Reviews

Transition-Metal Silyl Complexes and Chemistry in the Reactions of Silanes with Transition-Metal Complexes

Xianghua Yu, Laurel A. Morton, and Zi-Ling Xue*

Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996

Received February 25, 2004

Studies from the authors' group of early-transition-metal silyl complexes and pathways in the reactions of silanes with transition-metal complexes are reviewed. Cyclopentadienylfree, group 4 alkyl silyl, group 5 alkylidene silyl, group 6 alkylidyne silyl, and groups 4 and 5 amide and imide silyl complexes have been prepared and characterized. In the reactions of silanes with alkylidene and amide complexes, the M=CH- π bonds and d-p π bonds in $M = NR_2$ were found to attack Si in silanes. The mechanistic studies here help in understanding the formation of mixtures of TiN and Si₃N₄ from the reactions of Ti(NMe₂)₄ and SiH₄ as microelectronic diffusion barrier materials.

 $Cp(CO)_2Fe-SiMe_3$ (Cp = cyclopentadienyl), the first complex known to contain a transition-metal-silicon bond, was reported by Wilkinson and co-workers in 1956.1 Since then, transition-metal silyl chemistry has become a field of intense study.² Many complexes involve late-transition-metal elements containing metalsilicon bonds; they are usually coordinatively saturated and electron-rich.² Early-transition-metal silyl chemistry had been mostly focused on complexes with stabilizing ligands such as Cp, CO, -OR, -NR₂, and PR₃.³ The presence of such donating ligands in silyl complexes is believed to contribute to their enhanced stability.

Our studies of early-transition-metal silyl complexes and reactions of silanes with metal complexes started when one of us (Z.-L.X.) began his faculty appointment at the University of Tennessee in 1992. He had been attracted to these areas when he was developing ideas for his future independent research during his postdoctoral appointment at Indiana University. With interest in the uses of transition metals in microelectronics, he chose to study chemistry related to molecular approaches to metal-silicon-based materials. Our initial interest was in the Cp-free alkyl, alkylidene, and alkylidyne silyl complexes shown in Chart 1. These complexes were chosen as they were then unknown, and in molecular approaches such as chemical vapor deposi-

tion of metal-silicon materials, Cp-free complexes are often more volatile and are thus desirable. We were interested in the fundamental chemistry-the synthesis, characterization, and reactivities of these novel silyl complexes-and their potential applications. After these complexes were successfully prepared and characterized, we investigated groups 4 and 5 silyl amide and imide complexes and the reactions of silanes with alkylidene and amide complexes. Our studies of these complexes and reactions are summarized.

⁽¹⁾ Piper, T. S.; Lemal, D.; Wilkinson, G. Naturwissenschaften 1956, 43, 129.

^{(2) (}a) Tilley, T. D. In *The Chemistry of Organic Silicon Compounds*, Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; p. 1415. (b) Tilley, T. D. In *The Silicon-Heteroatom Bond*, Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1991; pp 245, 309. (c) Eisen, M. S. In The Z., Eds.; Wiley: New York, 1991; pp 245, 309. (c) Eisen, M. S. In *The Chemistry of Organic Silicon Compounds*; Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, 1998; Vol. 2, Part 3, p 2037. (d) Tilley, T. D. *Comments Inorg. Chem.* 1990, *10*, 37. (e) Harrod, J. F.; Mu, Y.; Samuel, E. *Polyhedron* 1991, *10*, 1239. (f) Corey, J. Y.; Braddock-Wilking, J. *Chem. Rev.* 1999, *99*, 175. (g) Tilley, T. D. *Acc. Chem. Res.* 1993, *26*, 22. (h) Sharma, H. K.; Pannell, K. H. *Chem. Rev.* 1995, *95*, 1351. (i) Xue, Z.-L. *Comments Inorg. Chem.* 1996, *18*, 223. (j) Chen, T.-N.; Xue, Z.-L. *Chinese J. Inorg. Chem.* 1999, *15*, 413.

^{(3) (}a) V(CO)₆SiH₃: Allinson, J. S.; Aylett, B. J.; Colquhoun, H. M. J. Organomet. Chem. **1976**, 112, C7. (b) $[R_3SiM(CO)_5]^-$ (M = Cr, Mo, W): Isaacs, E. E.; Graham, W. A. G. *Can. J. Chem.* **1975**, *53*, 467. Darensbourg, D. J.; Bauch, C. G.; Reibenspies, J. H.; Rheingold, A. L. *Inorg. Chem.* **1988**, *27*, 4203. (c) C₆H₆(CO)₂Cr(H)SiCl₃: Jetz, W.; Graham, W. A. G. *Inorg. Chem.* **1971**, *10*, 4. C₆Me₆(CO)₂Cr(H)SiHPh₂: Schubert, U.; Muller, J.; Alt, H. G. Organometallics 1987, 6, 469. (d) $W_2(CO)_{10}(SiEt_2)_2$ and $W_2(CO)_6H_2(SiEt_2)_2$. Hoyano, J. K. Ph.D. dissertation, University of Alberta, Canada, 1971. Bennett, M. J.; Simpson, K. A. J. Am. Chem. Soc. 1971, 93, 7156. (e) (dppe)(CO)₃M(H)SiCl₃ (M = Cr, Mo, W): Schubert, U.; Kirchgassner, U.; Gronen, J.; Piana, H. *Polyhedron* **1989**, *8*, 1589. (f) (2-Ph₂PCH₂C₆H₄)₂Si=Cr(CO)₅: Handwerker, H.; Paul, M.; Blumel, J.; Zybill, C. *Angew. Chem., Int. Ed. Engl.* werker, H.; Paul, M.; Blumel, J.; Zybill, C. Angew. Chem., Int. Ed. Engl.
1993, 32, 1313. (g) [NEt₄][(CO)₅MSi(SnMe₃)₃] (M = Cr, Mo, W): Heyn, R. H.; Tilley, T. D. Inorg. Chem. 1990, 29, 4051. (h) cis-Mo(η²-H-SiHR'₂)(CO)(R₂PC₂H₄PR₂)₂ (R' = Ph, n-C₆H₁₃): Luo, X.-L.; Kubas, G.
J.; Bryan, J. C.; Burns, C. J.; Unkefer, C. J. J. Am. Chem. Soc. 1994, 116, 10312. (i) (Me₃P)₃W(H)₂I(SiMe₃): Barron, A. R.; Wilkinson, G.;
Motevalli, M.; Hursthouse, M. B. J. Chem. Soc., Dalton Trans. 1987, (Me₄ for (Grift Me₄) = 0.004 (Chem. Here, Meth. Chem. Here, Strans. (R) (Si (Si Me₃)₃)₂[N(Me₂)₄: Chisholm, M. H.; Chiu, H.-T.; Folting, K.; Huffman, J. C. *Inorg. Chem.* **1984**, *23*, 4097. (k) (R₂N)₃Ti–Si(SiMe₃)₃ (R = Me, Et): Ustinov, M. V.; Bravo-Zhivotoskii, D. A.; Kalikhman, I. D.; Vitkovskii, V. Yu.; Vyazankin, N. S.; Voronkov, M. G. *Organomet. Chem. USSR* **1989**, *2*, 664. Ovchinnikov, Yu. E.; Struchkov, Yu. T.; Ustinov, M. V.; Voronkov, M. G. *Russ. Chem. Bull.* **1993**, *8*, 1411. (l) (Me₃P)₄W(H)₂(SiH₃)₂: Green, M. L. H.; Parkin, G.; Chen, M.-Q.; Prout, K. J. Chem. Soc., Dalton Trans. 1986, 2227.

I. Cp-Free Alkyl, Alkylidene, and Alkylidyne Silyl Complexes

The complexes in Chart 1 are essentially silyl analogues of d^0 high-oxidation-state peralkyl,⁴ Schrock-type alkyl alkylidene,⁵ and alkyl alkylidyne complexes.⁵ Our initial interest in these complexes also originated in part from our desire to compare the silyl and alkyl complexes. The complexes in Chart 1 would provide a unique opportunity to compare the reactivities of alkyl and silyl ligands free of the influence of ancillary ligands. In the first section of this review, our work on the d^0 high-oxidation-state alkyl, alkylidene, and alkylidyne silyl complexes in Chart 1 is discussed.

1. Alkyl Silyl Complexes $(RCH_2)_3MSi(SiMe_3)_3$.^{6,7} The reactions to prepare $(RCH_2)_3MSi(SiMe_3)_3$ (M = Ti, $R = Me_3C$ (1a), Me_3Si (1b); M = Zr, $R = Me_3C$ (1c), Me_3Si (1d)) are shown in Scheme 1. In solution, the Zr complexes are significantly more thermally stable than the Ti analogues. However, they are all slightly light sensitive. As solids, they can be stored in the dark at room temperature for several weeks with little degradation.

There is no evidence in the NMR spectra of these complexes to suggest an agostic interaction. The X-ray structures of $(Me_3CCH_2)_3Ti-Si(SiMe_3)_3$ (1a), $(Me_3-SiCH_2)_3Ti-Si(SiMe_3)_3$ (1b), and $(Me_3CCH_2)_3Zr-Si-(SiMe_3)_3$ (1c) show a staggered conformation of the alkyl ligands with respect to the SiMe₃ groups in the silyl ligand and pseudo-tetrahedral geometry around the metal centers.

The alkyl silyl complexes $(RCH_2)_3Zr-Si(SiMe_3)_3$ (R =Me₃C (1c), Me₃Si (1d)) undergo ArNC (Ar = 2,6dimethylphenyl) insertion reactions (Scheme 2).⁸ The isocyanide inserts first into the Zr-Si bonds to give the monoinsertion products **3a**,**b**, followed by two additional insertions into the Zr-C bonds. 3a,b were isolated through crystallization and are stable under nitrogen at room temperature. The diinsertion products 4a,b were only identifiable by NMR spectrometry in situ; attempts to isolate pure products were unsuccessful. The triinsertion products **5a**,**b** are prepared either by the reaction of (RCH₂)₃Zr-Si(SiMe₃)₃ (1c,d) with 3 equiv of ArNC or by the reaction of 1 equiv of ArNC with the diinsertion products. They were crystallized from toluene. The triinsertion products **5a**,**b** are inert to further insertion, most likely due to steric hindrance, and are less susceptible to air oxidation than the monoinsertion

Scheme 2

products **3a,b**. The preferential insertion of the first isocyanide into the Zr–Si bonds in **1c,d** and its comparison with the reactions of ArNC with Zr amide silyl complexes $(R_2N)_3$ ZrSiR'₃ (**21b,c**) are discussed in section II.1.

The trialkyl chloride complexes $(RCH_2)_3M-Cl$ (**2a**– **d**) were prepared as starting materials for the alkyl silyl complexes $(RCH_2)_3M-Si(SiMe_3)_3$ (**1a**–**d**).⁹ $(Me_3CCH_2)_3$ -Zr–Cl (**2c**) was first prepared by Wengrovius and Schrock through the reaction of $(Bu^tCH_2)_2Mg$ with $(Bu^t CH_2)_2ZrCl_2(Et_2O)_2$.¹⁰ We subsequently developed several new methods to prepare $(RCH_2)_3M-Cl$ (**2a**–**d**; eqs 1–4).⁹

$$(\text{RCH}_2)_4\text{M} + \text{HCl} \rightarrow (\text{RCH}_2)_3\text{M} - \text{Cl} + \text{RCH}_3$$
 (1)
2a-c

$$M = Ti, R = Bu^{t} (2a), Me_{3}Si (2b);$$

 $M = Zr, R = Bu^{t} (2c)$

$$\operatorname{ZrCl}_{4} + \operatorname{3RCH}_{2}\operatorname{Li} \rightarrow (\operatorname{RCH}_{2})_{3}\operatorname{Zr}-\operatorname{Cl}$$
 (2)
2c,d

$$\mathbf{R} = \mathbf{Bu}^{\mathsf{t}} (\mathbf{2c}), \, \mathbf{Me}_{3}\mathbf{Si} (\mathbf{2d})$$

$$\operatorname{ZrCl}_4 + 3\operatorname{RCH}_2\operatorname{MgCl} \rightarrow (\operatorname{RCH}_2)_3\operatorname{Zr}-\operatorname{Cl} + \operatorname{MgCl}_2$$
 (3)
2c,d

$${}^{1}_{4}\operatorname{ZrCl}_{4} + {}^{3}_{4}(\operatorname{RCH}_{2})_{4}\operatorname{Zr} \to (\operatorname{RCH}_{2})_{3}\operatorname{Zr} - \operatorname{Cl} \qquad (4)$$
2c

In the studies of $(Bu^tCH_2)_3Zr-Cl$ (**2c**), we were surprised to find that it crystallizes in polymeric chains with a linear, symmetric Zr-Cl-Zr repeating unit (Figure 1). Linear M-Cl-M configurations are rare, as the halide bridges normally have M-X-M angles around 109°, consistent with sp³ hybridization of the halide bridge. Some linear chloride-bridged compounds have been reported for late transition metals with dⁿ configurations.¹¹ The ligands around each zirconium are arranged in a trigonal bipyramid. The Zr-Cl-Zr-Clchain is linear, and the C-Zr-Cl angle is 90°, as defined by the crystallographic symmetry. The zirconium and three carbon atoms are coplanar, and this plane is

^{(4) (}a) Davidson, P. J.; Lappert, M. F.; Pearce, R. Chem. Rev. 1976, 76, 219. (b) Schrock, R. R.; Parshall, G. W. Chem. Rev. 1976, 76, 243. (5) Schrock, R. R. Chem. Rev. 2002, 102, 145 and references therein.

 ⁽⁶⁾ Xue, Z.-L.; Li, L.-T.; Hoyt, L. K.; Diminnie, J. B.; Pollitte, J. L.
 J. Am. Chem. Soc. **1994**, *116*, 2169.

⁽⁷⁾ McAlexander, L. H.; Hung, M.; Li, L.-T.; Diminnie, J. B.; Xue,
Z.-L.; Yap, G. P. A.; Rheingold, A. L. *Organometallics* 1996, *15*, 5231.
(8) Wu, Z.-Z.; McAlexander, L. H.; Diminnie, J. B.; Xue, Z.-L.

⁽⁸⁾ Wu, Z.-Z.; McAlexander, L. H.; Diminnie, J. B.; Xue, Z.-I Organometallics **1998**, *17*, 4853.

^{(9) (}a) McAlexander, L. H.; Li, L.-T.; Yang, Y.-H.; Pollitte, J. L.; Xue, Z.-L. *Inorg. Chem.* **1998**, *37*, 1423. (b) Hoyt, L. K.; Pollitte, J. L.; Xue, Z.-L. *Inorg. Chem.* **1994**, *33*, 2497.

⁽¹⁰⁾ Wengrovius, J. H.; Schrock, R. R. J. Organomet. Chem. 1981, 205, 319.

Figure 1. Drawing of the linear polymeric chain in **2c** from X-ray single-crystal diffraction.⁹

perpendicular to the Zr-Cl-Zr-Cl- chain. Adjacent $(Bu^tCH_2)_3Zr$ moieties are staggered to reduce steric strain (Figure 1).

$$\begin{bmatrix} CH_2R & RCH_2 & CH_2R \\ I & Zr & CI & Zr \\ RCH_2 & CH_3R & CH_2R \end{bmatrix}_{n} R = Bu^{t}$$

2. Alkylidene Silyl Complexes $(RCH_2)_2Ta(=CHR)$ -(SiR₃) (R = Bu^t (6a), Me₃Si (6b)).^{6,12} The first stable group 5 silyl alkylidenes were prepared by the reactions in eq 5. To our knowledge, this was the first reported

(5)

 $(RCH_{2})_{3}TaCl_{2} + 2LiSiR'_{3} \xrightarrow{-HSiR'_{3}} - 2LiCl$ $R = Bu^{t}, Me_{3}Si$ $R'_{3} = (SiMe_{3})_{3}, Bu^{t}Ph_{2}$ $icological SiR'_{3} = CHR$ RCH_{2} $R'_{3} = (SiMe_{3})_{3}, R = Bu^{t}, 6a; Me_{3}Si, 6b$ $R'_{3} = Bu^{t}Ph_{2}, R = Bu^{t}, 6c; Me_{3}Si, 6d$

preferential silane elimination to form alkylidene bonds. The diastereotopic protons, H_a and H_b , of the methylene moiety in both complexes show large chemical shift differences in their ¹H NMR spectra. This is attributed to the diamagnetic anisotropy of the M–C multiple bonds.

X-ray crystal structures of the alkylidene complexes $(RCH_2)_2Ta(=CHR)[Si(SiMe_3)_3]$ (**6a**,**b**) with the $-Si-(SiMe_3)_3$ ligand show a 3-fold disorder, thus giving an average alkylidene/alkyl bond length of 1.97(3) Å in **6a** and 2.03(4) Å in **6b**, respectively. In comparison, Ta-C and Ta=C bond lengths in $[Ta(=CHBu^t)(CH_2Bu^t)-(PMe_3)_2]_2(\mu-N_2)$ are 2.285(10) and 1.932(9) Å, respectively.¹³ The Ta-Si distances of 2.559(16)-2.680(15) Å in **6a** and 2.611(7) Å in **6b** are similar to other reported Ta-Si distances.¹⁴

Yu et al.

The alkylidene complexes $(RCH_2)_2Ta(=CHR)(SiBut^-Ph_2)$ (**6c**,**d**), with the $-SiBut^Ph_2$ ligand, are thermally unstable. They undergo preferential silane eliminations through α -H abstraction, as in the formation of silyl alkylidenes, to give the bis(alkylidene) bis(phosphine) complexes $(RCH_2)Ta(=CHR)_2(PMe_3)_2$ ($R = But^{t}$ (**7a**), Me₃Si (**7b**)) in the presence of PMe₃ and, for **6d**, the bridging dimeric bis(alkylidyne) complex (Me₃SiCH₂)₄-Ta₂(μ -CSiMe₃)₂ (**8**) in the absence of PMe₃ (Scheme 3).¹⁵ **6d** decomposes within minutes to **8**. The d⁰ alkylidyne complex **8** was first reported by Wilkinson and co-workers.¹⁶ The silyl neopentylidene (But^tCH₂)₂Ta(= CHBut^t)(SiBut^tPh₂) (**6c**), as observed by NMR spectrometry, decomposes slowly over several hours to give unidentified products.

The reasons for the silane elimination to be preferred over alkane elimination are not clear. Earlier studies show that early-transition-metal (especially d^0)-silicon bonds are weaker than metal-hydrocarbyl bonds.¹⁷ Our thermodynamic analysis of silane vs alkane elimination from (RCH₂)₃Ta(Cl)[Si(SiMe₃)₃] suggests that the silane elimination may be slightly thermodynamically less favored, mainly because H–Si bonds are much weaker than H–C bonds. Preferential silane elimination could be attributed to a kinetic effect. Silane elimination is preferred over methane elimination by ca. 4–5 kcal/mol in the calculated activation free energy.

Addition of 2 equiv of HCl to the alkylidyne complex $(Me_3SiCH_2)_4Ta_2(\mu$ -CSiMe_3)₂ (**8**) gives the unstable bis-(alkylidene) complex $(Me_3SiCH_2)_4(Cl)_2Ta_2(=CHSiMe_3)_2$ (**9a**).¹⁸ Addition of excess PMe₃ to the solution containing this unstable bridging bis(alkylidene) complex leads to the stable nonsymmetric bis(alkylidyne) complex

^{(11) (}a) Bino, A.; Cotton, F. A.; Felthouse, T. R. Inorg. Chem. 1979, 18, 2599. (b) Butler, L. G.; Zietlow, M. H.; Che, C.-M.; Schaefer, W. P.; Sridhar, S.; Grunthaner, P. J.; Swanson, B. I.; Clark, R. J. H.; Gray, H. B. J. Am. Chem. Soc. 1988, 110, 1155. (c) Jin, S.; Ito, T.; Toriumi, K.; Yamashita, M. Acta Crystallogr. 1989, C45, 1415. (d) Clark, R. J. H.; Kurmoo, M.; Dawes, H. M.; Hursthouse, M. B. Inorg. Chem. 1986, 25, 409. (e) Yamashita, M.; Toriumi, K. Inorg. Chim. Acta 1990, 178, 143. (f) Bellitto, C.; Dessy, G.; Fares, V. Inorg. Chem. 1985, 24, 2815. (g) O'Connor, C. J.; Romananch, R. J.; Robertson, D. M.; Eduok, E. E.; Fronczek, F. R. Inorg. Chem. 1983, 22, 449.

⁽¹²⁾ Li, L.-T.; Diminnie, J. B.; Liu, X.-Z.; Pollitte, J. L.; Xue, Z.-L. Organometallics 1996, 15, 3520.

^{(13) (}a) Churchill, M. R.; Wasserman, H. J. *Inorg. Chem.* **1981**, *20*, 2899. (b) Turner, H. W.; Fellmann, J. D.; Rocklage, S. M.; Schrock, R. R.; Churchill, M. R.; Wasserman, H. J. *J. Am. Chem. Soc.* **1980**, *102*, 7809.

⁽¹⁴⁾ See the following examples. (a) 2.624(12)-2.633(2) Å in Cp₂-Ta(H)(SiMe₂H) and 2.639(4) Å in Cp₂Ta(PMe₃)(SiMe₃): Jiang, Q.; Carroll, P. J.; Berry, D. H. *Organometallics* **1991**, *10*, 3648. (b) 2.651-(4) Å in Cp₂Ta(H)₂SiPhMe₂: Curtis, M. D.; Bell, L. G.; Butler, W. M. *Organometallics* **1985**, *4*, 701. (c) 2.669(4) Å in (C₅Me₅)Ta(SiMe₃)Cl₃: Arnold, J.; Shina, D. N.; Tilley, T. D.; Arif, A. M. *Organometallics* **1986**, *5*, 2037.

⁽¹⁵⁾ Diminnie, J. B.; Hall, H. D.; Xue, Z.-L. Chem. Commun. 1996, 2383.

⁽¹⁶⁾ Mowat, W.; Wilkinson, G. J. Chem. Soc., Dalton Trans. 1973, 1120.

^{(17) (}a) King, W. A.; Marks, T. J. *Inorg. Chim. Acta* **1995**, *229*, 343.
(b) Jiang, Q.; Pestana, D. C.; Carroll, P. J.; Berry, D. H. *Organometallics* **1994**, *13*, 3679. (c) Koga, N.; Morokuma, K. *J. Am. Chem. Soc.* **1993**, *115*, 6883.

^{(18) (}a) Li, L.-T.; Xue, Z.-L.; Yap, G. P. A.; Rheingold, A. L. *Organometallics* **1995**, *14*, 4992. (b) Liu, X.-Z.; Li, L.-T.; Diminnie, J. B.; Yap, G. P. A.; Rheingold, A. L.; Xue, Z.-L. *Organometallics* **1998**, *17*, 4597.

Scheme 4

R = Bu^t, 9c; Me₃Si, 9b

 $(Me_3P)_2(Cl)Ta(\mu$ -CSiMe_3)_2Ta(Cl)(CH₂SiMe_3)_2 (**10**). Substitution of the chlorides in the bis(alkylidene) complex **9a** by LiSi(SiMe_3)_3 or LiCH₂SiMe_3 and in the bis(alkylidyne) complex **10** by LiCH₂SiMe₃ converts them back to $(Me_3SiCH_2)_4Ta_2(\mu$ -CSiMe_3)_2 (**8**; Scheme 4).

The unstable bis(alkylidene) complex 9a decomposes by the elimination of 1 equiv of SiMe₄ to give the alkylidene alkylidyne complex $(Me_3SiCH_2)_3(Cl)_2Ta_2(=$ CHSiMe₃)(≡CSiMe₃) (11). NOESY studies suggest that the most likely structure of this complex has bridging chloride and alkylidyne ligands (Scheme 4). The α -H abstraction reaction to give this complex was found to follow first-order kinetics with rate constants ranging between $[4.00(0.13)] \times 10^{-5} \text{ s}^{-1}$ at 217(1) K to [1.58-(0.05)] \times 10⁻³ s⁻¹ at 244(1) K. Kinetic studies of this alkylidene (9a) \rightarrow alkylidyne (11) conversion give an activation enthalpy of $\Delta H^{\sharp} = 14.1(0.8)$ kcal/mol and an activation entropy of $\Delta S^{\ddagger} = -12(3)$ eu. The work here is, to our knowledge, the second kinetic study of the alkylidene \rightarrow alkylidyne conversion after our earlier study of the conversion of (Me₃SiCH₂)₃Ta=CHSiMe₃ (12b) to $(Me_3SiCH_2)_4Ta_2(\mu$ -CSiMe₃)₂ (8), to be discussed below.¹⁹ The negative ΔS^{\ddagger} value indicates a transition state where rotation of the bonds involved in the reaction is restricted and the symmetry of the molecule descends. Such negative ΔS^{\sharp} values have been observed in other C-H bond activation processes and are attributed to concerted four-center transition states, especially those involving cyclometalation.²⁰

The reaction of the alkylidene alkylidyne complex (Me₃SiCH₂)₃(Cl)₂Ta₂(=CHSiMe₃)(≡CSiMe₃) (**11**) with 2

equiv of LiSi(SiMe₃)₃ gives the silyl alkylidyne (Me₃-SiCH₂)₃[(Me₃Si)₃Si]Ta₂(μ -CSiMe₃)₂ (**13**). This is a silyl analogue of the bridging alkyl alkylidyne complex **8**. These results are summarized in Scheme 4.

At -78 °C, (RCH₂)₂Ta(=CHR)[Si(SiMe₃)₃] (R = Bu^t (**6a**), Me₃Si (**6b**)) were found to react with 1 equiv of HCl to form the unstable purple complexes (RCH₂)₃Ta-(Cl)[Si(SiMe₃)₃] (R = Bu^t (**14a**), Me₃Si (**14b**)). In the reaction of (Me₃SiCH₂)₃TaCl₂ with LiSi(SiMe₃)₃ to give **6b** at -78 °C discussed earlier, the purple alkyl chloride complex **14b** was observed. Reactions of the purple **14b** with LiSi(SiMe₃)₃ and LiCH₂SiMe₃ form (Me₃SiCH₂)₂-Ta(=CHSiMe₃)[Si(SiMe₃)₃] (**6b**) and (Me₃SiCH₂)₂Ta(=CHSiMe₃)[Si(SiMe₃)₃] (**6b**) and (Me₃SiCH₂)₃Ta=CHSiMe₃ (**12b**), respectively.¹² Decomposition of the deep purple complex via preferential silane elimination gives the unstable bis(alkylidene) complex (Me₃SiCH₂)₄-(Cl)₂Ta₂(=CHSiMe₃)₂ (**9a**). Kinetic and mechanistic studies of these reactions will be presented in the next section.

3. Kinetic and Mechanistic Studies of the Formation of $(RCH_2)_3Ta=CHR$ ($R = Bu^t$ (12a), Me₃Si (12b))¹⁹ and (Me₃SiCH₂)₂Ta(=CHSiMe₃)[Si(SiMe₃)₃] (6b):¹² Comparison of Alkyl Alkylidenes and Silyl Alkylidenes. Alkyl alkylidene complexes (RCH₂)₃Ta= CHR ($R = Bu^t$ (12a), Me₃Si (12b)) and their silyl analogues, the silyl alkylidene complexes (Me₃SiCH₂)₂-Ta(=CHSiMe₃)[Si(SiMe₃)₃] (6b), make an ideal case to compare the reactivities of alkyl and silyl ligands and the formation of alkyl and silyl alkylidene complexes.

Routes 1 and 2 in Scheme 5 have been among the possible pathways considered in the formation of the archetypical alkyl alkylidene complexes $(RCH_2)_3Ta = CHR (12a,b)$ from $(RCH_2)_3TaCl_2$.²¹ In the first step, one chloride ligand in $(RCH_2)_3TaCl_2$ is replaced to give the tetraalkyl chloro complexes $(RCH_2)_4TaCl (15a,b)$. In route 1, the remaining chloride ligand in 15a,b is

^{(19) (}a) Li, L.-T.; Hung, M.-L.; Xue, Z.-L. J. Am. Chem. Soc. **1995**, 117, 12746. See also ab initio quantum-chemical studies of the decompositions of peralkyl complexes $M(CH_2Bu^{t})_4$ (Ti, Zr, Hf) and MMe_5 (M = Nb, Ta). (b) Wu, Y.-D.; Peng, Z.-H.; Xue, Z.-L. J. Am. Chem. Soc. **1996**, 118, 9772. (c) Wu, Y.-D.; Peng, Z.-H.; Chan, K. W. K.; Liu, X.-Z.; Tuinman, A. A.; Xue, Z.-L. Organometallics **1999**, 18, 2081. (d) Wu, Y.-D.; Chan, K. W. K.; Xue, Z.-L. J. Am. Chem. Soc. **1995**, 117, 9259.

⁽²⁰⁾ Rothwell, I. P. Polyhedron 1985, 4, 177.

⁽²¹⁾ See, e.g.: Crabtree, R. H. *The Organometallic Chemistry of the Transition Metals*, 3rd ed.; Wiley: New York, 2001; pp 301–302.

(Bu^tCH₂)₃Ta=CHBu^t

replaced to give the pentaalkyl complexes **16a**,**b**, followed by α -H abstraction to give the alkylidene ligands in **12a**,**b**. In other words, the formation of the alkylidene ligands *is preceded* by the substitution of chlorides in **15a**,**b**. In route 2, (RCH₂)₄TaCl (**15a**,**b**) undergoes α -H abstraction reactions to give the alkylidene bonds in **9b**,**c** *prior to* the substitution of the chloride ligands to yield **12a**,**b**.¹⁹

We started our studies of the mechanistic pathways in the formation of alkylidene complexes when we were confirming the formation of a small amount of (Me₃- $SiCH_2$ ₄ $Ta_2(\mu$ -CSiMe₃)₂ (8) as a byproduct in the preparation of $(Me_3SiCH_2)_2Ta(=CHSiMe_3)[Si(SiMe_3)_3]$ (6b) from the reaction of (Me₃SiCH₂)₃TaCl₂ with LiSi-(SiMe₃)₃. 8 was prepared earlier from TaCl₅ and LiCH₂-SiMe₃.¹⁶ In the preparation of this bis(alkylidyne) complex, we noticed two peaks in the ¹H and ¹³C NMR spectra of the reaction mixture, which disappeared with time. Further studies confirmed that these peaks were those of $Ta(CH_2SiMe_3)_5$ (**16b**), an unstable pentaalkyl intermediate.¹⁹ 16b converts first to the alkyl alkylidene complex (Me₃SiCH₂)₃Ta=CHSiMe₃ (12b). This α-H abstraction reaction follows first-order kinetics, with rate constants ranging from $[1.028(0.008)] \times 10^{-4} \text{ s}^{-1}$ at 301(1) K to [1.83(0.02)] \times $10^{-3}~s^{-1}$ at 326(1) K. The activation parameters thus derived for this conversion are $\Delta H^{\ddagger} = 21.6(1.4)$ kcal/mol and $\Delta S^{\ddagger} = -5(5)$ eu.

(Me₃SiCH₂)₃Ta=CHSiMe₃ (**12b**) is unstable and decomposes to the bridging alkylidyne complex (Me₃-SiCH₂)₄Ta₂(μ -CSiMe₃)₂ (**8**) through the abstraction of the α -alkylidene hydrogen atom to give SiMe₄. This conversion follows second-order kinetics with rate constants ranging from [9.75(0.11)] × 10⁻⁶ M⁻¹ s⁻¹ at 313.2-(0.1) K to [6.02(0.6)] × 10⁻⁵ M⁻¹ s⁻¹ at 373.2(0.1) K. The activation parameters for this second-order reaction are $\Delta H^{\ddagger} = 6.2(0.3)$ kcal/mol and $\Delta S^{\ddagger} = -61.5(0.8)$ eu. Small activation enthalpy and large, negative activation entropy values have been observed in associative reactions that follow second-order kinetics. These results are consistent with the dimerization of **12b** to give [(Me₃-

Scheme 7. Possible Pathways in the Formation of Silyl Alkylidene Complexes

SiCH₂)₆Ta₂(μ -CHSiMe₃)₂] (**17**) in the transition state, followed by fast elimination of SiMe₄. The alkyl Ta(CH₂-SiMe₃)₅ (**16b**) \rightarrow alkylidene (Me₃SiCH₂)₃Ta=CHSiMe₃ (**12b**) \rightarrow alkylidyne (Me₃SiCH₂)₄Ta₂(μ -CSiMe₃)₂ (**8**) conversions are summarized in Scheme 6.

We subsequently investigated the formation of the neopentylidene species $(Bu^tCH_2)_3Ta=CHBu^t$ (**12a**) and whether $Ta(CH_2Bu^t)_5$ (**16a**) is the intermediate to **12a**. We thought that **16a**, which was more crowded than $Ta(CH_2SiMe_3)_5$ (**16b**), would be perhaps too unstable to be observed at room temperature. We thus decided to prepare deuterium-labeled $Ta(CD_2Bu^t)_5$ (**16a**- d_{10}), and the kinetic isotope effect in α -H/D abstraction reactions was expected to make the half-life of **16a**- d_{10} longer than that of $Ta(CH_2Bu^t)_5$ (**16a**). The reaction of $LiCD_2Bu^t$ with $(Bu^tCD_2)_2TaCl_3$, which was prepared from $TaCl_5$ and $Zn(CD_2Bu^t)_2$, gave $Ta(CD_2Bu^t)_5$ (**16a**- d_{10}). **16a**- d_{10} was identified in the ¹H NMR spectrum of the reaction mixture at 23 °C, which decomposed to $(Bu^tCD_2)_3Ta=CDBu^t$ (**12a**- d_7).²²

We then investigated the reaction of $(Bu^tCH_2)_4$ TaCl with LiCH₂Bu^t at -40 °C, as the low temperature was expected to slow the α -H abstraction reaction in Ta(CH₂-Bu^t)₅ (**16a**) to give (Bu^tCH₂)₃Ta=CHBu^t (**12a**). **16a** was observed in the reaction mixture, and it decomposed to **12a**.¹⁹ The mechanistic pathways in the formation of

⁽²²⁾ Xue, Z.-L. Unpublished results.

Scheme 8. Mechanistic Pathway in the Formation of Silyl Alkylidene Complex 6b

the Schrock-type alkylidene complexes $(RCH_2)_3Ta = CHR$ (**12a**,**b**) are summarized in Scheme 6.

In the formation of silyl analogues of alkyl alkylidene complexes $(RCH_2)_2Ta(=CHR)[Si(SiMe_3)_3]$ (**6a,b**), the deep purple intermediates $(RCH_2)_3Ta(Cl)[Si(SiMe_3)_3]$ (**14a,b**) were observed. **14b** was further studied to probe the mechanistic pathway to the silyl alkylidene complex **6b**. We considered the two possible pathways shown in Scheme 7.

The unstable purple intermediate $(Me_3SiCH_2)_3Ta(Cl)$ -[Si(SiMe₃)₃] (**14b**) could also be prepared from the addition of HCl to $(Me_3SiCH_2)_2Ta(=CHSiMe_3)[Si(SiMe_3)_3]$ (**6b**).¹² It decomposes above -90 °C to give HSi(SiMe_3)_3 and $(Me_3SiCH_2)_4(Cl)_2Ta_2(=CHSiMe_3)_2$ (**9a**), the dimer of the chloro alkylidene " $(Me_3SiCH_2)_2Ta(=CHSiMe_3)$ -Cl" (**9b**). Thermal decomposition of **14b** was monitored by variable-temperature ¹H and ¹³C NMR and was found to follow first-order kinetics with rate constants ranging from [1.92(0.05)] $\times 10^{-5}$ s⁻¹ at 227(1) K to [1.20-(0.04)] $\times 10^{-3}$ s⁻¹ at 255(1) K. The activation parameters for this α -H abstraction by the silyl ligand in (Me₃-SiCH₂)₃Ta(Cl)[Si(SiMe₃)₃] (**14b**) are $\Delta H^{\ddagger} = 17.2(1.0)$ kcal/mol and $\Delta S^{\ddagger} = -4(4)$ eu.

The reaction of $(Me_3SiCH_2)_3Ta(Cl)[Si(SiMe_3)_3]$ (14b) with LiSi(SiMe_3)_3 gives $(Me_3SiCH_2)_2Ta(=CHSiMe_3)[Si-(SiMe_3)_3]$ (6b) and HSi(SiMe_3)_3. The rates of this reaction were found to be the same as those of the decomposition of 14b to $(Me_3SiCH_2)_4(Cl)_2Ta_2(=CHSiMe_3)_2$ (9a).

These observations suggest that the α -H abstraction by the silvl ligand in (Me₃SiCH₂)₃Ta(Cl)[Si(SiMe₃)₃] (14b) to give the chloro alkylidene species "(Me₃SiCH₂)₂-Ta(=CHSiMe₃)Cl["] (9b) is the rate-determining step. 9b then either reacts with LiSi(SiMe₃)₃ to yield (Me₃-SiCH₂)₂Ta(=CHSiMe₃)[Si(SiMe₃)₃] (**6b**) or dimerizes to give $(Me_3SiCH_2)_4(Cl)_2Ta_2(=CHSiMe_3)_2$ (9a), which we had prepared independently from the reaction of (Me₃- $SiCH_2$ ₄ $Ta_2(\mu$ -CSiMe₃)₂ (8) with HCl (Scheme 4). 9a further reacts with LiSi(SiMe₃)₃ to give 8. The formations of both 6b and 8 share the same rate-determining step, followed by fast reactions with LiSi(SiMe₃)₃ to give these two complexes, which were observed as the major (6b) and minor (8) products, respectively, in the reaction of (Me₃SiCH₂)₃TaCl₂ and 2 equiv of LiSi(SiMe₃)₃. These findings are summarized in Scheme 8.

It is interesting to note that the alkyl alkylidenes $(RCH_2)_3Ta=CHR$ (**12a**,**b**, Scheme 6) and the silyl alkylidene (Me₃SiCH₂)₂Ta(=CHSiMe₃)[Si(SiMe₃)₃] (**6b**, Scheme 8) adopt different pathways in their formation. $(RCH_2)_4$ -TaCl (**15a**,**b**) undergo chloride substitution first to give the pentaalkyls Ta(CH₂R)₅ (**16a**,**b**), followed by α -H abstraction to give the alkylidene ligands in **12a**,**b** (Scheme 9). In contrast, (Me₃SiCH₂)₃Ta(Cl)[Si(SiMe₃)₃] (**14b**) undergoes α -H abstraction to give the alkylidene

ligand in " $(Me_3SiCH_2)_2Ta(Cl)$ (=CHSiMe₃)" (**9b**) prior to the substitution of chloride ligand by Si(SiMe₃)₃⁻ in the

second step to give **6b** (Scheme 9). **4. Alkylidyne Silyl Complexes (Bu^tCH_2)_2W(\equiv C-Bu^t)SiR'_3 and an Unusual Equilibrium between Alkylidyne and Bis(alkylidene) Complexes.²³ Alkylidene silyl complexes discussed in Section I.2 are prepared primarily through abstraction of \alpha-H atoms in alkyl ligands by silyl ligands. The alkylidyne complexes (Bu^tCH_2)_2W(\equiv CBu^t)SiR'_3 (R'_3 = (SiMe_3)_3, 18a; Bu^tPh_2, 18b**) are prepared using $(Bu^tCH_2)_3W\equiv CBu^t$ as a starting material, and the W \equiv CR moiety is retained during the synthesis.^{6,23} Addition of a HCl/Et₂O solution to $(Bu^t-CH_2)_3W\equiv CBu^t$ gives $(Bu^tCH_2)_2W(\equiv CBu^t)Cl$ (19), and this chloro alkylidyne complex is subsequently used in situ to yield the silyl alkylidyne complexes 18a,b through its reactions with LiSiR'₃ (Scheme 10).

Both **18a** and **18b** were characterized by ¹H, ¹³C, and ²⁹Si NMR and elemental analysis. Attempts to obtain

the X-ray structures of these two alkylidyne silyl complexes were not successful. Both structures are severely disordered. 24

An unusual equilibrium was observed between the alkylidyne $(Bu^tCH_2)_2W(\equiv CBu^t)(SiBu^tPh_2)$ (**18b**) and its bis(alkylidene) tautomer $(Bu^tCH_2)W(=CHBu^t)_2(SiBu^t-Ph_2)$ (**18c**, eq 6).²³ Exchange of two α -hydrogen atoms

has been observed when (ButCH₂)₃W≡CSiMe₃ is converted to (Bu^tCH₂)₂W(CH₂SiMe₃)(≡CBu^t) with heating.²⁵ Deuterium-labeling and kinetic studies indicate that such an exchange is stepwise, and the two migrating α -hydrogen atoms are from the same Bu^tCH₂ ligand. The bis(alkylidene) intermediate "(Bu^tCH₂)₂W(=CHSi-Me₃)(=CHBu^t)" was thus proposed as an intermediate in the transfer (Scheme 11). It was, however, not observed in the exchange, presumably because its energy is much higher than those of the two alkylidyne complexes. A similar exchange was observed in (Bu^tCH₂)₃-W≡¹³CBu^{t.26} The ¹³C-labeled alkylidyne carbon atom was found to quickly scramble among the four α -carbon atoms with a nearly statistical distribution of 25% ¹³C labeling on each α -carbon atom. This exchange is also believed to involve a bis(alkylidene) intermediate (Scheme 11). In the d² bis(alkylidene) complex Os(=CHBu^t)₂(CD₂-But)2, deuterium-scrambled products were observed in the NMR spectra, and the exchange is believed to involve an alkylidyne intermediate.²⁷ However, direct observation of such an exchange between bis(alkylidene) and alkylidyne complexes had not been reported.

The equilibrium between the silyl alkylidyne complex $(Bu^tCH_2)_2W(\equiv CBu^t)(SiBu^tPh_2)$ (**18b**) and its silyl bis-(alkylidene) tautomer $(Bu^tCH_2)W(\equiv CHBu^t)_2(SiBu^tPh_2)$ (**18c**) (eq 6) is, to our knowledge, the first direct observation of such an exchange. Thermodynamic studies of the equilibrium gave the equilibrium constants $K_{eq} = [18b]/[18c]$, which range from 4.590(0.006) at 237(1) K to 3.34(0.05) at 287(1) K, indicating that the alkylidyne tautomer is favored and that increasing the temperature shifts the equilibrium toward bis(alkylidene) tautomer **18c**. The enthalpy and entropy of the exchange **18c** \Rightarrow **18b** (eq 6) that are obtained from the equilibrium constants K_{eq} indicate that the conversion of the bis(alkylidene) to the alkylidyne is slightly exothermic, and it outweighs the entropy change ($\Delta S^{\circ} = -0.6(0.8)$ eu) to give $\Delta G^{\circ} = -0.7(0.4)$ kcal/mol at 287(1) K in favor of **18b**.

It is interesting to note that the *silyl* alkylidyne complex **18b** is thermodynamically close in energy to its *silyl* bis(alkylidene) isomer **18c**. In the α -H exchange in the *alkyl* alkylidyne (Bu^tCH₂)₃W=CSiMe₃ \Rightarrow (Bu^tC-H₂)₂W(CH₂SiMe₃)(=CBu^t) (Scheme 11), the proposed *alkyl* bis(alkylidene) intermediate "(Bu^tCH₂)₂W(=CH-SiMe₃)(=CHBu^t)" is so much higher in energy than the ground-state alkylidyne structure that this intermediate is not observed.^{25–27}

Professor Zhen-Yang Lin of the Hong Kong University of Science and Technology and co-workers have conducted density functional molecular orbital calculations at the B3LYP level of the relative stabilities of the tautomeric pairs of transition-metal alkylidyne (CH₃)₂M- $(\equiv CH)(X)$ and bis(alkylidene) $(CH_3)M(=CH_2)_2(X)$ complexes (M = W, Mo, Os, Ru; X = Cl, CH₃, CF₃, SiH₃, SiF_3).²⁸ The calculations indicate that the relative stabilities of the bis(alkylidene) tautomers increase with the increasing π -accepting ability of X for the d⁰ W and Mo complexes.^{25,26} When X is a silyl ligand, it is found that the W or Mo tautomeric pairs have similar stabilities. These results have been explained in terms of π interaction between the ligand X and the electron density in the metal-alkylidyne/alkylidene bonds. For the d² Os and Ru complexes, the bis(alkylidene) tautomers are more stable no matter what X is.²⁷ The stabilities of the bis(alkylidene) tautomers for these d² metal complexes have been related to the bonding characteristics of the orbital that accommodates the two metal d electrons.

5. Reaction of O₂ with the Tautomers (Bu^tCH₂)W-(=CHBu^t)₂(SiBu^tPh₂) (18c) \Rightarrow (Bu^tCH₂)₂W(=CBu^t)-(SiBu^tPh₂) (18b).²³ Reactions of oxygen with metal complexes play important roles in biological and catalytic processes.²⁹ These reactions usually involve dⁿ metals, and oxidations of metals are often the key steps

⁽²³⁾ Chen, T.-N.; Wu, Z.-Z.; Li, L.-T.; Sorasaenee, K. R.; Diminnie, J. B.; Pan, H.-J.; Guzei, I. A.; Rheingold, A. L.; Xue, Z.-L. *J. Am. Chem. Soc.* **1998**, *120*, 13519.

⁽²⁴⁾ Chen, T.-N., Ph.D. dissertation, The University of Tennessee, 2002.

⁽²⁵⁾ Caulton, K. G.; Chisholm, M. H.; Streib, W. E.; Xue, Z.-L. J. Am. Chem. Soc. 1991, 113, 6082.

⁽²⁶⁾ Xue, Z.-L.; Chuang, S.-H.; Caulton, K. G.; Chisholm, M. H. Chem. Mater. **1998**, *10*, 2365.

⁽²⁷⁾ LaPointe, A. M.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1995, 117, 4802.

⁽²⁸⁾ Choi, S.-H.; Lin, Z.-Y.; Xue, Z.-L. Organometallics 1999, 18, 5488.

in the reaction. There have been few studies of reactions of O_2 with d^0 metal complexes.³⁰ Recently, reactions of O_2 with d^0 metal complexes have been shown to yield metal oxide thin films with high dielectric constants as microelectronic gate materials.³¹ The mechanistic pathways in these reactions are, however, not known.

We are particularly interested in the reaction of O_2 with d^0 silyl complexes, where both the metal and silicon are oxophilic. An equilibrium mixture of $(Bu^tCH_2)W(=$ CHBu^t)₂(SiBu^tPh₂) (**18c**) \rightleftharpoons (Bu^tCH₂)₂W(=CBu^t)(SiBu^t-Ph₂) (**18b**) was found to react with O_2 to give (Bu^t-CH₂)₂W(=O)[=CBu^t(SiBu^tPh₂)] (**20**) (Scheme 12).²³

In this reaction with O₂, the silyl ligand in **18b**, **c** migrates to the α -C of the alkylidyne ligand to give a substituted alkylidene complex (Scheme 12). To our knowledge, such a silyl migration reaction has not been reported. The product **20** is thermally stable at room temperature and undergoes further reaction with O₂ to give unknown products. The siloxy complex (Bu^tCH₂)₂W(\equiv CBu^t)(OSiBu^tPh₂) was prepared from (Bu^tCH₂)₂W(\equiv CBu^t)Cl and LiOSiBu^tPh₂.²⁴ It is stable and does not convert to (Bu^tCH₂)₂W(\equiv OBu^t(SiBu^tPh₂)] (**20**). (Bu^t-CH₂)₂W(\equiv CBu^t)(OSiBu^tPh₂) as an intermediate to **20** could thus be ruled out. The mechanism of this reaction is not clear.

II. Cp-Free Amide and Imide Silyl Complexes

Our focus expanded to include new d⁰ early-transition-metal amide and imide silyl complexes.^{32–34} Few

Figure 2. Molecular drawing of **21c**•0.5THF from X-ray single-crystal diffraction.³²

 d^0 Cp-free amide/imide silyl complexes have been reported. The metal amide and imide silyl complexes have been studied to compare them with alkyl and alkylidene silyl complexes. Their reactivities toward O_2 and isocyanides have also been investigated.

1. Group 4 Amide Silyl and Disilyl Complexes.^{32,34} (R_2N)₃Ti–Si(SiMe₃)₃ complexes (R = Me, Et) have been reported by Ustinov, Ovchinnikov, and co-workers.^{3k} Reactions of (Me_2N)₃M–Cl³⁵ with LiSiR'₃ yield (Me_2-N)₃M–SiR'₃ (M = Ti, $R'_3 = Bu^tPh_2$ (**21a**); M = Zr, $R'_3 =$ (SiMe₃)₃ (**21b**), Bu^tPh₂ (**21c**); M = Hf, $R'_3 =$ (SiMe₃)₃ (**21d**), Bu^tPh₂ (**21e**)) in our preparation of these amide silyl complexes (eq 7).³² **21c**,**e**, which are less bulky than

21b,**d**, exist as the THF adducts $(Me_2N)_3Zr-SiBu^tPh_2 \cdot 0.5THF$ (**21c** $\cdot 0.5THF$) and $(Me_2N)_3Hf-SiBu^tPh_2 \cdot nTHF$ ($n = 0.5, 1, 21e \cdot nTHF$). The X-ray crystal structure of **21c** $\cdot 0.5THF$ shows that two back-to-back molecules share one THF molecule which coordinates to the Zr atoms (Figure 2). The THF ligand is in a position trans to the silyl ligand in this distorted trigonal-bipyramidal structure. The structure of **21e** $\cdot 0.5THF$ is similar to that of **21e** $\cdot 0.5THF$, except that there is one THF ligand per complex.

^{(29) (}a) Mimoun, H. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.; Pergamon Press: Oxford, U.K., 1987; Vol. 6, p 317. (b) Grasselli, R. K.; Burrington, J. D. *Adv. Catal.* **1981**, *30*, 133. (c) Martell, A. E. *Pure Appl. Chem.* **1983**, *55*, 125. (d) Jones, R. D.; Summerville, D. A.; Basolo, F. *Chem. Rev.* **1979**, *79*, 139.

^{(30) (}a) Labinger, J. A.; Hart, D. W.; Seibert, W. E.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 3851. (b) Blackburn, T. F.; Labinger, J. A.; Schwartz, J. Tetrahedron Lett. 1975, 35, 3041. (c) Gibson, T. Organometallics 1987, 6, 918. (d) Brindley, P. B.; Scotton, M. J. J. Chem. Soc., Perkin Trans. 2 1981, 419. (e) Van Asselt, A.; Santarsiero, B. D.; Bercaw, J. E. J. Am. Chem. Soc. 1986, 108, 8291. (f) Coughlin, E. B.; Bercaw, J. E. Organometallics 1992, 11, 465. (g) Lubben, T. V.; Wolczanski, P. T. J. Am. Chem. Soc. 1987, 109, 424. (h) Wang, R.-J.; Folting, K.; Huffman, J. C.; Chamberlain, L. R.; Rothwell, I. P. Inorg. Chim. Acta 1986, 120, 81. (i) Gibson, V. C.; Redshaw, C.; Walker, G. L. P.; Howard, J. A. K.; Hoy, V. J.; Cole, J. M.; Kuzmina, L. G.; De Silva, D. S. J. Chem. Soc., Dalton Trans. 1999, 161. (j) Brindley, P. B.; Hodgson, J. C. J. Organomet. Chem. 1974, 65, 57. (k) Kim, S.-J.; Jung, I. N.; Yoo, B. R.; Cho, S.; Ko, J.; Kim, S. H.; Kang, S. O. Organometallics 2001, 20, 1501. (l) Schaverien, C. J.; Orpen, A. G. Inorg. Chem. 1991, 30, 4968. (m) Schaverien, C. J. J. Chem. Soc., Chem. Commun. 1991, 458. (o) Adam, W.; Putterlik, J.; Schuhmann, R. M.; Sundermeyer, J. Organometallics 1996, 15, 4586. (p) Vetter, W. M.; Sen, A. Organometallics 1991, 10, 244. (q) Van Asselt, A.; Trimmer, M. S.; Henling, L. M.; Bercaw, J. E. J. Am. Chem. Soc. 1988, 110, 8254. (r) Wu, Z.-Z.; Cai, H.; Yu, X.-H.; Blanton, J. R.; Diminnie, J. B.; Pan, H.-J.; Xue, Z.-L. Organometallics 2002, 21, 3973.

^{(31) (}a) Son, K.-A.; Mao, A. Y.; Sun, Y.-M.; Kim, B. Y.; Liu, F.; Kamath, A.; White, J. M.; Kwong, D. L.; Roberts, D. A.; Vrtis, R. N. *Appl. Phys. Lett.* **1998**, *72*, 1187. (b) Chiu, H.-T.; Wang, C.-N.; Chuang, S.-H. *Chem. Vap. Deposition* **2000**, *6*, 223.

⁽³²⁾ Wu, Z.-Z.; Diminnie, J. B.; Xue, Z.-L. Inorg. Chem. 1998, 37, 6366.

⁽³³⁾ Wu, Z.-Z.; Xue, Z.-L. Organometallics 2000, 19, 4191.

⁽³⁴⁾ Wu, Z.-Z.; Diminnie, J. B.; Xue, Z.-L. J. Am. Chem. Soc. 1999, 121, 4300.

⁽³⁵⁾ Wu, Z.-Z.; Diminnie, J. B.; Xue, Z.-L. *Inorg. Chem.* **1998**, *37*, 2570.

Figure 3. Molecular drawing of **22a** from X-ray singlecrystal diffraction.³⁴

The addition of $(Me_2N)_3Zr-SiBu^tPh_2$ (**21c**) to a solution of LiSiBu^tPh₂ in a small amount of toluene at room temperature gives the anionic bis(silyl) complex $(Me_2N)_3$ -Zr(SiBu^tPh₂)₂⁻ (**22a**; Figure 3) as a crystalline solid.³⁴ **22a** is, to our knowledge, the first reported Cp-free d⁰ bis(silyl) complex. It is involved in an exchange with **21c** and SiBu^tPh₂⁻ (eq 8). The dynamic NMR of this

exchange reaction gives the estimated free energy of activation $\Delta G^{\ddagger} = 14.1(0.5)$ kcal/mol for the exchange at the coalescence temperature of 20 °C. The exchange in eq 8 is a rare example of the observation and isolation of an intermediate in the associative ligand substitution of a d⁰ complex. The structure of the bis(silyl) anion **22a** adopts a trigonal-bipyramidal (TBP) geometry with the silyl ligands in axial positions. The Si–Zr–Si bond angle of 177.93(5)° is close to linear. The Zr–Si bond length of 2.9331(14) Å is, to our knowledge, the longest reported Zr–Si bond.

A similar silyl exchange was also observed when SiBu^tPh₂⁻ was added to (Me₂N)₃Zr–Si(SiMe₃)₃ (**21b**) to give **21c** and Si(SiMe₃)₃⁻ (Scheme 13). The K_{eq} value at 20 °C was found to be 82.83(2) in favor of **21c** and Si(SiMe₃)₃⁻, and thermodynamic parameters for this exchange are $\Delta H^{e} = -4.6(5)$ kcal/mol and $\Delta S^{\circ} = -7(2)$ eu. The silyl exchange in Scheme 13 likely proceeds through an associative ligand substitution mechanism involving the five-coordinated anionic disilyl intermediate **22b**, as in the exchange in eq 8.

The reaction of $(Me_2N)_3$ ZrCl with the chelating disilyl dianion $[R_2Si-(CH_2)_2-SiR_2]^{2-}$ (R = SiMe₃)³⁶ yields an analogue of **22a**, the disilyl anion { $(Me_2N)_3$ Zr[η^2 -R₂Si-(CH₂)₂-SiR₂]}⁻ (**22c**), as a distorted trigonal bipyramid with the two Si atoms in equatorial positions.³⁷

The alkoxy silyl complex $(Me_3SiO)_2Zr(SiBu^tPh_2)Cl^2$ 2THF was also prepared from the reaction of $ZrCl_4$ with 2 equiv of NaOSiMe₃ and then 1 equiv of LiSiBu^tPh₂.³⁸ The Zr–Si bond distance of 2.848(3) Å in this silyl complex was then the longest reported Zr–Si bond.

In the multiinsertion reactions of the isocyanide ArNC (Ar = 2,6-dimethylphenyl) with alkyl silyl complexes (RCH_2)₃Zr-Si(SiMe₃)₃ ($R = Me_3C$ (**1c**), Me_3Si (**1d**)), the first ArNC inserts into the Zr-Si bonds in **1c**,**d**, as discussed in Section I.1. A subsequent second and third ArNC insert into the Zr-C bonds.

The isocyanide ArNC reacts with the amide silyl complexes $(Me_2N)_3Zr-SiBu^tPh_2\cdot 0.5THF$ (**21c**·0.5THF) and $(Me_2N)_3Zr-Si(SiMe_3)_3$ (**21b**) as well, leading to multiinsertion of ArNC into Zr-N and Zr-Si bonds.³⁹ The reaction of **21c**·0.5THF with ArNC was fast, and only the tetrainsertion product $Zr[\eta^2-C(NMe_2)=NAr]_3$ - $[\eta^2-C(SiBu^tPh_2)=NAr]$ (**23**) was isolated. In the reaction of ArNC with $(Me_2N)_3ZrSi(SiMe_3)_3$ (**21b**), the first and second equivalents of isocyanide insert into the Zr-N bonds to give **24** and **25**, respectively. The third equivalent of isocyanide inserts into the Zr-Si bond to yield **26**. **21b** reacts with 4 equiv of isocyanide at room temperature to give the tetrainsertion product **27**. These insertion reactions are summarized in Scheme 14.

The reactions in Scheme 14 are, to our knowledge, the first isocyanide insertions involving complexes containing both amido and silyl ligands.³⁹ As indicated earlier, the first ArNC inserts into a Zr-N bond in the amide silyl complex (Me₂N)₃Zr-Si(SiMe₃)₃ (21b). In contrast, the first ArNC inserts exclusively into the Zr-Si bond in the alkyl silyl complexes (RCH₂)₃Zr-Si- $(SiMe_3)_3$ (R = Me₃C (1c), Me₃Si (1d); section I.1).⁸ Spacefilling drawings of **21b** suggest that the largest open area of the Zr atom in 21b for the ArNC attack is between the amide ligands and is trans to the silyl ligand. The addition of the first ArNC to 21b may thus take place exclusively trans to the silyl ligand, and subsequently the coordinated ArNC inserts into a Zr-N bond (Scheme 14). Such an attack trans to the silyl ligand may also be preferred for the second equivalent of isocyanide. However, after two insertions, the attack trans to the silvl ligand may become hindered, and the third isocyanide attack occurs cis to the silyl ligand.

⁽³⁶⁾ Blanton, J. R.; Diminnie, J. B.; Chen, T.-N.; Wiltz, A. M.; Xue, Z.-L. *Organometallics* **2001**, *20*, 5542.

⁽³⁷⁾ Blanton, J. R. Ph.D. dissertation, The University of Tennessee, 2003.

⁽³⁸⁾ Wu, Z.-Z.; Diminnie, J. B.; Xue, Z.-L. Organometallics 1998, 17, 2917.

⁽³⁹⁾ Wu, Z.-Z.; Diminnie, J. B.; Xue, Z.-L. Organometallics 1999, 18, 1002.

Downloaded by NAT LIB UKRAINE on July 5, 2009 Published on May 3, 2004 on http://pubs.acs.org | doi: 10.1021/om049862p

Space-filling drawings of $(Me_3CCH_2)_3Zr-Si(SiMe_3)_3$ (**1c**)³⁹ indicate that the space between the alkyl ligands is much more crowded than that in **21b**. The isocyanide addition between the alkyl and silyl ligands may thus be preferred (Scheme 15). This addition is followed by a migration of the bulky Si(SiMe_3)_3 group onto the isocyanide carbon.

The reaction of $(Me_2N)_2[(Me_3Si)_2N]ZrSi(SiMe_3)_3$ with ArNC was very fast at both room and low temperature. Only the diinsertion complex was isolated and characterized. The NMR data clearly indicate that the first equivalent of ArNC inserts into the Zr–Si bond and the second equivalent inserts into a Zr–N bond.

The insertion reactions of Bu^tNC with $(Me_2N)_3ZrSiR'_3$ (**21b**,c) are much slower than those with ArNC. No reaction was observed between $(Me_2N)_3ZrSi(SiMe_3)_3$ (**21b**) and Bu^tNC. Excess Bu^tNC reacts with $(Me_2N)_3$ -Zr-SiBu^tPh₂•0.5THF (**21c**•0.5THF) to give the diisocyanide addition product (**28**; eq 9) containing a keten-

imine functionality. This diisocyanide adduct is inert to further insertion by Bu^tNC.

Although no insertion of Bu^tNC into the amide ligand was found in the reaction of **21c**·0.5THF with Bu^tNC, it was observed in the reaction of $Zr(NMe_2)_4$ with Bu^tNC. Tetrainsertion products of both ArNC and Bu^tNC were observed in the reactions of 4 equiv of ArNC and Bu^tNC with $Zr(NMe_2)_4$. It takes about 1 week for the tetrainsertion reaction of Bu^tNC to go to completion, whereas the reaction of $Zr(NMe_2)_4$ with ArNC is instantaneous.

2. Tantalum Amide Silyl and Disilyl Complexes. The Ta amide silyl complexes $Ta(NMe_2)_4(SiR'_3)$ ($R'_3 = (SiMe_3)_3$ (**29a**), Bu^tPh_2 (**29b**)) were prepared from the reactions of $Ta(NMe_2)_4Cl$ with $LiSiR'_3$ (eq 10). The X-ray

$$(Me_2N)_4Ta-Cl + LiSiR'_3 \longrightarrow NMe_2
Me_2N_{\prime,\prime} |
Me_2N |
NMe_2
NMe_2
R'_3 = (SiMe_3)_3, 29a
Bu'Ph_2, 29b$$

crystal structure of **29b** shows that the silyl ligand is in the equatorial position, as expected from the VSEPR theory.⁴⁰ Ta(NMe₂)₄[Si(SiMe₃)₃] (**29a**) was found to be too unstable, and it was identified by NMR and the product of its reaction with O₂, which is discussed below. Ta(NMe₂)₄(SiR'₃) (**29a,b**) decomposed rapidly to HNMe₂, HSiR'₃, and metal oxides once they were exposed to H₂O.

⁽⁴⁰⁾ Huheey, J. E.; Keiter, E. A.; Keiter, R. L. *Inorganic Chemistry*, 4th ed.; HarperCollins: New York, pp 203–206.

Reactions of $(Me_2N)_3TaCl_2$ with 1 equiv of silyl anions SiR'_3 yields the chloro silyl complexes $(Me_2N)_3$ -TaCl (SiR'_3) ($R'_3 = (SiMe_3)_3$ (**30a**), Bu^tPh_2 (**30b**); eq 11).

Subsequent reaction of **30a** with LiSi(SiMe₃)₃ or the reaction of $(Me_2N)_3TaCl_2$ with 2 equiv of LiSi(SiMe₃)₃ gives the disilyl complex $(Me_2N)_3Ta[Si(SiMe_3)_3]_2$ (**31**; eq 12).³⁴ The disilyl complex was prepared as a neutral analogue of $Zr(NMe_2)_3(SiBu^tPh_2)_2^-$ (**22a**). NMR spectra of $Ta(NMe_2)_3[Si(SiMe_3)_3]_2$ (**31**) shows only one set of resonances for amide and silyl ligands between -60 and 27 °C, suggesting that **31** adopts a trigonal-bipyramidal structure with two silyl ligands in the axial positions.

The Ta amide silyl complex Ta(NMe₂)₄[Si(SiMe₃)₃] (**29a**) is sensitive to air. Its reaction with O₂ at room temperature leads to (Me₂N)₃Ta(η^2 -ONMe₂)[OSi(SiMe₃)₃] (**32**; eq 13).³¹ In the reaction, two oxygen atoms insert

into Ta–Si and Ta–N bonds, respectively, in **29a**. **32** is inert to excess O₂. The oxidation of the M–NMe₂ bond in the reaction is, to our knowledge, unprecedented. The R₂NO ligands are usually prepared from the hydroxyamines R₂NOH.⁴¹

Reactions of O_2 with $Ta(NMe_2)_5$ or $(Et_2N)_3Ta=NBu^t$ have been studied to yield high- κ (dielectric constant) Ta_2O_5 thin films as gate insulating materials in microelectronic transistors.³¹ The mechanistic pathways in these reactions are not clear. Our studies help shed light on the mechanisms of the reactions of O_2 with d⁰ metal amide complexes.

3. Tantalum Amide Imide Silyl and Bis(silyl) Complexes. Tilley and co-workers have reported the Cp-free group 6 imido silyl complexes $(2,6-Pr_{2}^{i}C_{6}H_{3}-N=)_{2}M(R)[Si(SiMe_{3})_{3}]$ (M = Mo, W; R = Cl, CH₂Bu^t, H).⁴² We prepared the Ta imide silyl and disilyl complexes $[(Me_{3}Si)_{2}N](Me_{2}N)(Me_{3}SiN=)TaSiBu^tPh_{2}$ (**33**) and $[(Me_{3}Si)_{2}N](Me_{3}SiN=)Ta(SiBu^tPh_{2})_{2}$ (**34**) from {Ta- $(\mu$ -Cl)Cl(=NSiMe_{3})[N(SiMe_{3})_{2}]_{2} by the reactions shown in Scheme 16.³³ These two complexes are, to our

knowledge, the first Cp-free group 5 imido disilyl and silyl complexes.

The Mo amide imide silyl complex $(ArN=)_2Mo(NMe_2)$ -[Si(SiMe_3)_3] (**35**; Ar = 2,6-Pri_2C_6H_3) was also prepared from the reaction of $(ArN=)_2MoCl_2(DME)$ with LiNMe₂ and LiSi(SiMe_3)_3 (Scheme 17). The diamide diimides $(ArN=)_2Mo(NMe_2)_2$ (**36**; Scheme 17) and $(Ar-N=)_2Mo-(NMe_2)[N(SiMe_3)_2]$ were similarly prepared.⁴³

III. Reactions of Silanes with Alkylidene and Amide Complexes

The reactions of hydrosilanes with coordinated ligands are of particular interest to us. We have studied how H–Si bonds in silanes react with the π bonds in the M= CHR and with the d–p π bonds in the M–NR₂ moieties and mechanisms in these reactions. In the former, we chose the Cp-free d⁰ high-oxidation-state alkylidene complexes (RCH₂)Ta(PMe₃)₂(=CHR')₂, containing phosphine ligands, in the hope that such ligands would help stabilize the resulting reaction products.^{44,45} In the latter, Cp-free d⁰ high-oxidation-state amide complexes M(NMe₂)_n (M = Ti, Zr, Hf, Ta) were used.^{46–48} The reactions of metal amides with silanes have also played an important role in the formation of M–Si–N ternary films as diffusion barrier materials in very-large-scaleintegrated microelectronic devices, as discussed below.

1. Reactions of Tantalum Alkylidene Complexes with Silanes.^{44,45} An immediate reaction was observed between (Me₃SiCH₂)₃Ta(PMe₃)(=CHSiMe₃) (**37**)⁴⁹ and H₂SiR'Ph (R' = Me, Ph), yielding H₂ and nearly quantitatively (Me₃SiCH₂)₃Ta[=C(SiMe₃)SiHR'Ph] (R' = Me(**38a**), Ph (**38b**); eq 14). **37** does not react with HSiPh₃ at room temperature.

Kinetic studies of the reactions of **37** with $H_2SiMePh$ and $D_2SiMePh$ at 10 °C show that a dissociative mechanism is operative in this reaction.^{44,45} This path-

⁽⁴¹⁾ Mehrotra, R. C.; Rai, A. K.; Singh, A.; Bohra, R. *Inorg. Chim.* Acta 1975, 13, 91.

⁽⁴²⁾ Casty, G. L.; Tilley, T. D.; Yap, G. P. A.; Rheingold, A. L. Organometallics 1997, 16, 4746.

⁽⁴³⁾ Chen, T.-N.; Sorasaenee, K. R.; Wu, Z.-Z.; Diminnie, J. B.; Xue, Z.-L. *Inorg. Chim. Acta* **2003**, *345*, 113.

Scheme 17

way involves the loss of a PMe₃ ligand to open a coordination site on the Ta center, followed by ratedetermining addition of the silane to the Ta=C bond to give **39** (Scheme 18). For example, a steady-state approximation gives eqs 15 and 16.44b Under conditions

$$\nu = -\mathbf{d}[\mathbf{37}]/\mathbf{d}t = \frac{k_1 k_2 [H_2 \text{SiMePh}][\mathbf{37}]}{k_{-1} [\text{PMe}_3] + k_2 [H_2 \text{SiMePh}]} \quad (15)$$

$$\frac{1}{k_{\rm obs}} = \frac{k_{-1} [\rm PMe_3]_{\rm av}}{k_1 k_2 [\rm H_2 SiMePh]_{\rm av}} + \frac{1}{k_1}$$
(16)

of excess H₂SiMePh, pseudo-first-order kinetics in 37 was observed, as eq 15 suggests. Plots of $1/k_{obs}$ vs [PMe₃]_{av}/[H₂SiMePh]_{av} and [PMe₃]_{av}/[D₂SiMePh]_{av} were found to fit eq 16 (Figure 4) with $k_1 = [5.45(10)] \times 10^{-2}$ min⁻¹ and a kinetic isotope effect (k_{2H}/k_{2D}) of 1.87.

In the reactions of the excess deuterium-labeled silane D₂SiMePh with **37**, the formation of HDSiMePh and H₂-SiMePh was also observed. Analyses by mass spectrometry (MS) of the gaseous products show that D_2 is the major product in the reaction, and the ratios of D_2 , HD,

and H₂ are in the range from [86.6(0.3)-89.6(1.2)]:[12.5-(0.3)-9.1(1.1)]:[0.86(0.03)-1.26(0.01)]. When the reaction with 4.5 equiv of D₂SiMePh was conducted under excess H₂, the MS showed the products to be D₂, HD, and H_2 in a 24.5(0.1):13.4(0.1):62.1(0.1) ratio, indicating that the products and H₂ added to the system undergo hydrogen scrambling. The mechanism in the conversion of **39** to the product **38a** is not clear, and three possible pathways may operate here.44b

The addition of $H_2SiR'Ph$ (R' = Me, Ph) to bis-(alkylidene) complexes (Me₃SiCH₂)Ta(PMe₃)₂(=CHR)₂ $(\mathbf{R} = \mathrm{SiMe}_3 (\mathbf{7a}), \mathrm{Bu}^{\mathrm{t}} (\mathbf{7c}))$ gives the 1,1'-metalla-3silacyclobutadiene complexes 40a-c (Scheme 19) and H₂. The reaction with the silane (PhH₂Si)₂CH₂, containing more than one silyl group, yields the metalladisilacyclohexadiene complex 41. The X-ray crystal structure of **41** showed that it adopted the structure of a meso isomer.

Figure 4. Plot of $1/k_{obs}$ vs $[PMe_3]_{av}/[silane]_{av}$.^{44b}

Scheme 19

R = SiMe₃, meso, 41

^{(44) (}a) Diminnie, J. B.; Xue, Z.-L. J. Am. Chem. Soc. 1997, 119, 12657. (b) Diminnie, J. B.; Blanton, J. R.; Cai, H.; Quisenberry, K. T.; Xue, Z.-L. Organometallics 2001, 20, 1504.

^{(45) (}a) Blanton, J. R.; Chen, T.-N.; Diminnie, J. B.; Cai, H.; Wu, Z.-Z.; Li, L.-T.; Sorasaenee, K. R.; Quisenberry, K. T.; Pan, H.-J.; Wang, C.-S.; Choi, S.-H.; Wu, Y.-D.; Lin, Z.-Y.; Guzei, I. A.; Rheingold, A. L.; Xue, Z.-L. J. Mol. Catal. A: Chem. **2002**, 190, 101. (b) Diminnie, J. B.; Liu, X.-Z.; Cai, H.; Wu, Z.-Z.; Blanton, J. R.; Tuinman, A. A.; Quisenberry, K. T.; Vallet, C. E.; Zuhr, R. A.; Beach, D. B.; Peng, Z. H.; Wu, Y.-D.; Concolino, T. E.; Rheingold, A. L.; Xue, Z.-L. Pure Appl. *Chem.* **2001**, *73*, 331. (46) Liu, X.-Z.; Wu, Z.-Z.; Peng, Z.-H.; Wu, Y.-D.; Xue, Z.-L. J. Am.

Chem. Soc. 1999, 121, 5350.
 (47) Liu, X.-Z.; Wu, Z.-Z.; Cai, H.; Yang, Y.-H.; Chen, T.-N.; Vallet, C. E.; Zuhr, R. A.; Beach, D. B.; Peng, Z.-H.; Wu, Y.-D.; Concolino, T. E.; Rheingold, A. L.; Xue, Z.-L. J. Am. Chem. Soc. 2001, 123, 8011.

⁽⁴⁸⁾ Cai, H.; Chen, T.-N.; Wang, X.-P.; Schultz, A. J.; Koetzle, T. F.; Xue, Z.-L. *Chem. Commun.* **2002**, 230 and references therein.

⁽⁴⁹⁾ Rupprecht, G. A. Ph.D. dissertation, Massachusetts Institute of Technology, 1979.

Chart 2. Diffusion Barrier between the Metalization Layer and Si

2. Reactions of d⁰ Metal Amide Complexes with Silanes. Transition-metal amide ligands are known to react with proton- or hydride-containing compounds to yield amines (H-NR₂).⁵⁰ Reactions of Ti(NR₂)₄ with SiH₄ and NH₃ through chemical vapor deposition have recently been studied to give Ti-Si-N ternary materials as barriers (Chart 2) between Cu and Si in integrated circuits to prevent solid-state reactions/diffusion between Cu and Si (to form copper silicides CuSi_n) and the degradation of the devices.⁵¹ Analysis of the compositions of the Ti-Si-N ternary films revealed that they were along the tie line of TiN and Si₃N₄ in the Ti-Si-N phase diagram (Figure 5). In other words, these films prepared from the reactions of Ti(NR₂)₄ with SiH₄ and NH₃ are a mixture of TiN and Si₃N₄.⁵¹ The probable role of NH₃ in these reactions is that it undergoes transamination with Ti-NR₂. A key question is why the reactions of Ti(NR₂)₄ with SiH₄ gave TiN and Si₃N₄ in the Ti-Si-N ternary phases. Another issue of current interest is why, in chemical vapor deposition reactions using metal amide complexes as precursors to give microelectronic materials, metal carbides are often formed as an impurity.⁵² Recent reports⁵¹ of formation of M-Si-N ternary phases thus prompted us to investigate the nature of the reactions between amide ligands $(M-NR_2)$ and silanes $(H-SiR_3)$.

Among the first studies we conducted was the reaction of Ti(NMe₂)₄ and SiH₄ both at room temperature and at high temperature in a CVD reactor. The chemical vapor deposition of the thin films was carried out in an ultrahigh-vacuum (UHV) CVD reactor in Dr. David B. Beach's group at Oak Ridge National Laboratory. These studies were designed in part to confirm that, in the absence of NH₃, this reaction gave TiN and Si₃N₄.⁴⁷

Our studies show that the reaction between $Ti(NMe_2)_4$ and SiH_4 at 23 °C, followed by heating, likely gave TiN– Si_3N_4 ternary powders. This reaction, conducted in a CVD reactor at 448–450 °C, yielded a film of mixtures of TiN– Si_3N_4 . In other words, the compositions of the powders and films prepared at room and high temperatures suggest that similar chemistry and mechanistic pathways take place in a large temperature range.

Deuterium-labeling studies and surface analyses of the solid materials produced from this reaction at 23

Figure 5. Formation of Ti–Si–N ternary films from the reactions of $Ti(NR_2)_4$ with SiH₄ and NH₃. The compositions of the materials are in the blue area along the $TiN-Si_3N_4$ tie line.⁵¹

Scheme 20

°C indicate the mechanistic pathway in Scheme 20. H-Si and Ti–NR₂ bonds undergo hydride and amide exchanges to give aminosilanes such as $HSi(NR_2)_3$ and Ti hydride amide solids **42**. These two products containing Si–N and Ti–N bonds then convert to Si₃N₄ and TiN, respectively. The Ti hydride amide solids **42**, which are likely polymeric species with reduced titanium, were not isolated, however, and were identified by the surface analyses.

The reaction in Scheme 20 did not yield isolable complexes. We then studied the reactions of $M(NMe_2)_4$ (M = Zr, Hf) with H₂SiR'Ph (R' = H, Me, Ph). Zr and Hf complexes are less likely to be reduced than Ti complexes, and the hindered silanes may slow the reactions so that intermediates could be isolated.

When M(NMe₂)₄ (M = Zr, Hf) were reacted with H₂-SiR'Ph (R' = H, Me, Ph), aminosilanes and the novel amide complexes $[(Me_2N)_3M(\mu-H)(\mu-NMe_2)_2]_2M$ (M = Zr(**43a**), Hf (**43b**); eq 17, Figure 6) were isolated.^{46,47} As

$$3M(NR_2)_4 + 2H_2SiR'Ph$$

R = Me; R' = H, Me, Ph

$$(R_2N)_3M \xrightarrow[R_2]{N} \stackrel{R_2}{\underset{N}{H}} \stackrel{R_2}{\underset{N}{M}} \stackrel{R_2}{\underset{N}{H}} \stackrel{R_2}{\underset{N}{M}} (NR_2)_3 + 2HSi(NR_2)R'Ph$$

$$R = Me; R' = H, Me, Ph$$

$$(17)$$

$$H = Zr, 43a; Hf, 43b$$

in Scheme 20, exchanges of amide and hydride ligands occurred, and quick isolation of the products gave the isolable intermediates **43a**,**b**. Such exchanges between silanes and amide complexes are rare,⁵³ and the hydride complexes **43a**,**b** are unusual. They are among the few structurally characterized Cp-free group 4 hydrides.^{54,55}

We have also studied the reactions of $(Me_2N)_3Zr-Si-(SiMe_3)_3$ (**21b**; eq 7) and $H_2SiR'Ph$ (R' = H, Me, Ph). These reactions were found to give the unstable hydride

⁽⁵⁰⁾ Lappert, M. F.; Power, P. P.; Sanger, A. R.; Srivastava, R. C. *Metal and Metalloid Amides*, Ellis Horwood: Chichester, U.K., 1980.

^{(51) (}a) Smith, P. M.; Custer, J. S. Appl. Phys. Lett. 1997, 70, 3116.
(b) Custer, J. S.; Smith, P. M.; Fleming, J. G.; Roherty-Osmun, E. In Inorganic Materials Synthesis, ACS Symp. Ser. 727; Winter, C. H., Hoffman, D. M., Eds., American Chemical Society: Washington, DC, 1999; p 86.

⁽⁵²⁾ Fix, R. M.; Gordon, R. G.; Hoffman, D. M. *Chem. Mater.* **1990**, *2*, 235.

⁽⁵³⁾ Holland, P. L.; Andersen, R. A.; Bergman, R. G.; Huang, J.; Nolan, S. P. *J. Am. Chem. Soc.* **1997**, *119*, 12800.

Figure 6. Molecular drawing of **43a** from X-ray singlecrystal diffraction.^{46,47}

complex (Me₂N)₂Zr(H)[Si(SiMe₃)₃] (**44**) and HSi(NMe₂)-R'Ph, and the reactions are reversible. In other words, in the reverse reactions, the hydride ligand in **44** reacts with amide $-NMe_2$ in HSi(NMe₂)MePh to give Si-H and Zr-NMe₂ bonds. The equilibrium **21b** + H₂SiPh₂ \Rightarrow **44** + HSi(NMe₂)Ph₂ favors **21b** and H₂SiPh₂ at 0 °C, as shown in the equilibrium constant K_{eq} (0.11(0.01)) and ΔG° value (1.20(0.05) kcal/mol) at 0 °C (eq 18). The

reactions leading to the hydrides were the first direct observation from transition-metal amides with silanes through unusual equilibria.⁵³

Ab initio quantum-chemical calculations were conducted by the group of Prof. Yun-Dong Wu at the Hong Kong University of Science and Technology to understand the reactions of $Ti(NR_2)_4$ (R = Me, H) with SiH₄. These theoretical studies indicate that the formation of aminosilanes and HTi(NR₂)₃ is favored. These calculations also showed that HTi(NH₂)₃ reacted with SiH₄ or H₃Si-NH₂ in the following step to give H₂Ti(NH₂)₂ and aminosilanes.

It is interesting to note that the reactions of silanes with both amides $M(NMe_2)_4$ (M = Zr, Hf) and alkylidene complexes (Me₃SiCH₂)₃Ta(PMe₃)(=CHSiMe₃) (**37**), **7a**, and **7c** proceed through a step involving some degree of nucleophilic attack on the silicon center of the incoming silane molecule by the d-p π bonds in the

N–M bonds and the π electron density of the Ta=CHR bonds, leading to the formation of products with new N–Si and C–Si bonds, respectively (Scheme 21). Such nucleophilic attack of the π electron density on the incoming silane may explain the observed preferential reaction of only the amide and alkylidene ligands, but not the alkyl ligands, with silanes.

We further investigated the reactions of Ta(NMe₂)₅ with silanes.⁴⁸ As expected, the reactions give Ta–H bonds in (Me₂N)₃Ta(μ -H)₂[μ (N)- η^2 (N,C)-CH₂NMe]Ta(N-Me₂)₃ (**45**; Figure 7), as in the reactions of M(NMe₂)₄ (M = Zr, Hf) with silanes. The presence of two hydride ligands was confirmed by neutron diffraction studies of a single crystal of **45**, and **45** is one of the few Ta hydrides⁴⁸ to be structurally characterized by neutron diffraction. However, to our surprise, the reactions yield an imine ligand in **45** as well. Reactions with D₂SiRPh (R = Me, Ph) give the dideuteride **45**-*d*₂ and HNMe₂ (eq 19).

It is thus likely that the formation of the imine ligand in **45** with M–C bonds is through β -H abstraction of an amide ligand by another amide ligand.

The formation of imine complexes from homoleptic $M(NR_2)_n$ is particularly significant to the understanding of mechanistic pathways and the incorporation of metal carbide impurities into metal nitrides in chemical vapor deposition reactions.⁵² Initial β -H abstraction between two amide ligands in $M(NR_2)_n$ to give an η^2 -imine moiety was postulated as the first step to establish M-C bonds in C incorporation into the metal nitride materials, on the basis of analysis of organic products^{56a} and spectroscopic, ^{56b-d} theoretical, ^{56e} and kinetic^{56f.g} studies. **45** is one of the few structurally characterized η^2 -imine complexes from β -H abstraction between amide ligands.⁵⁷

⁽⁵⁴⁾ For group 4 metallocene and heterometallic hydrides, see: (a) Hlatky, G. G.; Crabtree, R. H. Coord. Chem. Rev. 1985, 65, 1. (b) Toogood, G. E.; Wallbridge, M. G. H. Adv. Inorg. Chem. Radiochem. 1982, 25, 267. (c) Wolczanski, P. T.; Bercaw, J. E. Acc. Chem. Res. 1980, 13, 121. (d) Labinger, J. A. In Transition Metal Hydrides; Dedieu, A., Ed.; VCH: New York, 1992; p 361. (e) Etkin, N.; Hoskin, A. J.; Stephan, D. W. J. Am. Chem. Soc. 1997, 119, 11420. (f) Hart, D. W.; Schwartz, J. J. Am. Chem. Soc. 1974, 96, 8115.
(55) (a) Basch, H.; Musaev, D. G.; Morokuma, K.; Fryzuk, M. D.;

^{(55) (}a) Basch, H.; Musaev, D. G.; Morokuma, K.; Fryzuk, M. D.; Love, J. B.; Seidel, W. W.; Albinati, A.; Koetzle, T. F.; Klooster, W. T.; Mason, S. A.; Eckert, J. J. Am. Chem. Soc. **1999**, *121*, 523. (b) Nöth, H.; Schmidt, M. Organometallics **1995**, *14*, 4601. (c) Jacoby, D.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C. J. Am. Chem. Soc. **1993**, *115*, 3595.

^{(56) (}a) Ossola, F.; Maury, F. Chem. Vap. Deposition 1997, 3, 137.
(b) Dubois, L. H.; Zegarski, B. R.; Girolami, G. S. J. Electrochem. Soc. 1992, 139, 3603. (c) Lewkebandara, T. S.; Sheridan, P. H.; Heeg, M. J.; Rheingold, A. L.; Winter, C. H. Inorg. Chem. 1994, 33, 5879. (d) Beaudoin, M.; Scott, S. L. Organometallics 2001, 20, 237. (e) Cundari, T. R.; Morse, J. M. Chem. Mater. 1996, 8, 189. (f) Weiller, B. H. J. Am. Chem. Soc. 1996, 118, 4975. (g) Cale, T. S.; Chaara, M. B.; Raupp, G. B.; Raaijmakers, I. J. Thin Solid Films 1993, 236, 294.

Figure 7. Molecular drawing of **45** from X-ray singlecrystal diffraction (reproduced by permission of The Royal Society of Chemistry).⁴⁸

Reducing C incorporation is of intense interest in the formation of the metal nitrides as microelectronic materials.

IV. Concluding Remarks

Our studies summarized here demonstrate that there is rich and often unusual basic chemistry in the studies of molecular approaches to advanced materials. The drive to develop advanced materials provides new opportunities to explore novel chemistry, which in turn may help us better understand the processes that form these materials. The rapid advances in microelectronic materials and computer technologies, as shown by Moore's Law⁵⁸—the doubling of Si-based transistors every couple of years—over the past four decades will continue to offer us opportunities to explore the novel chemistry of silicon and transition metals.

Acknowledgment. We wish to thank our past and current co-workers as well as our collaborators, including Prof. Yun-Dong Wu, Prof. Zhen-Yang Lin, Prof. Arnold L. Rheingold, Prof. Xiao-Zeng You, Prof. Xue-Tai Chen, Dr. David B. Beach, Dr. Arthur J. Schultz, Dr. Thomas F. Koetzle, Dr. Ilia A. Guzei, Dr. Glenn P. A. Yap, and Dr. Xiaoping Wang, for their contributions to the work reviewed here. Our research has been supported by the Petroleum Research Fund, the National Science Foundation (Young Investigator Award CHE-9457368, CHE-9904338, and CHE 0212137), Camille Dreyfus Teacher-Scholar Award, DuPont Young Professor Award, the University of Tennessee, and Oak Ridge National Laboratory.

OM049862P

^{(57) (}a) Berno, P.; Gambarotta, S. *Organometallics* 1995, *14*, 2159.
(b) Scoles, L.; Ruppa, K. B. P.; Gambarotta, S. *J. Am. Chem. Soc.* 1996, *118*, 2529.

^{(58) (}a) Moore, G. E. *Electronics* **1965**, *38*, 114. (b) Chang, L. L.; Choi, Y. K.; Kedzierski, J.; Lindert, N.; Xuan, P. Q.; Bokor, J.; Hu, C. M.; King, T. J. *IEEE Circuits Devices Magn.* **2003**, *19* (Jan), 35.