Activation of Si-C or C-H Bonds in Tetramethylsilane: Evidence from Protonolysis of (Trimethylsilyl)methyl-Platinum Bonds

Christopher M. Ong, Tara J. Burchell, and Richard J. Puddephatt*

Department of Chemistry, The University of Western Ontario, London, Canada N6A 5B7

Received January 16, 2004

Summary: Protonolysis of the (trimethylsilyl)methylplatinum bonds in $[Pt(CH_2SiMe_3)_2(NN)]$ (NN = 4,4'-ditert-butyl-2,2 -bipyridine) and in [Pt(CH₂SiMe₃)(NNC)] $(NNC = C_6H_4 - 2 - CH = N - trans - C_6H_{10} - 2 - N = CHPh)$ is suggested to occur by protonation at platinum to give a 16electron hydridoplatinum(IV) intermediate, followed by either rapid, concerted rearrangement to give a methyl-(trimethylsilyl)platinum(IV) complex intermediate or reductive coupling to form tetramethylsilane (TMS). The direct characterization of (trimethylsilyl)platinum(IV) complex intermediates, such as [PtBrMe₂(SiMe₃)(NN)], proves that the α -migration of the trimethylsilyl group from carbon to a cationic platinum center is easy and suggests that Si-C bond activation by electrophilic platinum(II) complexes may be an alternative to C-Hactivation.

While studying of the activation of C–H bonds by electrophilic platinum complexes,¹ Heyduk, Labinger, and Bercaw recently discovered the catalytic alcoholysis of tetramethylsilane with ROH ($R = CF_3CH_2$) to give methane and Me₃SiOR.² To gain insight into the mechanism of this interesting catalytic reaction, the protonolysis of (trimethylsilyl)methyl–platinum(II) bonds was studied and shown to occur according to eq 1. No

tetramethylsilane, the expected product of simple protonolysis, was formed. The similar reaction with D^+/ROD gave Me_3SiOR , with no deuterium incorporation into the MeSi groups, and a mixture of all isotopomers CH_nD_{4-n} .

These observations were interpreted in terms of the mechanism A (Scheme 1), which involves nucleophilic attack at silicon to cleave the Si-CH₂ bond in a cationic 16-electron hydridoplatinum(IV) intermediate. It was

argued that mechanism **B**, involving reductive coupling followed by α -migration of the Me₃Si group, would lead to formation of some tetramethylsilane and probably to deuterium incorporation into the product Me₃SiOR and that mechanism **C**, involving earlier α -migration, would give a high-energy intermediate.^{2,3}

We have independently (Scheme 2) studied reactions of acids with the complexes $[Pt(CH_2SiMe_3)_2(NN)]$ (2; NN = 4,4'-di-*tert*-butyl-2,2'-bipyridine) and $[Pt(CH_2SiMe_3)-(NNC)]$ (4; NNC = C₆H₄-2-CH=N-*trans*-C₆H₁₀-2-N= CHPh) and with the methylplatinum(II) analogues **1** and **3**,⁴ and we suggest that the reactions occur by mechanism **D**, in which the major product is formed by the concerted migration of hydride to carbon and of silicon to platinum. The evidence is outlined below.

The reaction of complex **4** with HCl in moist CD_2Cl_2 or CD_2Cl_2/CD_3CN (1:1) occurred to give [PtCl(NNC)]

⁽¹⁾ Recent references: (a) Labinger, J. A.; Bercaw, J. E. Nature **2002**, 417, 507. (b) Iverson, C. H.; Carter, C. A. G.; Baker, R. T.; Scollard, J. D.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. **2003**, 125, 12674. (c) Fekl, U.; Goldberg, K. I. J. Am. Chem. Soc. **2002**, 124, 6804. (d) Iron, M. A.; Lo, H. C.; Martin, J. M. L.; Keinan, E. J. Am. Chem. Soc. **2002**, 124, 7041. (e) Vedernikov, A. N.; Caulton, K. G. Angew. Chem., Int. Ed. **2002**, 41, 4102. (f) Reinartz, S.; White, P. S.; Brookhart, M.; Jempleton, J. L. J. Am. Chem. Soc. **2002**, 124, 7249. (g) Ong, C. M.; Jennings, M. C.; Puddephatt, R. J. Can. J. Chem. **2003**, 81, 1196.

⁽²⁾ Heyduk, A. F.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2003, 125, 6366.

⁽³⁾ The short-lived platinum(IV) complex [PtHMe₂{C₃H₂N₂(CH₂-2py)₂]⁺, with a stabilized Arduengo carbene ligand, has been reported recently: Prokopchuk, E. M.; Jennings, M. C.; Puddephatt, R. J. *Organometallics* **2003**, *22*, 563.

^{(4) (}a) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. *Organometallics* **1995**, *14*, 4966. (b) Baar, C. R.; Jenkins, H. A.; Vittal, J. J.; Yap, G. P. A.; Puddephatt, R. J. *Organometallics* **1998**, *17*, 2805.

(5a) and Me₃SiOH/CH₄ (85-90%) and Me₄Si (10-15%).^{5–7} When a similar reaction was carried out in CD₂-Cl₂/CD₃OD or CD₂Cl₂/CD₃CN/CD₃OD (1:1:1), the corresponding products were 5a and Me₃SiOCD₃/CH₂D₂ (85-90%), with a minor amount of CH₃D but no CHD₃) and Me_3SiCH_2D (10–15%, with a minor amount of Me_4 -Si). The reactions were similar using triflic acid, except that the organoplatinum product was $[PtS(NNC)]^+$ (6; $S = CD_3CN$), as the triflate salt. With H[BF₄], the major difference was that Me₃SiF was formed in place of Me₃-SiOH or Me₃SiOCD₃.⁵ There are strong similarities and also some key differences compared to the previously studied system.² Most obvious is the formation of Me₄-Si as a minor product in the reactions of complex 4, whereas none was observed in the reaction of eq 1.² Also, in the reactions with 4, the reductive coupling to give methane or Me₄Si appears irreversible, and so the reactions with DX/CD₃OD give mostly the isotopomers CH₂D₂ and Me₃SiCH₂D. It is significant that the partition between the products CH4/Me3SiY and Me4Si was largely independent of the acid or solvent used. The product of simple reductive elimination, Me₄Si, will be formed in a unimolecular step from a coordinatively unsaturated hydrido(alkyl)platinum(IV) intermediate, $[PtH(CH_2SiMe_3)(NNC)]^{+,1-3}$ whereas in mechanism A

(Scheme 1) the product Me_3SiY is formed in a bimolecular reaction involving, for example, attack by ROH at silicon, to give Me_3SiOR in the product-determining step. Hence, the partition between Me_3SiOR and Me_4 -Si should be dependent on the concentration of ROH or H_2O or on the nucleophilic nature of the solvent medium. The present observations are most easily rationalized if the product-determining steps in both reaction paths are unimolecular.

Reaction of complex 2 with HCl or HBr in moist solvent CD₂Cl₂ or CD₂Cl₂/CD₃CN at room temperature gave [PtXMe(NN)] (7a, X = Cl; 7b, X = Br) with the major products Me₃SiOH/CH₄ and minor product Me₄-Si (major:minor = ca. 90:10).^{5–7} Similar reactions with CF₃SO₃H or HBF₄ in CD₂Cl₂/CD₃CN at room temperature gave $[PtSMe(NN)]^+$ (8; S = CD₃CN) with the major products being Me₃SiOH/CH₄ using CF₃SO₃H or Me₃SiF/CH₄ using HBF₄ and the minor product being Me₄Si in each case. The reactions with acids DX in the solvent CD₂Cl₂/CD₃OD gave the range of isotopomers CH_nD_{4-n} and $[PtX(CH_nD_{3-n})(NN)]$ or $[PtS(CH_nD_{3-n})-$ (NN)]⁺, but the TMS was formed as Me₃SiCH₂D only, indicating that the reductive coupling to give coordinated methane is reversible in this case but that reductive coupling to give TMS is irreversible (Scheme $3).^{8}$

⁽⁵⁾ Organosilicon compounds were identified by spiking the NMR solutions with authentic compounds and checking that the chemical shifts were identical. Chemical shifts for δ (MeSi): TMS, 0.00; Me₃SiOH, 0.10; (Me₃Si)₂O, 0.06; Me₃SiF, 0.20 (d, J(HF) = 7.5 Hz); Me₃SiOCD₃, 0.05. (a) Schmidbaur, H. *Chem. Ber.* **1964**, *97*, 830. (b) Schmidbaur, H. *J. Am. Chem. Soc.* **1963**, *85*, 2336. (c) Ostdick, T.; McCusker, P. A. *Inorg. Chem.* **1967**, *6*, 98. Chemical shifts for Me₃SiCH₂D: δ (MeSi) –0.002, 9H; δ (CH₂D) –0.02, 2H, 1:1:1 triplet, ²J(HD) = 2 Hz. No SiCHD₂ resonance was detected, and the integration of Me:CH₂D = 9:2 indicated that no significant amount of Me₂Si(CH₂D)₂ was present; when Me₄Si was also formed, its ¹H resonance was just resolved at δ (MeSi) 0.00.

⁽⁶⁾ The final organoplatinum products were isolated and fully characterized. Several are known compounds, and there was good agreement with published NMR data.^{4,7} The complex [PtClMe(NN)] was also characterized crystallographically: $C_{19}H_{27}ClN_2Pt$, fw = 513.97, T = 296(2) K, $\lambda = 0.710$ 73 Å, monoclinic, $P2_1/c$, a = 7.535(1) Å, b = 19.176(4) Å, c = 12.991(3) Å, $\beta = 96.55(3)^\circ$, V = 1864.9(6) Å³, Z = 4, d(calcd) = 1.831 Mg/m³, R1($I > 2\sigma(I)$) = 0.048, wR2(all data) = 0.116.

^{(7) (}a) Levy, C. J.; Vittal, J. J.; Puddephatt, R. J. *Organometallics* **1996**, *15*, 2108. (b) Levy, C. J.; Puddephatt, R. J. *J. Am. Chem. Soc.* **1997**, *119*, 10127. (c) Levy, C. J.; Puddephatt, R. J. *Organometallics* **1997**, *16*, 4115. The oxidative addition of Me₃SiX to complex **1** is thermodynamically favorable for X = I, Br but not for X = Cl, and the trend is determined by the relative Pt-X vs Si-X bond energies.^{7b} By extension, it is clear that the reaction is unfavorable for X = F (*D*(SiF) = 665 kJ mol⁻¹) or OH (*D*(Si-OH) = 536 kJ mol⁻¹).

⁽⁸⁾ Reversibility of the reductive coupling to form a TMS complex, coupled with easy PtH for PtD exchange of the hydridoplatinum intermediate, would give Me_3SiCHD_2 and, if exchange between coordinated CH_3Si and CH_2DSi groups occurs, $Me_2Si(CH_2D)_2$ and more highly deuterated isotopomers. Also, D incorporation into the MeSi groups of the products Me_3SiY would occur.

Direct evidence for α -migration was obtained by monitoring the reactions by low-temperature ¹H NMR. Thus, for the reaction of complex **2** with HBr in moist CD_2Cl_2 , the spectra at -80 to -50 °C were broad and indicated the presence of more than one compound but, at -30 °C, the spectrum was sharp and the major organoplatinum product was clearly identified as [PtBrMe₂(SiMe₃)(NN)] (9b) by comparison of its spectrum with that of an authentic sample prepared by oxidative addition of Me₃SiBr to complex 1.7 Key resonances were δ (PtMe) 1.27 (s, 6H, ²*J*(PtH) = 64 Hz) and δ (MeSi) -0.28 (s, 9H, ³J(PtH) = 19 Hz), with the coupling of the methylsilicon protons to ¹⁹⁵Pt being definitive.⁷ At room temperature, complex 9b had decomposed to give 7b. A similar reaction of complex 2 with HCl gave [PtClMe₂(SiMe₃)(NN)] (9a), and this is particularly significant, since **9a** is a new complex that cannot be prepared by oxidative addition of Me₃SiCl to complex 1.7 Complex 9a could not be isolated, but it was characterized at -30 °C by the similarity of its NMR parameters, δ (PtMe) 1.06 (s, 6H, ²J(PtH) = 64 Hz) and δ (MeSi) -0.37 (s, 9H, ³J(PtH) = 19 Hz) to those of **9b**. In the reaction with HCl, minor resonances due to the hydridoplatinum(IV) complex [PtHClMe₂(NN)]³ were observed at -30 °C at δ (PtMe) 1.23 (s, 6H, ²J(PtH) = 67 Hz) and δ (PtH) -21.80 (s, 1H, ¹J(PtH) = 1590 Hz), and these grew in intensity at -20 °C as complex 9a decomposed before decaying again as the final product 7a was formed. Finally, the reaction at low temperature of 2 with either triflic acid or tetrafluoroboric acid in CD₂Cl₂/CD₃CN gave the cation [PtMe₂(SiMe₃)S(NN)]⁺ (**10**; S = CD₃CN), which has NMR parameters, δ (PtMe) = 0.87 (s, 6H, ${}^{2}J(PtH) = 66$ Hz) and $\delta(MeSi) = -0.41$ (s, 9H, ${}^{3}J(PtH) = 19$ Hz) similar to those of **9a** and **9b**. The cationic complex **10** decomposed on warming to give [PtMeS(NN)]⁺, and Me₃SiOH or Me₃SiF. Since these organosilicon products, with strong Si-O or Si-F bonds, will not undergo oxidative addition to complex 1, it is clear that complex 10 must be formed during the protonolysis of complex **2**.⁷

The concerted mechanism D (Scheme 1) is consistent with the present observation that an α -migration occurs to give a (trimethylsilyl)platinum(IV) intermediate and with the deduction by Heyduk, Labinger, and Bercaw that α -migration does not occur before or after reductive coupling.² If the approximate bond energies (kJ mol⁻¹) Pt-H = 213, Si-C = 374, Pt-Si = 233, and C-H =420 are assumed.^{7,9} then the rearrangement of [PtH-(CH₂SiMe₃)(NNC)]⁺ to [PtMe(SiMe₃)(NNC)]⁺ can be estimated to have $\Delta H = ca. -71 \text{ kJ mol}^{-1}$, and hence the rearrangement will not be easily reversed under the mild conditions used. If the trimethylsilyl group is anti to the migrating hydride, it will rock toward the platinum atom and so Pt···Si bond formation can occur easily, so that a low activation energy for the reaction is likely.¹⁰ It follows from microscopic reversibility that the activation of TMS by electrophilic platinum(II) complexes may occur through an intermediate similar to that shown in mechanism **D** of Scheme 1 and may be considered to involve Si-C bond activation following initial complexation of TMS to platinum via a C-H bond.

Acknowledgment. We thank the NSERC (Canada) for financial support and a scholarship to T.J.B. R.J.P. thanks the Government of Canada for a Canada Research Chair.

Supporting Information Available: Text giving experimental procedures and tables giving X-ray data for [PtClMe-(NN)]. This material is available free of charge via the Internet at http:/pubs.acs.org.

OM0400088

⁽⁹⁾ Brook, M. A. Silicon in Organic, Organometallic, and Polymer Chemistry; Wiley: New York, 2000.

⁽¹⁰⁾ One possible rationalization for the partition between the two reaction paths leading to Me₄Si or Me₃SiY is that there is a dependence on the conformation of the Me₃SiCH₂ group with respect to the hydride ligand in the 16-electron hydridoplatinum(IV) intermediate when the hydride migration to carbon begins. If the Me₃Si group is anti to the hydride, then α -migration to platinum occurs to ultimately yield Me₃SiY, but if it is syn to the hydride, then it cannot migrate at an early stage and so reductive coupling to give TMS is preferred. A reviewer points out that the distinction between mechanisms **B** and **D** may be subtle and that the mechanism proposed here may not apply when no TMS is formed, as in the system of ref 2. We note that silyl migrations⁹ and that platinum is a particularly good silyl acceptor. (a) Braunstein, P.; Boag, N. M. Angew. Chem., Int. Ed. **2001**, 40, 2427. (b) Braunstein, P.; Knorr, M.; Reinhard, G.; Schubert, U.; Stahrfeldt, T. Chem. Eur. J. **2000**, 6, 4265.