Downloaded by NAT LIB UKRAINE on July 3, 2009 Published on January 17, 2004 on http://pubs.acs.org | doi: 10.1021/om0304558

Hydride Participation in Electron Transfer Processes between Metal Carbonyl Anions and Cations

Marcus J. Harrigan and Jim D. Atwood*

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000

Received June 12, 2003

Kinetic studies of selected metal carbonyl anions establish their reactivity as nucleophiles or for electron transfer. The iron species, $[HFe(CO)_3L]^-$ (L = CO, PPh₃), behave as metalcentered nucleophiles when reacted with $[M(CO)_6]^+$ (M = Mn, Re). Determination of the deuterium kinetic isotope ratio from kinetic studies of $[HFe(CO)_4]^-$ and $[DFe(CO)_4]^-$, k_H/k_D = 2.8, indicates primary isotope effects for reaction with $Mn(CO)_6^+$. Initial products from transfer of a CO and back transfer of two electrons are observed in some cases. For Re- $(CO)_6^+$ exclusive formation of HRe(CO)₅ as a rhenium product strongly indicates a hydrogen transfer mechanism.

Introduction

Reactions between metal carbonyl anions and cations, which effect CO transfer, have been reported by Zhen and Atwood.¹ The transfer is a synchronous two-electron transfer and CO transfer in the opposite direction. For ionic species containing only carbonyls, phosphines, and phosphites, such a transfer process was observed when the reactant anion was a stronger nucleophile than the product anion.¹

A potentially similar reaction was reported by Wang et al.²

$$[Mn(CO)_6]^+ + [HFe(CO)_4]^- \rightarrow HMn(CO)_5 + Fe(CO)_5$$
(1)

The complexes $[\text{Mn}(\text{CO})_6]^+$ and $[\text{HFe}(\text{CO})_4]^-$ reacted in acetonitrile to form HMn(CO)₅, Fe(CO)₅ (major products), and $Mn_2(CO)_{10}$ (minor product). The anion, [Mn- $(CO)_5$] –, was observed early in the reaction. This reaction produced clean kinetics and followed the rate law

$$rate = k [HFe(CO)_4^{-}][Mn(CO)_6^{+}]$$
(2)

Hydride attack on an electrophilic carbonyl carbon by [PPN][HFe(CO)₄] is unlikely. Such hydridic addition would yield the formyl, $Mn(CO)_5(CHO)$, as the initial manganese product. The initial formation of [Mn(CO)₅]⁻ disfavors hydridic attack. Additionally, Darensbourg et al.³ have shown $[HFe(CO)_4]^-$ to behave as a metalcentered nucleophile.

This article reports reactions of potential hydride donors, $HFe(CO)_3L^-$, with $M(CO)_6^+$ (L = CO, PPh_3 ; M = Mn, Re) to further define the mechanism for reactions that involve CO and H⁻ transfer.

Results

The nucleophilicity of HFe(CO)₄⁻ was experimentally determined through reaction with CH₃I.

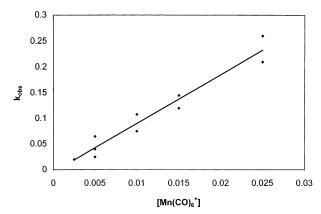
$$[HFe]^{-} + CH_{3}I \rightarrow CH_{4} + Fe + I^{-}$$
(3)
(Fe = Fe(CO)₄, Fe(CO)₃PPh₃)

Reaction of [PPN][HFe(CO)₄] and [PPN][DFe(CO)₄] with CH₃I is first order in both the anion and CH₃I and proceeds at 25 °C in CH₃CN with rate constants of (2.4 \pm 0.2) \times 10⁻² and (2.2 \pm 0.2) \times 10⁻² M⁻¹ s⁻¹, respectively $(k_{\rm H}/k_{\rm D} = 1.1 \pm 0.1)$. Whitmire performed the same reaction⁴ with the hydride, reporting an average secondorder rate constant of (1.7 \pm 0.1) \times 10^{-2} $M^{-1}\,s^{-1}$ at 25 °C. Our $k_{\rm H}/k_{\rm D}$ value is similar to that reported by Darensbourg for reactions of [HW(CO)₅]⁻ and [DW(CO)₅]⁻ with 1-bromobutane, giving a $k_{\rm H}/k_{\rm D}$ of 1.03.⁵

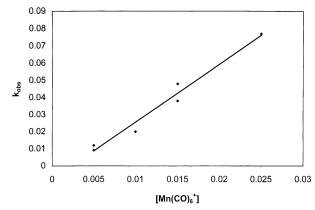
Kinetic analyses to determine the nucleophilicities of $[HFe(CO)_3PPh_3]^-$, $[HW(CO)_5]^-$, and $[HFe_3(CO)_{11}]^-$ were also performed. Previous reports⁶ of nucleophilicity for metal-carbonyl anions can be expanded to give Table 1.

Kinetic data were obtained for reactions of both [PPN]- $[HFe(CO)_4]$ and $[PPN][DFe(CO)_4]$ with $[Mn(CO)_6][BF_4]$. Under pseudo-first-order conditions, k_{obs} values were obtained and subsequently plotted versus the concentrations of the excess species, $[Mn(CO)_6][BF_4]$. Average second-order rate constants for the hydride and deuteride reactions were 9 \pm 1 and 3.3 \pm 0.3 M⁻¹s⁻¹,

⁽¹⁾ Zhen, Y.; Atwood, J. D. J. Am. Chem. Soc. 1989, 111, 1506. (b) (1) Zhen, Y., Atwood, J. D. J. Am. Chem. Soc. 1989, 111, 1300. 000
 Zhen, Y.; Feighery, W. G.; Lai, C. K.; Atwood, J. D. J. Am. Chem. Soc. 1989, 111, 7832. (c) Zhen, Y.; Atwood, J. D. Organometallics 1991, 10, 2778. (d) Zhen, Y.; Feighery, W. G.; Atwood, J. D. J. Am. Chem. Soc. 1991, 113, 3616. (e) Zhen, Y.; Atwood, J. D. J. Coord. Chem. 1992, 25, 5000 229


⁽²⁾ Wang, P. W.; Striejewski, W. S.; Atwood, J. A. *J. Coord. Chem.* **1996**, *37*, 141.

⁽³⁾ Darensbourg, M. Y.; Ash, C. E. Adv. Organomet. Chem. **1987**, 27, 1. (b) Kao, S. C.; Darensbourg, M. Y. Organometallics **1984**, 3, 646. (c) Ash, C. E.; Delord, T.; Simmons, D.; Darensbourg, M. Y. Organometallics 1986, 5, 17.


⁽⁴⁾ Whitmire, K. H.; Lee, T. R.; Lewis, E. S. Organometallics 1986, 5. 987.

⁽⁵⁾ Kao, S. C.; Spillett, C. T.; Ash, C.; Lusk, R.; Park, Y. K.;
Darensbourg, M. Y. *Organometallics* 1985, *4*, 83.
(6) Lai, C. K.; Feighery, W. G.; Zhen, Y.; Atwood, J. D. *Inorg. Chem.*

^{1989, 28, 3929,} and references therein.

Figure 1. Second-order plot for the reaction of [Mn(CO)₆]-[BF₄] with [PPN][HFe(CO)₄].

Figure 2. Second-order plot for the reaction of [Mn(CO)₆]-[BF₄] with [PPN][DFe(CO)₄].

respectively (Figures 1 and 2), indicating a significant deuterium isotope effect.

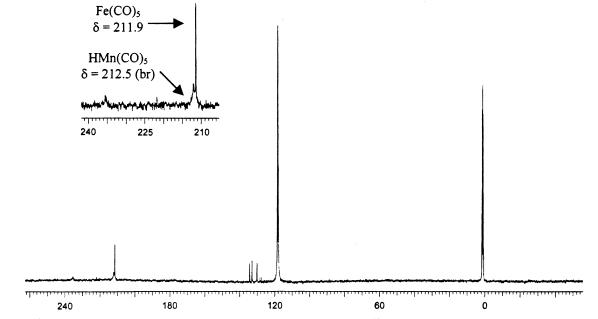
To determine whether the CO gain by the iron reagent is due to intermolecular CO transfer from the cation or from another iron complex, a ¹³CO labeling study was performed. Figures 3 and 4 show the product spectra from reactions of ¹³CO-enriched [Mn(CO)₆][BF₄]

 Table 1. Order of Nucleophilicity from Reaction

 with MeI for Selected Metal–Carbonyl Anions^a

Metal carbonyl anion	$k_2 (M^{-1} s^{-1})$	nucleophilicity (ln <i>k₂</i>)
[CpFe(CO) ₂] ⁻	>400	
$[Re(CO)_5]^-$	74 ± 7	4.3
[Mn(CO) ₄ PPh ₃] ⁻	7.8 ± 0.4	2.0
[HFe(CO) ₃ PPh ₃] ⁻	$\textbf{3.6} \pm \textbf{0.2}$	1.3
[Mn(CO) ₄ P(OPh) ₃] ⁻	1.9 ± 0.1	0.64
[Mn(CO) ₅] ⁻	1.5 ± 0.2	0.40
[HW(CO) ₅] ⁻	1.1 ± 0.1	0.09
[CpW(CO) ₃] ⁻	0.51 ± 0.009	-0.67
[CpCr(CO) ₃] ⁻	0.058 ± 0.005	-2.8
[HFe(CO) ₄] ⁻	$\textbf{0.024} \pm \textbf{0.002}$	-3.7
[DFe(CO) ₄] ⁻	$\textbf{0.022} \pm \textbf{0.002}$	-3.8
[Fe(CO) ₃ (NO)] ⁻	0.013 ± 0.0013^7	-4.3
$[Co(CO)_4]^-$	0.009 ± 0.001	-4.7
[HFe ₃ (CO) ₁₁] ⁻	no reaction	

^{*a*} New data are bolded.


and (unenriched) $[Mn(CO)_6][BF_4]$ with $[PPN][HFe-(CO)_4]$. With all acquisition parameters equal, the ¹³CO-enriched $[Mn(CO)_6][BF_4]$ reaction shows marked resonances for HMn(CO)₅ (δ 212.5, broad) and Fe(CO)₅ (δ 211.9) which were not observed in the unenriched control reaction.

The stronger nucleophile, $[Et_4N][HFe(CO)_3PPh_3]$, shows CO transfer products with both the manganese and rhenium ($[Re(CO)_6][BF_4]$) cations.

$$[Mn(CO)_{6}]^{+} + [HFe(CO)_{3}PPh_{3}]^{-} \rightarrow HMn(CO)_{5} + Fe(CO)_{4}PPh_{3}$$
(4)

 $[\operatorname{Re}(\operatorname{CO})_6]^+ + [\operatorname{HFe}(\operatorname{CO})_3 \operatorname{PPh}_3]^- \rightarrow \\ \operatorname{HRe}(\operatorname{CO})_5 + \operatorname{Fe}(\operatorname{CO})_4 \operatorname{PPh}_3 (5)$

A reaction of 0.005 M [Mn(CO)₆][BF₄] with [Et₄N]-[HFe(CO)₃PPh₃] (reaction 4) gave Fe(CO)₄PPh₃ (2050, 1974, 1939 cm⁻¹), HMn(CO)₅ (2012 cm⁻¹), and [Mn-(CO)₅]⁻ (1901, 1864 cm⁻¹) as major products. Over the course of 30 min, [Mn(CO)₅]⁻ and unreacted [Mn(CO)₆]-[BF₄] decreased by ~50% (from t = 3 min), as Fe-

Figure 3. ¹³C NMR spectrum for the product mixture from reaction of ¹³CO-enriched [Mn(CO)₆][BF₄] with [PPN][HFe-(CO)₄].

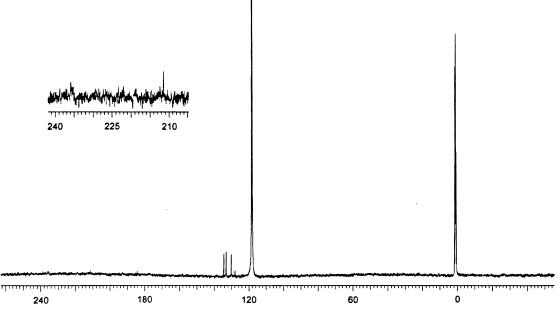
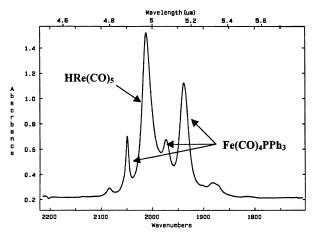



Figure 4. ¹³C NMR spectrum for the reaction of unenriched [Mn(CO)₆][BF₄] with [PPN][HFe(CO)₄].

Figure 5. Infrared spectrum of the reaction mixture of [Re(CO)₆][BF₄] with [Et₄N][HFe(CO)₃PPh₃] after 5 min.

 $(CO)_4PPh_3$ and $HMn(CO)_5$ increased by 15 and 35%, respectively. This suggests $[Mn(CO)_5]^-$ as the initial manganese product, which is then protonated to form $HMn(CO)_5$. A ¹H NMR spectrum of the reaction performed in CD₃CN showed a singlet at -7.9 ppm due to $HMn(CO)_5$.

The reaction of $[\text{Re}(\text{CO})_6][\text{BF}_4]$ with $[\text{Et}_4\text{N}][\text{HFe}(\text{CO})_3-\text{PPh}_3]$ (reaction 5) showed clean conversion to $\text{HRe}(\text{CO})_5$ (2012 cm⁻¹) and $\text{Fe}(\text{CO})_4\text{PPh}_3$ (2050, 1973, 1939 cm⁻¹) as products (Figure 5). After 5 min, no $[\text{Et}_4\text{N}][\text{HFe}(\text{CO})_3-\text{PPh}_3]$ remained, with only a trace of the starting cation, $[\text{Re}(\text{CO})_6][\text{BF}_4]$ (2085 cm⁻¹), present. A hexane extract of the product solution also showed both $\text{Fe}(\text{CO})_4\text{PPh}_3$ (2051, 1979, 1946 cm⁻¹) and $\text{HRe}(\text{CO})_5$ (2016 cm⁻¹). Analysis by ¹H NMR spectroscopy showed only an upfield singlet at δ –5.9, indicative of $\text{HRe}(\text{CO})_5$.

Like reactions with $[HFe(CO)_4]^-$, $[HFe(CO)_3PPh_3]^$ does not yield an observable formyl product. Because reaction 4 initially forms some $[Mn(CO)_5]^-$, nucleophilic attack of the iron center on a cationic carbonyl with a CO transfer and back transfer of two electrons is the likely mechanism. For reaction 5 the products provide no mechanistic information. However, the absence of $\text{Re}(\text{CO})_5^-$ does not preclude a nucleophilic attack on CO; $\text{Re}(\text{CO})_5^-$ is known to react much more rapidly than $\text{Mn}(\text{CO})_5^{-.1.6}$ A radical mechanism is unlikely given the clean product formation and absence of $\text{Re}_2(\text{CO})_{10}$.

Experiments using ¹³CO-enriched $[Mn(CO)_6][BF_4]$ and $[Re(CO)_6][BF_4]$ showed ¹³C NMR signal enhancement versus control experiments for the common product, Fe-(CO)₄PPh₃. Reactions 4 and 5 proceeded too rapidly to obtain kinetic data using our infrared stopped-flow system.

Discussion

Our reactions of hydrido metal carbonyl anions with CH₃I indicate nucleophilicities consistent with trends regarding phosphine substitution. The second-order rate constant for the CH₃I reaction with [Et₄N][HFe(CO)₃-PPh₃] is 150 times that for [PPN][HFe(CO)₄]. In this case, the substitution of PPh₃ for CO has a larger effect than for Mn(CO)₄L⁻. The studies on Mn(CO)₄L⁻ showed the intermingling of steric effects (decreasing nucleophility) and electronic effects (increasing nucleophilicity). For HFe(CO)₃PPh₃⁻ electronic effects must be more important.

The reactions of [PPN][HFe(CO)₄] and [PPN][DFe-(CO)₄] with [Mn(CO)₆][BF₄] give a deuterium kinetic isotope ratio of $k_{\rm H}/k_{\rm D}$ = 2.8. This value indicates primary isotope effects⁸ such that there is a greater role for the Fe-H bond in the transition state for these reactions than those with CH₃I. The larger kinetic isotope effect and the observation that reation 5 occurs even though HFe(CO)₃(PPh₃)⁻ is considerably less nucleophilic than Re(CO)₅⁻ both indicate that the hydride is directly involved in the mechanism for reactions of HFe(CO)₃L⁻. Reaction 5 is clean, with only HRe(CO)₅ and Fe-(CO)₄PPh₃ observed. Given the very rapid reaction of Re(CO)₅⁻ with Re(CO)₆⁺ to form Re₂(CO)₁₀,¹ it is unlikely that Re(CO)₅⁻ is produced. Formation of Re(CO)₅⁻ would not be expected on the basis of the relative nucleophilicities (Table 1). It is most likely that a transition state involving a four-center interaction forms. For M = Mn the observation of $Mn(CO)_5^-$

$$\begin{array}{c} H - Fe(CO)_{3} \\ (CO)_{5} M - C \equiv O^{+} \end{array}$$

suggests that the two-electron, CO transfer occurs in the transition state. For M = Mn, L = CO the significant deuterium isotope effect requires significant H–Fe bond breaking in the transition state. For M = Re it is most likely that hydrogen transfer occurs synchronously with the CO and electron transfer.

Darensbourg suggested such a transition state for reactions of $HW(CO)_5^-$ with alkyl bromides.⁵ For reaction of $HFe(CO)_4^-$ with CH_3I the small deuterium isotope effect indicates relatively little H–Fe bond breaking in the transition state. However, an interaction with the hydride would force the *trans* PPh₃ away from the reaction site, providing a rationale for the reduced steric effects in reaction of CH_3I with $HFe(CO)_4^-$ and $HFe(CO)_3PPh_3^-$ compared to $Mn(CO)_5^-$ and $Mn(CO)_4^-$ PPh₃⁻. We have not considered radical mechanisms because of the clean product formation and the studies by Darensbourg³ and Whitmire⁴ that preclude radical mechanisms for similar reactions.

Conclusions

Reactions of $HFe(CO)_3L^-$ with $M(CO)_6^+$, L = CO, PPh₃ and M = Mn, Re, provide evidence that interaction of the hydride is important. For $Mn(CO)_6^+$ interaction of the hydride appears to diminish the steric hindrance for the synchronous CO and $2e^-$ transfer in opposite directions that produce $Mn(CO)_5^-$ as an initial product. For $Re(CO)_6^+$ direct transfer of the hydride is most likely to produce exclusively $HRe(CO)_5$ as rhenium product. Both reactions show that group transfer processes occur for reactions of these hydrido iron anions with metal carbonyl cations.

Experimental Section

A. Methods. All reactions were performed under an argon or nitrogen atmosphere. Solutions were prepared in dried, oxygen-free solvents. All reactions were performed in acetonitrile except the reaction of $[PPN][HW(CO)_5]$ with CH_3I , which was performed in THF.

B. Kinetic Analyses. Experiments were performed at 25 °C under pseudo-first-order conditions. Only for reactions of $HFe(CO)_4^-$ with $Mn(CO)_6^+$ were the reactions slow enough for kinetic analysis. Rate data were obtained from monitoring the decrease in infrared absorbances for anion species. Observed rate constants (k_{obs} (s⁻¹)) were plotted versus the concentration of excess species to obtain the reported second-order rate constants, k (M⁻¹ s⁻¹). The monitored absorbances for individual anions are [PPN][HFe(CO)_4] (1882 cm⁻¹), [PPN][DFe-(CO)_4] (1882 cm⁻¹), [Et_4N][HFe(CO)_3PPh_3] (1818 cm⁻¹), and [PPN][HW(CO)_5] (1893 cm⁻¹).

Slower reactions were monitored using a Mattson FTIR spectrometer. Two solutions were combined (defining t = 0) in the glovebox, and a single aliquot was loaded into a NaCl cell. The cell was quickly removed from the glovebox, allowing the first absorbance measurement to be taken at approxi-

mately t = 60 s. These data were analyzed using Prism Plot and Microsoft Excel software.

Reactions with larger rate constants ($k_{obs} > 10^{-2} \text{ s}^{-1}$) were analyzed using an infrared stopped-flow system. This system uses an Edinburgh CO/CO₂ laser as a monochromatic infrared source. Changes in infrared absorbance are monitored using an Infrared Associates model HCT 6-7 infrared detector in conjunction with OLIS software. Some reactions showed a minor induction period and/or mixing event, which was not considered as part of the change in absorbance used for kinetic analysis.

C. Reagents. $Mn_2({}^{13}CO)_{10}$. ^{1b} To a Fischer–Porter pressure vessel was added 4.0 g of $Mn_2(CO)_{10}$ dissolved in 60 mL of benzene. The atmosphere was temporarily evacuated and then backfilled with ${}^{13}CO$ gas. An overpressure of 40 psig was established. The vessel was photolyzed for 24 h. The atmosphere was then evacuated and recharged with ${}^{13}CO$, where-upon the solution was irradiated for an additional 48 h. Following this, the solvent was removed in vacuo and the yellow $Mn_2(CO)_{10}$ was analyzed by mass spectroscopy. By summing the weighted percents of $Mn_2(CO)_{10} = 389.9$ through $Mn_2({}^{13}CO)_{10} = 399.9$, the degree of ${}^{13}C$ enrichment was determined to be 40%. ${}^{13}C$ NMR (δ , CD₃CN): 188.8 equatorial, 196.6 axial.

Re₂(¹³CO)₁₀ was prepared in a manner identical to Mn₂(¹³CO)₁₀. The degree of ¹³C enrichment was not determined. ¹³C NMR (δ , CD₃CN): 183.9, 192.8.

Anions. Metal carbonyl anion species were prepared according to published methods: [PPN][HFe(CO)₄], ¹⁰ [PPN][DFe(CO)₄] (this species was prepared in a manner identical to that for [PPN][HFe(CO)₄] with the exception of using MeOD (CH₃-OD) and NaOD instead of MeOH and NaOH; IR (cm⁻¹, CH₃-CN) 2002 (w), 1906–1898 (sh), 1882 (s)), [Et₄N][HFe(CO)₃-PPh₃]^{3c}, and [PPN][HW(CO)₅].¹¹

[Mn(CO)₆][BF₄] was prepared according to a modified literature method of Beach and Gray.¹² To a 250 mL Schlenk flask fitted with a nitrogen gas feed were added 2.0 g of [Na]-[Mn(CO)₅] and 30 mL of diethyl ether. While under nitrogen, 15 mL of ethyl chloroformate was added dropwise. The solution turned a pronounced orange. After stirring for 4 h, the mixture was filtered. The filtrate was combined with 30 mL of methylene chloride. To this solution was added liquid BF₃· etherate to immediately precipitate a white product. The product was separated by filtration and then thoroughly washed with both THF and ether. After drying, 1.11 g of white [Mn(CO)₆][BF₄] was collected (39% yield). The compound is air-stable. IR (cm⁻¹, CH₃CN): 2096 (s).

[**Re(CO)**₆][**BF**₄], [**Mn**(¹³**CO**)₆][**BF**₄], and [**Re**(¹³**CO**)₆][**BF**₄] were made in a manner identical to that used for [Mn(CO)₆]-[BF₄]. ¹³C-enriched cations were prepared from Mn₂(¹³CO)₁₀ and Re₂(¹³CO)₁₀. [Re(CO)₆][BF₄]: IR (cm⁻¹, CH₃CN) 2086 (s). [Mn(¹³CO)₆][BF₄]: ¹³C NMR (δ , CD₃CN) 201.0 (hextet, *J*_{Mn-C} = 129 Hz, ¹³CO). [Re(¹³CO)₆][BF₄]: ¹³C NMR (δ , CD₃CN) 218.6.

OM0304558

(7) Pannell, K. H.; Chen, Y.; Belknap, K.; Wu, C. C.; Bernal, J.; Creswick, M. W.; Huang, H. N. *Inorg. Chem.* **1983**, *22*, 418.

(8) Isotope effects arise from intrinsic isotopic mass differences, which give different bond vibrational frequencies, zero-point energies, and bond dissociation energies. Primary isotope effects concern bonds being broken and formed during the rate-determining step. Secondary isotope effects concern bonds not directly involved in formation of the transition state. Secondary isotope effects give deuterium kinetic isotope ratios under 1.5.⁹

(9) March, J. Advanced Organic Chemistry, 3rd ed.; John Wiley and Sons: New York, 1985; p 200. (10) Darensbourg, M. Y.; Darensbourg, D. J.; Barros, H. L. C. Inorg.

(10) Darensbourg, M. Y.; Darensbourg, D. J.; Barros, H. L. C. *Inorg. Chem.* **1978**, *17*, 297.

(11) Darensbourg, M. Y.; Slater, S. J. Am. Chem. Soc. 1981, 103, 5914.

(12) Beach, N. A.; Gray, H. B. J. Am. Chem. Soc. 1968, 90, 5713.