A Bis(tricarbido) Complex of Iridium and Tungsten: $[\text{IrH}(C\text{=}CC\text{=}W(CO)_2\{\text{HB}(pz)_3\})_2(CO)(PPh_3)_2]$

Rian D. Dewhurst, Anthony F. Hill,* and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, Australian Capital Territory, Australia

Received December 15, 2003

Summary: The fluoride-mediated protodesilylation of $[W \in CC = C \cdot C \cdot S \cdot (CO)_{2} \cdot (HB(pz)_{3})$ (pz = pyrazol-1-yl) in *the presence of Vaska's complex provides the first bis- (tricarbido) trimetallic complex, [IrH(C*t*CC*t*W(CO)2-* {*HB(pz)3*}*)2(CO)(PPh3)2], the crystal structure of which reveals a linear nine-membered WC3IrC3W chain.*

There is considerable current interest in the synthesis and properties of bimetallic complexes spanned solely by linear carbon chains.¹ Because the most commonly employed reagents in the synthesis of such complexes are polyynyl silanes, phosphines, or terminal polyynes, the vast majority of such complexes involve evennumbered carbon chains, L_nM-(C=C)_x-ML_n. Notable exceptions to this are the tricarbido complexes (Chart 1) reported by Gladysz^{2,3} and Templeton.⁴ Thus, (i) employing the lithiated alkynyl complex $[Re(C=CLi)-$ (NO)(PPh3)(*η*-C5Me5)] in a Fischer-type carbyne synthesis with $[Mn(CO)₃(\eta-C₅H_nCl_{5-n}](n=0, 4, 5)$ provides the salts $[Re{C_3Mn(CO)_2(\eta-C_5H_nCl_{5-n})}\NO(PPh_3)(\eta-C_5 Me_5$]BF₄,² (ii) deprotonation of the complex H₂C[C= $W(CO)_{2}$ {HB(pzMe₂)₃}]₂ (pzMe₂ = 3,5-dimethylpyrazol-1-yl) followed by aerial oxidation provides the bimetallic complex ${HB(pzMe₂)₃}(OC)₂W=CC=CW(O)₂{HB-}$ $(pzMe₂)₃$],⁴ and (iii) metathesis of the diynyl ligand in $[Re(C\equiv CC\equiv CR)(NO)(PPh_3)(\eta$ -C₅Me₅)] (R = H, Me) by $[W_2(\text{OCMe}_3)_6]/W \equiv W$ provides the complex $[Re{C} \equiv CC \equiv W]$ W(OCMe₃)₃}(NO)(PPh₃)(η-C₅Me₅)]₂.³

These elegant synthetic strategies established the tricarbido ligand as a viable linker for bimetallic systems, as well as raised a dichotomy regarding the localization of bonding (Chart 2). However, these routes are particular to the systems involved, and accordingly, we have sought a more general approach to tricarbidolinked bimetallics. One such strategy that we have recently reported⁵ involves the fluoride-mediated protodesilylation of silylated propargylidyne complexes to generate in situ either $L_nM=CC\equiv CH$ or its conjugate base. Propargylidyne complexes of tungsten and mo-

Chart 1. Tricarbido Complexes*^a*

lybdenum are readily available via a Mayr-type alkylidyne synthesis,⁶ and Fischer has recently extended this protocol to obtain silylated examples.7 Herein we wish to report the extension of our desilylation protocol to iridium, which provides for the first time a trimetallic complex in which the three metal centers are linked by two tricarbido bridges.

The complex $[Ir(C=CPh)(CO)(PPh_3)_2]$ arises from the reaction of $[Ir(NCMe)(CO)(PPh_3)_2]ClO_4$ with ethynylbenzene under basic conditions.⁸ Accordingly, we assumed that treating $[IrCl(CO)(PPh_3)_2]$ with the complex $[W(\equiv CC\equiv CSiMe_3)(CO)_2{HB(pz)_3}]$ (pz = pyrazol-1-yl) and [Bu4N]F would lead to a tricarbido analogue of Vaska's complex, viz. $[\{HB(pz)_3\}(\text{CO})_2W\equiv \text{CC}\equiv \text{C}-\text{Ir}$ - $(CO)(PPh₃)₂$. Spectroscopic and analytical data for the product9 of this reaction were, however, not consistent with this formulation. Notably, the carbonyl-associated infrared absorption assigned to the iridium carbonyl appeared at a frequency too high for iridium(I) (Nujol: 2017 vs 1955 cm⁻¹ for [Ir(C=CPh)(CO)(PPh₃)₂]⁸). The product was too insoluble for useful ¹³C{¹H} NMR data to be acquired; however, the 1H NMR spectrum indicated the presence of a hydride ligand (δ -8.78), the resonance for which showed coupling to two phosphorus nuclei with a magnitude typical of a *mer, trans*-IrP₂H

^{*} To whom correspondence should be addressed: E-mail: a.hill@ anu.edu.au.

⁽¹⁾ For reviews of $L_nM(C_x)R$ and $L_nM(C_x)ML_n$ complexes, respectively, see: (a) Low, P. J.; Bruce, M. I. *Adv. Organomet. Chem.* **2002**, 48, 71. (b) Bruce, M. I.; Low, P. J. *Adv. Organomet. Chem.* **2004**, 50, 179.

^{(2) (}a) Weng, J. A. Ramsden, Arif, A. M.; Gladysz, J. A. *J. Am. Chem.
Soc.* **1993**, *115*, 3824. (b) Bartik, T.; Weng, W.; Ramsden, J. A.; Szafert,
S.; Falloon, S. B.; Arif, A. M.; Gladysz, J. A. *J. Am. Chem. Soc.* **1998** *120*, 11071.

⁽³⁾ Deminski, R.; Szafert, S.; Haquette, P.; Lis, T.; Gladysz, J. A. *Organometallics* **1999**, *18*, 5438.

⁽⁴⁾ Woodworth, B. E.; Templeton, J. L. *J. Am. Chem. Soc.* **1996**, *118*, 7418.

⁽⁵⁾ Dewhurst, R. D.; Hill, A. F.; Smith, M. K. *Angew. Chem., Int. Ed.* **2004**, *43*, 476.

⁽⁶⁾ Hart, I. J.; Hill, A. F.; Stone, F. G. A. *J. Chem. Soc., Dalton Trans.* **1989**, 2261.

^{(7) (}a) Schwenzer, B.; Schleu, J.; Burzlaff, N.; Karl, C.; Fischer, H. *J. Organomet. Chem.* **2002**, *641*, 134. (b) Schwenzer, B.; Fischer, H. *J. Organomet. Chem.* **2003**, *667*, 16.

⁽⁸⁾ Reed, C. A.; Roper, W. R. *J. Chem. Soc., Dalton Trans.* **1973**, 1370.

Figure 1. Molecular structure of the complex **1** (phenyl and pyrazolyl groups simplified). Selected bond distances (Å) and angles (deg): Ir301-C103 = 2.042(9), Ir301-C203 $= 2.044(9)$, Ir301-C301 $= 2.021(15)$, W100-C101 $= 1.852 (11)$, W100-C104 = 1.968(16), W100-C105 = 1.979(14), $W200-C201 = 1.859(10)$, $W200-C204 = 1.966(10)$, $W200-C201 = 1.859(10)$ $C205 = 1.983(10), C101-C102 = 1.384(15), C102-C103$ $= 1.192(13), C201-C202 = 1.374(13), C202-C203 = 1.185$ $(12);$ C103-Ir301-C203 = 172.4(4), W100-C101-C102 = $175.2(8)$, C101-C102-C103 = 176.8(11), Ir301-C103- $C102 = 175.7(9)$, W200-C201-C202 = 175.3(8), C201- $C202-C203 = 178.2(10),$ Ir301-C203-C202 = 178.1(8).

arrangement (${}^{2}J_{\text{PH}}$ = 13.7 Hz). Furthermore, integration of pz and Ph resonances indicated an Ir:W ratio of 1:2, suggesting that the product was the iridium(III) complex $[IrH(C=CC=W(CO)_2{HB(pz)_3})_2(CO)(PPh_3)_2]$ (1). The identity of the product **1** was confirmed crystallographically, and the results of this study⁹ are summarized in Figure 1.

The molecular structure of **1** in the crystal involves pseudo-octahedrally coordinated tungsten and iridium centers, although the iridium hydride ligand was not reliably located. There are no crystallographic elements of symmetry associated with the molecule, and hence, each ${HB(pz)_3}(CO)_2W \equiv CC \equiv C \pmod{q}$ is distinct. Nevertheless, corresponding distances within the

 $\mathbf{2}$

halves of the WC₃IrC₃W wire are statistically equivalent and correspond to a localized metallabutadiynyl $W \equiv$ $CC=C-Ir$ valence bond description with typical separations for W=C (1.852(11), 1.859(10) Å), \equiv CC= (1.384-(15), 1.374(13) Å), C=C (1.192(13), 1.185(12) Å) and Ir- $C \equiv (2.042(9), 2.044(9) \text{ Å})$ bonds. These values may be compared with those for the complex $[IrH(C=CPh)₂$ - $(CO)(PPh₃)₂$, ¹⁰ for which the two alkynyl ligands are related by crystallographic *^C*² symmetry to provide Ir-^C and $-C\equiv C$ bond lengths of 2.04(2) and 1.15(2) Å, respectively. Similar metallabutadiynyl bond localization has been observed for the mono(tricarbido) complexes [Re{C≡CC≡W(OCMe₃)₃}(NO)(PPh₃)(*η*-C₅Me₅)]₂³ and $[RuH(C=CC=W(CO)₂{HB(pzMe₂)₃})(HpzMe₂)(CO) (PPh_3)_2$];⁵ however, the salt $[Re{=}C=C=\overline{C}=Mn(CO)_2$ -(*η*-C5H5)}(NO)(PPh3)(*η*-C5Me5)]BF4 shows a more regular "1,5-dimetallapentatetraene" pattern of bonding.²

The formation of **1** rather than simple halide/acetylide metathesis to provide $[{HB(pz)_3}(CO)_2W=CC=CC-Ir$ - $(CO)(PPh_3)_2$ (2) calls for comment (Scheme 1). We assume that **2** is most likely the initial product but that this reacts quickly with $[W(\equiv CC\equiv CH)(CO)_2\{HB(pz)_3\}]$ (generated in situ) via oxidative addition. This is itself noteworthy in that, as noted above, the synthesis of [Ir- $(C=CPh)(CO)(PPh_3)_2$ is performed in the presence of excess ethynylbenzene but does not proceed to $[IrH(C\equiv$ $CPh₂(CO)(PPh₃)₂$] under ambient conditions.^{8,11} This complex was, however, obtained by Wilkinson from the reactions of excess ethynylbenzene with [IrH(CO)*x*-

⁽⁹⁾ A suspension of $[W(\equiv CC\equiv CSiMe_3)(CO)_2\{HB(pz)_3\}]$ ⁷ (200 mg, 0.36 mmol) and $[IrCl(CO)(PPh_3)_2]$ (125 mg, 0.16 mmol) in CH₂Cl₂ (15 mL) was treated with $[Bu_4N]F$ (0.71 mL, 1.0 M, Aldrich) and stirred for 2 h. The fine orange suspension was filtered, and the solid stirred
in CH2Cl2 for 30 min. The resulting suspension was centrifuged, the supernatant discarded, and the solid dried in vacuo. Yield: 109 mg (40%). IR: in Nujol, *ν* 2127 (Ir-C≡C), 2017 (Ir-CO), 1949 (W-CO),
1860 (W-CO) cm⁻¹; in THF, 2139 (Ir-C≡C), 2019 (Ir-CO), 1948 (W-
CO), 1873 (W-CO) cm⁻¹, NMR (*d*-DMSO, 25 °C)^{, 1}H, δ 7,90–7,86 (m, CO), 1873 (W-CO) cm⁻¹. NMR (d_6 -DMSO, 25 °C): ¹H, δ 7.90-7.86 (m, 6 H, H³ (pz)), 7.60-7.29 (m × 2, 36 H, H⁵ (pz) + C₆H₅), 6.30-6.20 (m, 6 H, H⁴ (pz)), -8.78 (t, ²J_{PH} = 13.7 Hz, 1 H, Ir-H) ppm; ³¹P $\rm IrN_{12}O_5P_2W_2$: C, 45.29; H, 2.98; N, 9.75. A sample for crystallographic analysis was recrystallized from a mixture of chloroform and ethanol as a bis(chloroform) solvate. Crystal data for 1.2CHCl₃: $C_{65}H_{51}B_2$ as a bis(chloroform) solvate. Crystal data for **1**·2CHCl₃: $C_{65}H_{51}B_2$ -
IrN₁₂O₅P₂W₂.(CHCl₃)₂, *M₁* = 1962.44, triclinic, *PI* (No. 2), *a* = 14.1710-
(2) Å, *b* = 14.4573(2) Å, *c* = 21.6538(3) Å, α independent measured reflections ($2\theta \le 50^{\circ}$), R1 = 0.043, wR2 = 0.046 for 8559 independent observed absorption-corrected reflections (*^I* > 3*σ*(*I*)), 874 parameters. CCDC 225193.

⁽¹⁰⁾ Osakada, K.; Kimura, M.; Choi, J.-C. *J. Organomet. Chem.* **2000**, *602*, 144.

⁽¹¹⁾ The reaction of $[Ir(C\equiv CPh)(CO)(PPh_3)_2]$ with HC=CPh in CH₂-
Cl₂ at room temperature has been discussed;¹² however, infrared data provided for the precursor (*ν*(CO) 1993 cm⁻¹) suggest that the work
was carried out with the dioxygen adduct [Ir(C≡CPh)(*η*-O₂)(CO)-(PPh3)2] reported previously by Roper (*ν*(CO) 1990 cm-1),8 although it has been noted that the dioxygen ligand in this complex does not dissociate below 100 °C.^{8,13}

 $(PPh_3)_{4-x}$ (*x* = 1, 2) or [Ir(C=CEt)(CO)(PPh₃)₂] in refluxing benzene.13

A further feature of note is the lowering of the tungsten-carbonyl associated infrared absorptions on replacing the SiMe3 in the precursor (THF: *ν*(CO) 1991, 1906 cm-1) with the iridium(III) center in **1** (THF: *ν*- (CO) 1949, 1860 cm⁻¹).

Supporting Information Available: Full details of the crystal structure determination of 1·2CHCl₃, including positional and thermal parameters and an ORTEP representation. This material is available free of charge via the Internet at http://pubs.acs.org.

OM0306877

⁽¹²⁾ Chin, C. S.; Oh, M.; Won, G.; Cho, H.; Shin, D. *Polyhedron* **1999**, *18*, 811.

⁽¹³⁾ Brown, C. K.; Georgiou, D.; Wilkinson, G. *J. Chem. Soc. A* **1971**, 3120.