Bimetallocyclophanes Formed by the *^π*-*^π* **Stacking Interaction Approach and Fluorescent Chemosensing Behavior**

Feng-Bo Xu,* Qing-Shan Li, Xian-Shun Zeng, Xue-Bing Leng, and Zheng-Zhi Zhang*

State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Received June 19, 2003

Summary: A new high-yielding synthetic approach for the preparation of bimetallic cyclophane has been achieved through the ^π-*^π stacking interaction approach from the flexible ligand 1 and group 11 metal M*+*. The Cu complex 2a can act as a fluorescent chemosensor for benzenediacetonitrile.*

Metallocyclophane is an important kind of compound in supramolecular chemistry due to its particular molecular recognition properties and potential applications in chemosensing and molecular electronics.¹ In the preparation of metallocyclophanes three general and high-yielding synthetic approaches have been presented in the literature, 2 which include (1) the directionalbonding approach, 3 (2) the symmetry-interaction approach, and (3) the weak-link approach.⁴ Herein we offer a new high-yielding synthetic strategy to prepare bimetallocyclophane from a new flexible phosphine ligand with an anthracene fluorophore and group 11 metal M(I) ion starting materials by a $\pi-\pi$ stacking interaction. In contrast to the weak link approach, the new approach does not need two coordination positions to a metal center in the flexible ligand. These new compounds possess other weakly coordinated ligands and vacant coordination sites at the metal centers, which are available for further chemistry and molecule-responsible fluorescent chemosensing research.

The new flexible phosphine ligand **1** was prepared by a Mannich reaction from Ph2PH, (CH2O)*n*, and 9,10-bis- (*n*-propaminomethyl)anthracene (Scheme 1). Spectroscopic data for solution of **1** are completely consistent with the proposed structure.

The bimetallocyclophanes **²** were prepared in >90% yield by the reaction of ligand 1 with M(CH₃CN)₄(ClO₄)

Figure 1. ORTEP view of complex **2a**.

 $(M = Cu, Ag)$ or Au $(SMe₂)Cl$ in a 1:1 stoichometric ratio. These reactions were driven by the $\pi-\pi$ stacking interaction between the anthracene units in the two ligands **1**. The complexes **2a**, ⁵ **2b**, ⁶ and **2c**⁷ have been fully characterized in solution, and the crystal structures of $2a^5$ and $2c^7$ have been determined by X-ray diffraction studies.

Figure 1 shows the molecular structure of **2a**. The coordination environment around the Cu atom is trigonal planar with two P atoms from the two ligands **1** and one O atom from the anion ClO_4^- . The distance of the two anthracene rings in **2a** is 3.5626 Å, which exhibits

^{(1) (}a) Jones, C. J. *Chem. Soc, Rev.* **1998**, 27, 289–299. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. *Chem. Rev.* **2000**, 100, 853–908. (c) Xu, F. B.; 1, Q. S.; Zeng, X. S.; Leng, X. B.; Zhang, Z. Z. Organometallics 20 *²²*, 633-640.

^{(2) (}a) Review: Holliday, B. J.; Mirkin, C. A. *Angew. Chem., Int. Ed.* **2001**, *40*, 2022-2043. (b) Eisenberg, A. H.; Ovchinnikov, M. V.;
Mirkin, C. A. J. Am. Chem. Soc. **2003**, 125, 2836-2837. (c) Holliday, Mirkin, C. A. *J. Am. Chem. Soc*. **²⁰⁰³**, *¹²⁵*, 2836-2837. (c) Holliday, B. J.; Jeon, Y. M.; Mirkin, C. A.; Stern, C. L.; Incarvito, C. D.; Zakharov, L. N.; Sommer, R. D.; Rheingold, A. L. *Organometallics* **2002**, *21*, ⁵⁷¹³-5725.

⁽³⁾ Hogarth, G.; Norman, T. *J. Chem. Soc., Dalton Trans.* **1996**, 1077–1085.
(4) (a) Hartshorn, C. M.; Steel, P. J. *Inorg. Chem.* **1996**, 35, 6902–

^{(4) (}a) Hartshorn, C. M.; Steel, P. J. *Inorg. Chem*. **¹⁹⁹⁶**, *³⁵*, 6902- 6903. (b) Hartshorn, C. M.; Steel, P. J. *J. Chem. Soc., Dalton Trans*. **1998**, 3927–3933. We have noted that Steel's work is not included in
Mirkin's review.^{2a} In fact, however, it should also belong to the weaklink synthetic approach.

⁽⁵⁾ **2a**: mp 152-154 °C; 1H NMR (CDCl3) *^δ* 0.79-0.83 (t, 12H, *n*Pr), 3.79 (s, 8H, 4N-CH₂-P), 4.75 (s, 8H, 4An-CH₂-N), 6.61-6.65
(m, 16H, 8C₆H₅), 7.04-7.09 (m, 16H, 8C₆H₅), 7.23-7.33 (m, 8H, 8C₆H₅), (m, 16H, 8C₆H₅), 7.04–7.09 (m, 16H, 8C₆H₅), 7.23–7.33 (m, 8H, 8C₆H₅), 7.77–7.81 (m, 8H, 2An), 8.71–8.74 (m, 8H, 2An) ppm; ³¹P NMR
(CDCl₃) δ -10.443 ppm. Anal. Calcd for C₉₆H₁₀₀Cl₂N₄O₈P₄Cu₂ data: $0.20 \times 0.20 \times 0.30$ mm, monoclinic, space group *P*₂₁/*n*, *a* = 11.2322(8) Å, *b* = 21.6175(14) Å, *c* = 19.4727(13) Å, β = 92.6520(10)°, 11.2322(8) Å, $b = 21.6175(14)$ Å, $c = 19.4727(13)$ Å, $\beta = 92.6520(10)^\circ$,
 $V = 4723.1(6)$ Å, $\rho_{\text{cald}} = 1.257$ Mg m⁻³, $2\theta_{\text{max}} = 50.06^\circ$, $T = 298$ K,
 $\mu = 0.631$ mm⁻¹, 19512 measured reflections, of which 8346 r

are independent, 541 parameters, R1 = 0.0615, wR2 = 0.2131 (all data, refined against $|F^2|$), largest residual peak 0.845 e Å⁻³.

(6) **2b**: mp 124–125 °C; ³¹P NMR (CDCl₃) δ –6.05 ppm. Anal. Calcd for C₉₆H₁₀₀ H, 5.28; N, 3.24.

⁽⁷⁾ **2c**: mp 134–136 °C; ³¹P NMR (CDCl₃) *δ* 23.94 ppm. Anal. Calcd for C₉₆H₁₀₀Cl₂N₄P₄Au₂: C, 56.91; H, 5.07; N, 2.71. Found: C, 56.34; H, 4.87; N, 2.52. Crystal data: 0.25 × 0.20 × 0.20 mm, triclinic, spa group P1, $a = 13.5464(11)$ Å, $b = 14.1715(11)$ Å, $c = 15.7734(13)$ Å, $\alpha = 78.810(2)^\circ$, $\beta = 67.0000(10)^\circ$, $\gamma = 62.225(2)^\circ$, $V = 2465.9(3)$ Å, $\rho_{\text{cal}} = 1.474$ Mg m⁻³, $2\theta_{\text{max}} = 50.06^\circ$, $T = 298$ K, $\mu = 3.326$ 550 parameters, $R1 = 0.0371$, $wR2 = 0.0923$ (all data, refined against $|F^2|$), largest residual peak 0.960 e Å⁻³.

Scheme 1. Preparation of Complexes 2

 $M = Cu, X' = ClO₄, 2a; M = Ag, X' = ClO₄, 2b; M = Au, X' = Cl, 2c;$ Ph and ⁿPr was omitted for clarity

Figure 2. Plot of the recorded relation of fluorescence intensities at 435 nm against the ratio of **A** to **2a** ([**2a**] $=$ 1×10^{-5} M) in dichloromethane.

^a *^π*-*^π* stacking interaction. The Cu and N separation is in the range of 3.861-4.129 Å, which indicates that there is no interaction between them. The Cu…Cu separation is 11.430 Å. The whole molecule of **2a** possesses a dumbbell shape. The complex **2c** has a similar structure with **2a** (see the Supporting Information), but each gold center possesses a linear twocoordinate geometry with two P atoms. The distance of the Au atom from the anion Cl^- is 2.953 Å, which can be considered as a very weak interaction,⁸ and the Au... Au separation is 11.726 Å. The formation of bimetallocyclophane by the $\pi-\pi$ stacking interaction approach, to a great extent, depends on the rational topological design of the flexible ligand.

When a solution of **2a** in dichloromethane was titrated with 1,4-benzenediacetonitrile (**A**), the fluorescence intensity gave rise to a noticeable change. The plot of fluorescence intensity versus equivalents of **A** gives a sigmoid curve (Figure 2), which indicates that two probable chemical processes take place sequentially (Scheme 2). At the beginning the 1:1 copolymer **3** was formed by the substitution of two cyano groups in **A** for two anions ClO4 - between the two macrocycles **2a**, as shown in Scheme 2. The further reaction of the complex **3** with **A** afforded the 1:2 copolymer **4** through **A** sequestering into the macrocycles in **3**. While there is no change of the fluorescence intensity in the conversion of **2a** to **3**, due to the untouched structure of the part of bimetallocyclophane in **3**, the conversion of **3** into **4** is accompanied by an increase in the fluorescence intensity due to the structural change of the macrocycle by the formation of the tetrahedrally coordinated polymer, which causes a decrease in the though-space interaction between the two fluorophores.9 When the **2a**/**A** ratio is around 1:2, the fluorescence enhancement reaches the maximum. In the emission spectra of **2a** before and during the titration with **A** no excimer emissions are observed. Spectroscopic data and elemental analysis of **4** completely support the proposed structure.10 In the IR spectrum of **4** two CN stretching vibrations (2362 and 2330 cm^{-1}) are observed, which are caused by coordination of **4** inside and outside the macrocycle and are at higher wavenumbers than that of A (2246 cm⁻¹), owing to the donation of antibonding electrons of the CN group to the copper atom.¹¹ In the $31P$ NMR spectrum the 1.7 ppm upfield shifts of **4** with respect to the resonance of **2a** may be attributed to the coordination of **A** molecules to the Cu atoms, which increase the electron density at the P atoms. Owing to the decrease of through-space interaction between the two anthracene rings, the proton resonances of anthracene rings in **4** are 0.167 and 0.275 ppm upfield shifts from those in **2a**. Many attempts failed to obtain crystals of **4** suitable for an X-ray diffraction study.

In contrast, when the solution of **2a** in dichloromethane was titrated with acetonitrile or 1,3-dicyanopropane, no noticeable change in the fluorescene signal of **2a** was shown and no new complex was formed, due to the basicity of acetonitrile or 1,3-dicyanopropane

(11) Nakamoto, K. *Infrared and Roman Spectra of Inorganic and Coordination Compounds*; Wiley: New York, 1978; p 266.

⁽⁸⁾ Schmidbaur, H.; Pollok, T.; Herr, R.; Wagner, F. E.; Bau, R.; Riede, J.; Muller, G. *Organometallics* **¹⁹⁸⁶**, *⁵*, 566-574.

^{(9) (}a) Fabbrizzi, L.; Licchelli, M.; Pallavicini, P.; Sacchi, D.; Taglietti, A.; *Analyst* **¹⁹⁹⁶**, *¹²¹*, 1763-1768. (b) Fabbrizzi, L.; Faravelli, I.; Francese, G.; Licchelli, M.; Perotti, A.; Taglietti, A. *Chem. Commun*. **1998**, 971–972.

(10) Complex 4: mp > 140 °C dec, FT-IR (KBr disk) v_{CN} 2362 and

⁽¹⁰⁾ Complex 4: mp >140 °C dec, FT-IR (KBr disk) v_{CN} 2362 and
2330 cm⁻¹; ¹H NMR (CDCl₃) δ 0.76–0.81 (t, 12H, 4CH₃, ^{*n*}Pr), 1.54–
1.61 (m, 8H, 4CH₂, ^{*n*Pr), 2.60–2.65 (m, 8H, 4CH₂, *n*Pr), 3.80 (s, 8H,} $4N-CH_2-P$), 3.92 (s, 8H, $4NC-CH_2$), 4.72 (s, 8H, $4An-CH_2-N$), $6.60-6.62$ (m, $16H$, $8C_6H_5$), $7.02-7.07$ (m, $20H$, $8C_6H_5$ and $2C_6H_4$), $7.19-$ 7.26 (m, 12H, $8C_6H_5$ and $2C_6H_4$), 7.50-7.53 (m, 8H, 2An), 8.54-8.58 7.26 (m, 12H, $8C_6H_5$ and $2C_6H_4$), 7.50–7.53 (m, 8H, 2An), 8.54–8.58 (m, 8H, 2An) ppm; ³¹P NMR (CDCl₃) δ –12.143 (s) ppm. Anal. Calcd for C₁₀5H₁₀Cl₂Cu₂N₄O₈P₄: C, 67.24; H, 5.64; N, 5.41. Found: C

being weaker than that of **A**. ¹² The titration experiment of **2a** with benzeneacetonitrile also does not give a sigmoid curve of fluorescence change.

In conclusion, we have demonstrated that a new highyielding synthetic approach can be used for the preparation of bimetallocyclophanes. The solution of **2a** exhibits chemosensing behavior for 1,4-benzenediacetonitrile. The expansion of the types of transition metals that can be utilized in the $\pi-\pi$ stacking interaction approach for the preparation of bimetallocyclophane is underway.

(12) Larson, R. C.; Iwamoto, R. T. *J. Am. Chem. Soc*. **¹⁹⁶⁰**, *⁸²*, 3526- 3527.

Acknowledgment. This work was supported by the National Natural Science Foundation of China (Grant No. 20342006).

Supporting Information Available: Tables of atomic coordinates, thermal parameters, and bond distances and angles for compounds **2a** and **2c** and figures giving NMR spectra of complexes **2a** and **4** and the fluorescence emission spectra of **2a** in order of increasing **A** in dichloromethane. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0340037