., to form butene and trimethylamine) was never significant, even after several days.

Results with KH were very different than with the other salts. KH with Bu₂Mg or *s*-Bu₂Mg in benzene had earlier been reported to form solutions of composition Bu₂MgKH and *s*-Bu₂MgKH.³² ¹H NMR absorptions at ca. δ 3.5 were attributed to MgH, and cryoscopic molecular weight measurements found these species to be dimeric over a wide concentration range. Presumably they have structure **13**.³³ In our work, stirring benzene

solutions of R_2Mg with excess KH (itself insoluble in benzene) led eventually to solutions containing principally R_3MgK (eq 2). After an Np₂Mg solution was stirred

$$3R_2Mg + 2KH \rightarrow 2R_3MGK + MgH_2\downarrow$$
 (2)

with KH, for example, the ¹H NMR spectrum showed a single set of neopentyl absorptions (δ –0.82 for CH₂Mg and δ 1.29 for (CH₃)₃C)) but no new absorption in the δ 3-4 region.³⁴ Analysis (titration and AAS) of a solution (after filtration and hydrolysis) showed total base:Mg:K to be 3:1:1. If hydride is absent, then this analysis suggests the composition Np3MgK. Solutions of composition R₃MgK had been prepared previously from reactions of R₂Mg and K in hydrocarbon solvents.³⁵ Indeed, we found a reaction of Np₂Mg and K in benzene³⁶ to produce a solution (K:Mg = 1:1 by analysis) whose major NMR absorptions were similar to those of the solution prepared from Np₂Mg and KH.³⁷ Similar reactions of Hex₂Mg or s-Bu₂Mg with KH also led to solutions also exhibiting (1) single sets of ¹H NMR absorptions³⁸ for the organic groups, (2) α -H absorptions markedly upfield from those of the R₂Mg reactants (δ –0.35 for CH₂-

Mg of hexyl, δ –1.00 for CHMg of *sec*-butyl), and (3) no absorptions attributable to hydride. As another test for the presence of hydride, a Hex₂Mg–KH preparation thought to be Hex₃MgK was transferred to a vacuum line and degassed by a series of freeze–pump–thaw cycles. The pressure did not increase upon addition of ethanol, which should have converted any magnesium hydrides to H₂; more than 0.05 H per magnesium would have been detected. That the elements of MgH₂ precipitated from our preparations but not those in the earlier work may be related to the KH source; we used commercial KH (as did the earlier work), although we obtained similar results with "active"³⁹ KH.⁴⁰

Some reactions of R₂Mg with less than 1 equiv of KH or with stirring with KH for periods of time short enough that much less than 1 equiv of KH dissolved did exhibit weak ¹H NMR absorptions that probably are due to hydride-containing species. When a Hex₂Mg solution was stirred with excess KH, for example, some spectra recorded at intermediate times showed a weak absorption (H:Hex <0.05) at δ 3.5; the CH₂Mg absorption was broad and with increasing stirring times shifted progressively upfield from its initial position of δ 0.18. Addition of TMEDA to such solutions converted species other than Hex₃MgK to Hex₂Mg(TMEDA): ¹H NMR spectra recorded after adding TMEDA to Hex₂-Mg–KH preparations (1) with short stirring times show principally absorptions identical with those of Hex2Mg-(TMEDA), (2) with stirring times sufficiently long that no further change was occurring show only a single but different set of absorptions (CH₂Mg at δ –0.46), and (3) with intermediate stirring times show both sets of absorptions. When an *s*-Bu₂Mg solution was stirred with 0.5 equiv of KH, ¹H NMR spectra showed only a single set of s-Bu absorptions, intermediate in position between those of s-Bu₂Mg and of s-Bu₃MgK, and also a sharp but weak (H:s-Bu ca. 0.1) absorption at δ 3.98. Spectra of preparations in which somewhat more KH had reacted (evidenced by absorptions nearer to those of *s*-Bu₃MgK) had weak, very broad absorptions in the δ 3.5–4.2 region.

Reaction rates depended on the R₂Mg compound and KH source. With the same KH source, reactions with *s*-Bu₂Mg were much faster than with Hex₂Mg or Np₂-Mg. With Hex₂Mg, 9 days were required with one commercial KH sample to achieve the composition achieved in 1 day with another commercial sample. Preparations using freshly prepared, "active"³⁹ KH were much more rapid—the maximum spectral changes were achieved in 10 min. Solutions prepared with the active KH did not show greater absorptions at δ 3–4 (that might indicate formation of a R₂MgHK species) than did solutions with other KH samples.

The stability of R₃MgK solutions depended on R. Hex₃-MgK solutions showed little decomposition after several days, but Np₃MgK solutions decomposed completely (large neopentane ¹H NMR absorption) within 2 days. *s*-Bu₂Mg preparations with 1 equiv of KH decomposed significantly (*sec*-butylbenzene and butane were major

⁽³¹⁾ Solids (1:1) have been obtained from reactions of tetramethylammonium salts and Me₂Mg: Klopsch, A.; Dehnicke, K. *Chem. Ber.* **1975**, *108*, 420. Müller, J.; Schmock, F.; Klopsch, A.; Dehnicke, K. *Chem. Ber.* **1975**, *108*, 664.

⁽³²⁾ Ashby, E. C.; Arnott, R.; Srivastava, S. *Inorg. Chem.* **1975**, *14*, 2422.

⁽³³⁾ Ashby, E. C.; Goel, A. B. Inorg. Chem. 1978, 17, 322

⁽³⁴⁾ Traces of the dioxane used to precipitate MgX₂ from RMgX in the preparation of R₂Mg sometimes remained in the R₂Mg reactants and exhibited a sharp absorption at ca. δ 3.4 (absorption position somewhat dependent on the particular R) which could obscure a small peak due to hydride; the dioxane absorption, however, never had more than 5–10% of the intensity expected for one H per R₂Mg. (35) Malpass, D. B.; Eastham, J. F. J. Org. Chem. **1973**, *38*, 3718.

⁽³⁵⁾ Malpass, D. B.; Eastham, J. F. *J. Org. Chem.* **1973**, *38*, 3718.
(36) Analysis of a hydrolyzed portion of a similar reaction in diethyl ether also found total base:Mg:K to be ca. 3:1:1.

⁽³⁷⁾ In solution, R_3MgK compounds might have structure **13** (with R in place of H). The ¹H NMR spectrum (toluene- d_8) of a Np₃MgK preparation, however, was unchanged, as the temperature was lowered until broadening of *all* absorptions became significant at -80 °C. ¹³C NMR spectra of Hex₃MgK solutions to which TMEDA was added had only single sets of hexyl absorptions.

⁽³⁸⁾ 13 C NMR spectra of s-Bu₂Mg reactions also show only a single set of absorptions.

⁽³⁹⁾ Klusener, P. A. A.; Brandsma, L.; Verkruijsse, H. D.; Schleyer, P. v. R.; Friedl, T.; Pi, R. *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 465.

⁽⁴⁰⁾ The differences between our results and those reported previously are not due to the concentration level. The R_2Mg concentration in our experiments did not exceed that in previous work (0.20 M) and generally was lower.

products) in 1 day, but preparations with <1 equiv of KH were stable for days.

Conclusions

Exploratory studies of reactions of R₂Mg compounds with KPPh₂, KSTol, KOAc, LiNR'₂ compounds, and R'₄-NX compounds suggest that 1:1 organomagnesates form. Reactions with KH instead form principally R₃-MgK. The most comprehensive results were obtained with alkali-metal alkoxides. R₂Mg and KOR' compounds in benzene form well-defined 1:1 species. Some observations indicate that the same species form with NaOR' (though not with LiOR') and when the solvent is diethyl ether. NMR spectra of preparations that result in stereoisomers are consistent with structure 1.41,42 Magnesium in 1 is four-coordinate; although higher coordination numbers are well-known, 4 is the most common for organomagnesium compounds (at least in solids), particularly when bulky groups are involved.⁴³ The somewhat different absorption positions in NMR spectra of solutions of equivalent potassium and sodium species indicate some influence of the cations on dianion 1. The differences may result from interactions other than specific bonding; absorption positions remain different in the presence of TMEDA, which is indicated by an NMR study (Figure 1) of a potassium system to coordinate with the potassium.

Studies of solutions with KOR':R₂Mg ratios less than 1 detected several species that do not equilibrate rapidly relative to the NMR time scale. We had hoped that effects of long-range coupling in NMR spectra of MA- R_2Mg solutions in which the coordinating atom of $A^$ was NMR active (e.g. 19F, 31P, etc.) might provide additional structural information. Such efforts were unsuccessful, however, as were efforts to obtain crystals suitable for X-ray diffraction studies.

Reactions of RLi and KOR' can synthesize RK (eq 3).44

$$RLi + KOR' \rightarrow RK + LiOR'$$
 (3)

$$R_2Mg + KOR' \rightarrow RK + RMgOR'$$
(4)

This work indicates that similar reactions of R₂Mg (e.g., eq 4) are not generally significant. The instability of some R₂Mg-KOR' preparations, however, may be due to formation of some RK (RK is known⁴⁵ to metalate benzene). Bulky R and R' groups seem to decrease the stability of the R₂Mg-KOR' preparations. Bulky groups may make structure 1 less stable, permitting formation of other species to become significant. The instability

of solutions having more than one KOR' per R₂Mg also was noted. Excess KOR' perhaps leads to replacement of an R of 1 by an OR' group, releasing RK.

Experimental Section

Procedures involving organometallic compounds were performed under an atmosphere of purified nitrogen using Schlenk techniques, a glovebox, and a vacuum line. NMR spectra were recorded at ca. 23 °C; the solvent was benzene d_6 , except where otherwise noted. ¹H NMR absorption positions for benzene- d_6 solutions are relative to internal C₆D₅H (δ 7.15) and for diethyl ether-d₁₀ solutions to internal CD₃CDHOCD₂-CD₃ (δ 3.34); ¹³C NMR absorption positions for benzene- d_6 solutions are relative to internal C_6D_6 (δ 128.0). Solutions for NMR analysis were prepared in a glovebox and transferred into NMR tubes to which an extension of routine glass tubing had been added to facilitate sealing with a flame. An NMR tube was capped temporarily with a septum, removed from the glovebox, immersed in liquid nitrogen, and sealed at the extension. Dialkylmagnesium compounds were prepared from Grignard reagents using the dioxane precipitation method.⁴⁶

Preparation of NMR Solutions. The general procedure is as follows. In a glovebox, the salt and dialkylmagnesium compound were weighed into a vial equipped with a magnetic stirring bar. The solvent (typically 0.5 mL) was added, and the mixture was stirred. If a homogeneous solution was present after the preparation had been stirred for a few minutes, it was transferred into an NMR tube. A preparation which remained heterogeneous was sometimes stirred for a longer time (2-24 h) before transfer. When solid was evident, the suspension was filtered into the NMR tube through a Kimwipe plug in a pipet. Preparations resulting in two liquid phases were done on a larger scale (e.g., 1–2 mL of solvent) so that enough of the lower phase would be present to permit taking routine NMR spectra. Preparations with KH often were done on a larger scale (1–5 mL) and with a considerable excess of KH (up to 10 equiv).

To prepare the solutions used to provide the data shown in Figure 1, a benzene- d_6 solution of Np₂Mg (2.5 mL, 0.45 mmol, 0.18 M) was added dropwise to a stirred mixture of KOMe (124 mg, 1.77 mmol) and benzene- d_6 (2.5 mL). Stirring was continued for 5 h, and then the preparation was filtered through a fritted funnel. Appropriate volumes (syringe) of the resulting solution and of a benzene- d_6 solution of TMEDA (0.090 M) were combined. The solutions containing Hex₂Mg, KOMe, and KONp were prepared by combining equal volumes of benzened₆ solutions (each 0.27 M) of Hex₂Mg-KOMe (1:1) and of Hex₂-Mg-KONp (1:1). The solutions of s-Bu₂Mg, KOMe, or NaOMe and TMEDA were prepared by adding TMEDA to already prepared s-Bu₂Mg-MOMe solutions. Solutions containing less than 1 equiv of the components of KOMe/equiv of R₂Mg compound were prepared by (1) lengthy stirring of <1 equiv of KOMe with a solution of R₂Mg, (2) briefer stirring of 1 equiv of KOMe with a solution of R₂Mg, or (3) adding R₂Mg (either neat or a solution) to a 1:1 R₂Mg-KOR' solution.

Acknowledgment. We thank the National Science Foundation for supporting this work, John Chubb for critical control experiments, and anonymous reviewers for helpful suggestions.

Supporting Information Available: Text giving experimental information, including preparations and NMR spectra of the R₂Mg compounds and of some of the salts, NMR spectra of many R₂Mg-salt solutions, and analyses of R₂Mg-alkoxide and R₃MgK solutions. This material is available free of charge via the Internet at http://pubs.acs.org.

OM030544K

⁽⁴¹⁾ Neither ¹H nor ¹³C NMR spectra of MOR'-R₂Mg species provide any indication of permanent cis/trans relationships of R' groups. (Inversion at tricoordinate oxygen generally is rapid, although the barrier to inversion is higher in strained cyclic systems. Lambert, J. B. Top. Stereochem. 1971, 6, 19. Schlosser, M. In Organometallics in Synthesis, A Manual; Schlosser, M., Ed.; Wiley: Chichester, U.K., 2002; Chapter 1, Section 2.3.3.)

⁽⁴²⁾ A relevant crystal structure is of a species formed from Et_2Zn and KO-t-Bu that has structure 1 (Zn instead of Mg); one K-O distance (2.626(5) Å) is quite short, but of course this relationship is not likely to persist in solution. Fabicon, R. M.; Parvez, M.; Richey, Jr., H. G. J. *Am. Chem. Soc.* **1991**, *113*, 1412. (43) Markies, P. R.; Akkerman, O. S.; Bickelhaupt, F.; Smeets, W.

J. J.; Spek, A. L. *Adv. Organomet. Chem.* **1991**, *32*, 147. Holloway, C. E.; Melnik, M. *J. Organomet. Chem.* **1994**, *465*, 1. Bicklelhaupt, F. In *Grignard Reagents: New Developments*; Richey, H. G., Jr., Ed.; Wiley: Chichester, U.K., 2000; Chapter 9.

⁽⁴⁴⁾ Lochmann, L. *Eur. J. Inorg. Chem.* **2000**, 1115.
(45) Schlosser, M. *Angew. Chem., Int. Ed. Engl.* **1964**, *3*, 362.

⁽⁴⁶⁾ Wakefield, B. J. Organomagnesium Methods in Organic Synthesis; Academic: London, 1995; Section 3.4.1.