2911

Fe=B Double Bonds: Synthetic, Structural, and Reaction **Chemistry of Cationic Terminal Borylene Complexes**

Deborah L. Coombs, Simon Aldridge,* Andrea Rossin, Cameron Jones, and David J. Willock

School of Chemistry, Cardiff University, PO Box 912, Park Place, Cardiff, CF10 3TB, U.K.

Received March 22, 2004

Application of halide abstraction chemistry to asymmetric haloboryl complexes (η^5 -C₅- Me_5)Fe(CO)₂B(ER_n)X leads to the first synthetic route to *cationic* multiply bonded group 13 divergence divergence $[(\eta^5-C_5Me_5)Fe(CO)_2B(ER_n)]^+$. The roles of steric bulk and π electron release within the ER_n substituent in generating tractable borylene complexes have been probed, as has the nature of the counterion. A combination of spectroscopic, structural, and computational techniques leads to the conclusion that the bonding in complexes such as $[(\eta^5-C_5Me_5)Fe$ - $(CO)_2B(Mes)]^+$ is best described as an Fe=B double bond composed of B→Fe σ donor and Fe \rightarrow B π back-bonding components. An extended study of the fundamental reactivity of cationic borylene systems reveals that this is dominated not only by nucleophilic addition at boron but also by iron-centered substitution chemistry leading to overall displacement of the borylene ligand.

Introduction

The quest for transition metal complexes incorporating multiply bonded main group ligands has excited much recent interest, not only due to the fundamental questions of structure and bonding posed by such systems but also due to their implication as reagents or potential catalytic intermediates in important synthetic processes.^{1–6} Although the chemistries of carbonbased ligand systems [e.g., alkylidenes or Fischer carbenes $(R_2C)^1$ and more recently their heavier congeners [e.g., silylenes $(R_2Si)^2$] dominate this area, recent studies have sought to develop the related chemistry of group 13 diyl ligands (RE).³⁻¹⁰ Numerous complexes

(6) For terminally bound diyl complexes featuring the heavier group 13 elements see, for example: (a) Dohmeier, C.; Loos, D.; Schnöckel, H. Angew. Chem., Int. Ed. 1996, 35, 127. (b) Weiss, J.; Stetzkamp, D.; Nuber, B.; Fischer, R. A.; Boehme, C.; Frenking, G. Angew. Chem., Int. Ed. Engl. 1997, 36, 70. (c) Su, J.; Li, X.-W.; Crittendon, R. C.; Campana, C. F.; Robinson, G. H. Organometallics 1997, 16, 4511. (d) Cotton, F. A.; Feng, X. Organometallics 1998, 17, 128. (e) Jutzi, P. Neumann, B.; Reumann, G.; Stammler, H.-G. Organometallics 1998, 17, 1305. (f) Haubrich, S. T.; Power, P. P. J. Am. Chem. Soc. 1998, 120, 2202. (g) Jutzi, P.; Neumann, B.; Reumann, G.; Schebaum, L. O.; Stammler, H.-G. Organometallics 1999, 18, 2550. (h) Fischer, R. A.; Weiss, J. Angew. Chem., Int. Ed. 1999, 38, 2830. (i) Uhl, W.; Benter, M.; Melle, S.; Saak, W.; Frenking, G.; Uddin, J. Organometallics **1999**, *18*, 3778. (j) Linti, G.; Schnöckel, H. Coord. Chem. Rev. **2000**, *206–207*, 285. (k) Ueno, K.; Watanabe, T. Tobita, H.; Ogino, H. Organometallics 2003, 22, 4375.

(7) (a) Braunschweig, H.; Wagner, T. Angew. Chem., Int. Ed. Engl. **1995**, *34*, 825. (b) Braunschweig, H.; Kollann, C.; Englert, U. *Eur. J. Inorg.* **1997**, *545*, 163. (c) Braunschweig, H.; Müller, M. *Chem. Ber.* **1997**, *130*, 1295. (d) Braunschweig, H.; Kollann, C.; Englert, U. *Eur. J. Inorg.* 130, 1295. (d) Braunschweig, H.; Kollann, C.; Englert, U. Eur. J, Inorg. Chem. 1998, 465. (e) Shimoi, M.; Ikubo, S.; Kawano, Y. J. Am. Chem. Soc. 1998, 120, 4222. (f) Braunschweig, H.; Colling, M. J. Organomet. Chem. 2000, 614, 18. (g) Braunschweig, H.; Colling, M.; Hu, C.; Radacki, K. Angew. Chem., Int. Ed. 2002, 41, 1359. (h) Braunschweig, H.; Colling, M.; Hu, C. H. Inorg. Chem. 2003, 42, 941. (8) (a) Aldridge, S.; Coombs, D. L.; Jones, C. Chem. Commun. 2002, 856. (b) Coombs, D. L.; Aldridge, S.; Coles, S. J.; Hursthouse, M. B. Organometallics 2003, 22, 4213. (9) Several examples of boron-containing clusters featuring facing

^{*} Corresponding author. E-mail: AldridgeS@cardiff.ac.uk. Tel: +44 $(0)2920\ 875495.\ Fax:\ +44\ (0)2920\ 874030.$

⁽¹⁾ See, for example: (a) Nugent, W. A.; Mayer, J. M. Metal Ligand Multiple Bonds; Wiley-Interscience: New York, 1988. (b) Hendon, J. W. Coord. Chem. Rev. 2003, 243, 3

⁽²⁾ See, for example: (a) Grumbine, S. K.; Tilley, T. D.; Arnold, F. P.; Rheingold, A. L. J. Am. Chem. Soc. **1993**, *115*, 7884. (b) Grumbine, S. K.; Tilley, T. D. J. Am. Chem. Soc. 1994, 116, 5495. (c) Weidenbruch, M.; Stilter, A.; Peters, K.; von Schnering, H. G. *Chem. Ber.* **1996**, *129*, 1565. (d) Mitchell, G. P.; Tilley, T. D. *J. Am. Chem. Soc.* **1997**, *119*, 11236. (e) Grumbine, S. K.; Mitchell, G. P.; Straus, D. A.; Tilley, T. D.; Rheingold, A. Organometallics 1998, 17, 5607. (f) Mitchell, G. P.; Tilley, Rheingold, A. Organometallics 1998, 12, 5607. (f) Mitchell, G. P.; Filley, T. D. J. Am. Chem. Soc. 1998, 120, 7635. (g) Mitchell, G. P.; Tilley, T. D. Angew. Chem., Int. Ed. 1998, 37, 2524. (h) Tobita, H.; Ishiyama, K.; Kawano, Y.; Inomata, S.; Ogino, H. Organometallics 1998, 17, 789. (i) Wanandi, P. W.; Glaser, P. B.; Tilley, T. D. J. Am. Chem. Soc. 2000, 122, 972. (j) Mork, B. V.; Tilley, T. D. J. Am. Chem. Soc. 2001, 123, 9702. (k) Klei, S. R.; Tilley, T. D.; Bergman, R. G. Organometallics 2002, 21, 4648. (l) Okazaki, M.; Tobita, H.; Ogino, H. Dalton Trans. 2003, 493. (m) Mork, B. V.; Tilley, T. D. Angew. Chem., Int. Ed. 2003, 42, 357 42, 357.

^{(3) (}a) Cowley, A. H.; Lomeli, V.; Voight, A. *J. Am. Chem. Soc.* **1998**, *120*, 6401. (b) Braunschweig, H.; Kollann, C.; Englert, U. *Angew. Chem., Int. Ed.* **1998**, *37*, 3179, (c) Braunschweig, H.; Colling, M.; Kollann, C.; Stammler, H. G.; Neumann, B. Angew. Chem., Int. Ed. Kollann, C.; Stammler, H. G.; Neumann, B. Angew. Chem., Int. Ed.
2001, 40, 2299. (d) Braunschweig, H.; Colling, M.; Kollann, C.; Merz,
K.; Radacki, K. Angew. Chem., Int. Ed. 2001, 40, 4198. (e) Braunschweig, H.; Colling, M.; Hu, C.; Radacki, K. Angew. Chem., Int. Ed. 2003, 42, 205. (f) Braunschweig, H.; Colling, M. Eur. J. Inorg. Chem. 2003, 383. (g) Irvine, G. J.; Rickard, C. E. F.; Roper, W. R.; Williamson, A.;
Wright, L. J. Angew. Chem., Int. Ed. 2000, 39, 948. (h) Rickard, C. E. F.; Roper, W. R.; Williamson, A.;
Wright, L. J. Organometallics 2002, 21, 4862 21. 4862

^{(4) (}a) Coombs, D. L.; Aldridge, S.; Jones, C.; Willock, D. J. *J. Am. Chem. Soc.* **2003**, *125*, 6356. (b) Aldridge, S.; Rossin, A.; Coombs, D. L.; Willock, D. J. Dalton Trans., submitted.

^{(5) (}a) Bickelhaupt, F. M.; Radius, U.; Ehlers, A. W.; Hoffmann, R.; Baerends, E. J. *New J. Chem.* **1998**, *26*, 1. (b) Ehlers, A. W.; Baerends, E. J.; Bickelhaupt, F. M.; Radius, U. *Chem. Eur. J.* **1998**, *4*, 210. (c) E. J.; Bickelnaupt, F. M.; Radius, O. Chem. Eur. J. 1990, 4, 210. (c) Radius, U.; Bickelhaupt, F. M.; Ehlers, A. W.; Goldberg, N.; Hoffmann, R. Inorg. Chem. 1998, 37, 1080. (d) Macdonald, C. L. B.; Cowley, A. H. J. Am. Chem. Soc. 1999, 121, 12113. (e) Uddin, J.; Boehme, C.; Frenking, G. Organometallics 2000, 19, 571. (f) Frenking, C.; Fröhlich, N. Chem. Day 2000, 100, 217. (c) Rookme, C.; Uddin, L.; Expeliance, C. N. Chem. Rev. **2000**, *100*, 717. (g) Boehme, C.; Uddin, J.; Frenking, G. Coord. Chem. Rev. **2000**, *197*, 249. (h) Chen, Y.; Frenking, G. Dalton Trans. **2001**, 434. (i) Uddin, J.; Frenking, G. J. Am. Chem. Soc. **2001**, *123*, 1683. (j) Bollwein, T.; Brothers, P. J.; Hermann, H. L.; Schwertfeger, P. Organometallics 2002, 21, 5236.

⁽⁹⁾ Several examples of boron-containing clusters featuring facing capping BR units which may alternatively be described as triply bridging (μ_3) borylenes are known, for example: Okamura, R.; Tada, K.; Matsubara, K.; Oshima, M.; Suzuki, H. *Organometallics* **2001**, *20*, 4772

have been reported featuring divl ligands adopting bridging modes of coordination [e.g., $(L_nM)_2(\mu$ -ER)],^{7–10} but the synthetic, structural, and reaction chemistry of analogous compounds containing terminally bound ligands is less thoroughly understood.^{3–6} Within this field, terminal borylene systems (L_nMBR) represent a very recent and numerically small addition,^{3,4} with the highly Lewis acidic boron center typically being stabilized by sterically bulky or π donor R groups or by coordination of a tethered base. Systematic studies of the metal-boron bond in two-coordinate borylene complexes such as these have been severely hampered by the paucity of synthetic routes available and by the narrow range of compatible metal fragments (predominantly metal carbonyls). The lack of suitable borane precursors of the type $(RE)_n$ rules out one of the principal synthetic approaches available to the heavier group 13 elements,^{6,10} and the scope of the salt elimination methodology used to give access to complexes such as $(\eta^5-C_5Me_5)BFe(CO)_4^{3a}$ or $(OC)_5WBN(SiMe_3)_2^{3b}$ has been shown to be limited to a very narrow range of boron dihalide and metal dianion precursors. Although photolytic borylene transfer has recently been shown to offer a potentially versatile new synthetic route [e.g., to previously inaccessible species such as $(\eta^5-C_5H_5)V(CO)_3$ -BN(SiMe₃)₂^{3e}], structurally characterized terminal borylene complexes still number no more than a handful.

In recent work we have demonstrated that asymmetric haloboryl complexes L_nMB(R)X not only are readily accessible but also prove to be versatile substrates for boron-centered substitution chemistry,^{8,11} leading to a range of novel bridging borylene and asymmetric boryl complexes. Given that halide (or pseudo-halide) abstraction from coordinated ligand fragments has previously been used to great effect in the synthesis of low-coordinate or unsaturated group 14 systems,² we speculated that a similar methodology applied to haloboryl complexes might offer a versatile new route to terminally bound group 13 divl complexes. Such an approach proves to be viable, leading to the development of a new route to terminal borylene complexes and to the first examples of cationic group 13 diyls $[L_{\eta}MER]^{+.4}$ $[(\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}(BMes)][BAr_{4}^{f}]$ $[Mes = 2,4,6-Me_3C_6H_2, Ar^f = C_6H_3(CF_3)_2-3,5],$ for example, contains the shortest M–B distance yet reported (a feature that is indicative of a novel Fe=B double bond) and is the first borylene complex containing a σ -bound hydrocarbyl substituent.^{4a} Herein we report an extended investigation of this synthetic approach to both aryl- and heteroatom-stabilized borylenes, together with an in-depth study aimed at elucidating fundamental patterns of reactivity. Although isolated reports of substitution chemistry for base-stabilized borylenes and of elegant metal-to-metal borylene transfer chemistry have appeared in the recent literature,³ the fundamental reactivity of group 13 diyl complexes remains a largely uncharted area. Given the superficial similarities between cationic borylene complexes $[L_nMBR]^+$ and electrophilic carbenes and silylenes $[L_nMER_2]^+$, and their more strictly isolobal relationship with carbonyl complexes, $[L_nMCO]^+$, we have sought to determine patterns of reactivity toward both nucleophilic and multiply bonded reagents.

Experimental Section

(i) General Considerations. All manipulations were carried out under a nitrogen or argon atmosphere using standard Schlenk line or drybox techniques. Solvents were predried over sodium wire (hexanes, toluene) or molecular sieves (dichloromethane) and purged with nitrogen prior to distillation from the appropriate drying agent (hexanes: potassium, toluene: sodium, dichloromethane: CaH₂). 3,3-Dimethyl-1-butene was dried over a potassium mirror and Me₂S₂ over molecular sieves prior to use. Benzene- d_6 and dichloromethane- d_2 (both Goss) were degassed and dried over potassium (benzene- d_6) or molecular sieves (dichloromethane- d_2) prior to use. Benzophenone, [PPN]Cl ([PPN]⁺ = bis(triphenylphosphoranylidene)ammonium, [Ph₃PNPPh₃]⁺), [Ph₄P]Br, [ⁿBu₄N]I, Na[BPh₄], [ⁿBu₄N]BF₄, and Ag[BF₄] (all Aldrich) were dried under high vacuum (ca. 10⁻⁴ Torr) for 12 h prior to use; CO (BOC) was used without further purification. Na[BAr^{*f*}₄], [PPN][BPh₄], (η^{5} - C_5H_5)Fe(CO)₂B(Mes)Br (1), (η^5 - C_5Me_5)Fe(CO)₂B(Mes)Br (2), $(\eta^{5}-C_{5}H_{5})Fe(CO)_{2}B(C_{6}H_{3}Trp_{2}-2,6)Br$ (3) $(Trp = 2,4,6-Pr_{3}C_{6}H_{2}),$ $(\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}B(Ph)Cl$ (4), and $(\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}B(NMe_{2})-$ Br (7) were prepared by literature methods.^{8,11-14}

NMR spectra were measured on a JEOL 300 Eclipse Plus FT-NMR spectrometer. Residual protons of solvent were used for reference for ¹H and ¹³C NMR, while a sealed tube containing a solution of ["Bu₄N][B₃H₈] in CDCl₃ was used as an external reference for ¹¹B NMR. ¹⁹F and ³¹P NMR spectra were referenced to external CFCl₃ and H₃PO₄, respectively. Infrared spectra were measured for each compound pressed into a disk with an excess of dried KBr or as a solution in an appropriate solvent on a Nicolet 500 FT-IR spectrometer. Mass spectra were measured by the EPSRC National Mass Spectrometry Service Centre, University of Wales Swansea. Perfluorotributylamine, polyethylenimine, and sodium trifluoroacetate were used as the standards for high-resolution EI, ES+, and ES- mass spectra, respectively. Despite repeated attempts, satisfactory elemental microanalysis for new boryl and borylene complexes was frustrated by their extreme air, moisture, and (in some cases) thermal instability. Characterization of the new compounds is therefore based upon multinuclear NMR, IR, and mass spectrometry data (including accurate mass measurement of molecular ions), supplemented by single-crystal X-ray diffraction studies in the cases of 5, 10, 12, 14, 15, and 16. In all cases the purity of the bulk material was established by multinuclear NMR to be >95%. Abbreviations: st = strong, md = medium, b = broad, s =singlet, d = doublet, q = quartet, pcq = partially collapsed quartet, m = multiplet, fwhm = frequency width at halfmaximum.

(ii) Syntheses. Synthesis of $[(\eta^5-C_5Me_5)Fe(CO)_2(BMes)]$ -[BAr⁴₄] (5). A solution of $(\eta^5-C_5Me_5)Fe(CO)_2B(Mes)Br$ (2) (0.046 g, 0.1 mmol) in CH₂Cl₂ (10 cm³) was added slowly to a suspension of Na[BAr⁴₄] (0.089 g, 0.1 mmol) in CH₂Cl₂ (10 cm³) at -78 °C, and the resulting mixture warmed slowly to room temperature and stirred for 1 h. After this time the reaction was judged to be complete by ¹¹B NMR spectroscopy, and the reaction mixture was filtered, layered with hexanes, and cooled

⁽¹⁰⁾ For complexes featuring metal centers linked by diyl ligands of the heavier group 13 elements see, for example: (a) He, X.; Bartlett, R. A.; Power, P. P. Organometallics 1994, 13, 548. (b) Cowley, A. H.; Decken, A.; Olazabal, C. A.; Norman, N. C. Z. Anorg. Allg. Chem. 1995, 621, 1844. (c) Golden, J. T.; Peterson, T. H.; Holland, P. L.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc. 1998, 120, 223. (d) Yamaguchi, T.; Ueno, K.; Ogino, H. Organometallics 2001, 20, 501. (11) Coombs, D. L.; Aldridge, S.; Jones, C. Appl. Organomet. Chem. 2003, 6–7, 356.

⁽¹²⁾ Reger, D. L.; Wright, T. D.; Little, C. A.; Lamba, J. J. S.; Smith, M. D. *Inorg. Chem.* **2001**, *40*, 3810.

⁽¹³⁾ Pampaloni, G.; Tripepi, G. J. Organomet. Chem. 2000, 593-594, 19.

⁽¹⁴⁾ Braunschweig, H.; Kollann, C.; Klinkhammer, K. W. Eur. J. Inorg. Chem. **1999**, 1523.

to -50 °C for 1 week to yield 5 as colorless crystals suitable for X-ray diffraction (0.070 g, 56%). ¹H NMR (300 MHz, CD₂-Cl₂): δ 2.01 (s, 15H, η⁵-C₅Me₅), 2.34 (s, 3H, para-CH₃), 2.63 (s, 6H, ortho-CH₃), 6.92 (s, 2H, aromatic CH), 7.54 (s, 4H, para-H of BAr $_4^{f}$ -), 7.70 (s, 8 H, ortho-H of BAr $_4^{f}$ -). ¹³C NMR (76 MHz, CD₂Cl₂): δ 8.7 (η ⁵-C₅Me₅), 20.8 (ortho-CH₃), 21.4 (para-CH₃), 97.1 (η^5 -C₅Me₅ quaternary), 116.7 (para-CH of $BAr_{4}^{f_{4}}$), 123.8 (q, ${}^{1}J_{CF} = 271$ Hz, CF₃ of $BAr_{4}^{f_{4}}$), 125.1 (meta-CH of mesityl), 128.6 (q, ${}^{2}J_{CF} = 31$ Hz, meta-C of BAr ${}^{f}_{4}$ -), 134.0 (ortho-CH of BAr^f₄⁻), 147.9, 150.1 (quaternary C's of mesityl), 160.9 (q, ${}^{1}J_{CB} = 49$ Hz, ipso-C of BAr ${}^{f}_{4}$), 211.4 (CO) (ipso-C of mesityl ligand not observed). ¹⁹F NMR (283 MHz, CD_2Cl_2): δ -62.8 (CF₃). ¹¹B NMR (96 MHz, CD₂Cl₂): δ -7.6 (BAr^f₄⁻), 145.0 (b, fwhm ca. 750 Hz, BMes). IR (CH₂Cl₂ solution, cm⁻¹): ν (CO) 2055 st, 2013 st. MS (EI): 349 [(M - CO)⁺, 15%], 321 $[(M - 2CO)^+, 5\%]$, correct isotope distribution for 1 Fe, 1 B atoms. MS (ES neg): 863 $[BAr_4^{f_4}, 100\%]$.

Reaction of (η^5 -C₅Me₅)**Fe**(CO)₂B(Mes)**Br** (2) with Na-[**BPh**₄]. A solution of 2 (0.030 g, 0.07 mmol) in CH₂Cl₂ (4 cm³) was added slowly to a suspension of Na[BPh₄] (0.022 g, 0.07 mmol) in CH₂Cl₂ (2 cm³) at -78 °C, and the resulting mixture was warmed slowly to room temperature and stirred for 16 h. After this time, the reaction was judged to be complete by the disappearance of the resonance due to 2 and the appearance of a single peak at δ_B 66.0. The compound giving rise to this resonance was subsequently shown to be BPh₃ by comparison of spectroscopic data with those reported previously.¹⁵ Volatiles were removed in vacuo, and the remaining solid was extracted with hexanes (5 cm³). Cooling this solution to -50 °C yielded orange crystals of (η^{5} -C₅Me₅)Fe(CO)₂Ph, the identity of which was confirmed by comparison of spectroscopic data with those reported previously.¹⁶

Attempted Borylene Syntheses Using Other Aryl-(halo)boryl Precursors and Halide Abstraction Re**agents.** The reactions of $(\eta^5-C_5H_5)Fe(CO)_2B(Mes)Br$ (1), $(\eta^5-C_5H_5)Fe(CO)_2B(Mes)Br$ (1), (C_5H_5)Fe(CO)₂B(C₆H₃Trp₂-2,6)Br (**3**), and (η^5 -C₅Me₅)Fe(CO)₂B-(Ph)Cl (4) with Na[BAr $_{4}^{f}$] and of 2 with Ag[BF₄] were carried out using a common method. Thus for example, a solution of 3 (0.048 g, 0.06 mmol) in CH_2Cl_2 (5 cm³) was added slowly to a suspension of Na[BAr^{f_4}] (0.056 g, 0.06 mmol) in CH₂Cl₂ (5 cm^3) at -78 °C. The resulting mixture was warmed slowly to room temperature and stirred for 1 h. After this time the ¹¹B NMR resonance due to **3** ($\delta_{\rm B}$ 114.9) had disappeared, but no new resonances attributable to borylene or boryl products were observed. In situ monitoring of the halide abstraction process by multinuclear NMR revealed that complete consumption of the boryl starting material is typically achieved very rapidly even at -70 °C; even at such temperatures it proved impossible to detect any products containing Fe-B bonds.

Reaction of (η^{5} -C₅Me₅)Fe(CO)₂B(NMe₂)Br (7) with Na-[BAr'₄]. A solution of 7 (0.054 g, 0.14 mmol) in CH₂Cl₂ (4 cm³) was added slowly to a suspension of Na[BAr'₄] (0.123 g, 0.14 mmol) in CH₂Cl₂ (2 cm³) at -78 °C. The resulting mixture was warmed slowly to room temperature and stirred for 1 h. After this time the ¹¹B NMR resonance corresponding to 7 ($\delta_B = 56.0$) had disappeared and had been replaced by a single broad peak at δ_B 88.0 (fwhm ca. 620 Hz). Monitoring of the progress of the reaction by infrared spectroscopy revealed the accompanying growth of two new carbonyl bands at 2050 (st) and 2006 (st) cm⁻¹. The reaction mixture was filtered, layered with hexanes, and cooled to -50 °C, but the compounds isolated from repeated crystallizations were shown by ¹¹B NMR to be hydrolysis products.

Generation of $[(\eta^5-C_5Me_5)Fe(CO)_2B(NMe_2)][BAr_4]$ (8) and Trapping with [PPN]Cl. A solution of 7 (0.020 g, 0.05 mmol) in CD₂Cl₂ (2 cm³) was added slowly to a suspension of Na[BAr⁴₄] (0.046 g, 0.05 mmol) in CD₂Cl₂ (0.5 cm³) in a Young's NMR tube at -78 °C. The reaction mixture was warmed to -40 °C, at which point monitoring by ¹¹B NMR revealed partial conversion of **7** ($\delta_{\rm B}$ 56.0) to **8** ($\delta_{\rm B}$ 88.0); further warming to -20 °C and a 30 min period at this temperature led to quantitative conversion of 7 to 8, as judged by ¹¹B and ¹H NMR. Complete NMR characterization of 8 was achieved at this temperature. ¹H NMR (300 MHz, CD_2Cl_2): δ 1.93 (s, 15H, η^{5} -C₅Me₅), 2.83 (s, 6H, NMe₂), 7.55 (s, 4H, para-H of BAr^f₄⁻), 7.70 (s, 8 H, ortho-H of BAr^f₄⁻). ¹³C NMR (76 MHz, CD₂Cl₂): δ 10.3 (η^{5} -C₅Me₅), 33.3 (NMe₂), 101.8 (η^{5} -C₅Me₅ quaternary), 117.6 (para-CH of BAr^{f_4 -), 124.6 (q, ${}^1J_{CF} = 273$ Hz, CF₃ of} BAr $_{4}^{f}$), 128.8 (q, $^{2}J_{CF}$ = 30 Hz, meta-C of BAr $_{4}^{f}$), 134.8 (ortho-CH of BAr^{*f*}₄⁻), 161.8 (q, ${}^{1}J_{CB} = 50$ Hz, ipso-C of BAr^{*f*}₄⁻), 207.6 (CO). ¹⁹F NMR (283 MHz, CD₂Cl₂): δ -62.6 (CF₃). ¹¹B NMR (96 MHz, CD₂Cl₂): δ -7.7 (BAr^f₄⁻), 88.0 (b, fwhm ca. 620 Hz, BNMe₂). Cooling the solution to -80 °C at this point resulted in no observable splitting of the ¹H or ¹³C resonances attributable to the NMe₂ group (singlets at $\delta_{\rm H}$ 2.74 and $\delta_{\rm C}$ 32.5, respectively). The reaction mixture was then warmed back to -20 °C and filtered while cold into a solution of [PPN]Cl (0.150 g, 0.25 mmol) in CD_2Cl_2 (1 cm³). After warming to room temperature and stirring for 5 min the reaction mixture was analyzed spectroscopically, revealing clean and complete conversion of **8** to $(\eta^5$ -C₅Me₅)Fe(CO)₂B(NMe₂)Cl (**9**). **9** was identified by comparison of spectroscopic data with those reported previously by Braunschweig: 7d ^H NMR (300 MHz, CD₂Cl₂) δ 1.73 (s, 15H, η^{5} -C₅Me₅), 2.92 (s, 3H, NMe₂), 3.03 (s, 3H, NMe₂). ¹³C NMR (76 MHz, CD₂Cl₂): δ 9.7 (η ⁵-C₅Me₅), 41.2 (NMe₂), 43.8 (NMe₂), 95.5 (η^{5} -C₅Me₅ quaternary), 217.5 (CO). ¹¹B NMR (96 MHz, CD₂Cl₂): δ 58.6. IR (CD₂Cl₂ solution, cm⁻¹): v(CO) 1983 st, 1923 st.

Synthesis of $(\eta^5 - C_5 Me_5)Fe(CO)_2B(Mes)Cl$ (10) from 5 and [PPN]Cl. Details of the synthesis of 10 from 5 and [PPN]-Cl have previously been reported by us.^{8c} Data are reproduced here solely for comparative purposes. In addition, after our earlier report we have managed to obtain X-ray quality crystals of 10 by repeated recrystallization from hexanes at -30 °C. Details of this structure are therefore reported here for the first time. Characterizing data for 10: ¹H NMR (300 MHz, C₆D₆): δ 1.35 (s, 15H, C₅Me₅), 2.20 (s, 3H, para-CH₃), 2.28 (s, 6H, ortho-CH₃), 6.74 (s, 2H, aromatic CH). ¹³C NMR (76 MHz, C₆D₆): δ 9.0 (η ⁵-C₅Me₅), 21.0 (para-CH₃), 21.6 (ortho-CH₃), 97.1 (η^{5} -C₅Me₅ quaternary), 127.7 (aromatic CH), 133.2, 136.2 (aromatic quaternary), 216.2 (CO). ¹¹B NMR (96 MHz, C_6D_6): δ 112.1 (b, fwhm ca. 580 Hz). IR (KBr disk, cm⁻¹): ν (CO) 1996 md, 1936 md. MS (EI): M⁺ = 412 (5%), isotopic pattern corresponding to 1 Fe, 1 B, 1 Cl atoms, strong fragment ion peaks at m/z 384 [(M - CO)⁺, 60%] and 356 [(M - 2CO)⁺, 100%]. Exact mass: calcd 412.1058. measd 412.1055. In addition, spectroscopic data for the hexane-insoluble product of this reaction are consistent with those reported previously for [PPN][BAr $_4$].¹⁷

Synthesis of 2 from 5 and [Ph₄P]Br. To a solution of [Ph₄P]Br (0.045 g, 0.1 mmol) in CD₂Cl₂ (2 cm³) was added a solution of 5 (0.040 g, 0.03 mmol) in CD₂Cl₂ (2 cm³). The resulting mixture was stirred at room temperature for 2 h, after which the ¹¹B resonance due to 5 (δ_B 145.0) was found to be completely converted into a single signal at δ_B 113.0 characteristic of 2. Further comparison of multinuclear NMR and IR data (for the isolated compound) with those obtained for an authentic sample of 2 in CD₂Cl₂ confirmed the identity of 2 as the sole boron-containing product.^{8b}

Reaction of 5 with ["Bu₄N]I. To a solution of ["Bu₄N]I (0.049 g, 0.13 mmol) in CH₂Cl₂ (3 cm³) was added a solution of **5** (0.161 g, 0.13 mmol) in CH₂Cl₂ (6 cm³). The reaction mixture was stirred for 2 h, at which point ¹¹B NMR monitoring revealed complete conversion of **5** (δ_B 145.0) to a single boron-containing species at δ_B 110.7. Filtration, removal of

 ⁽¹⁵⁾ Odom, J. D.; Moore, T. F.; Goetze, R.; Nöth, H.; Wrackmeyer,
 B. J. Organomet. Chem. 1979, 173, 15.

⁽¹⁶⁾ Jacobsen, S. E.; Wojcicki, A. J. Am. Chem. Soc. 1973, 95, 6962.

⁽¹⁷⁾ Tellers, D. M.; Yung, C. M.; Arndtsen, B. A.; Adamson, D. R.; Bergman, R. G. J. Am. Chem. Soc. **2002**, *124*, 1400.

volatiles in vacuo, and recrystallization from hexanes (ca. 10 cm³) at −30 °C initially yielded a small quantity (≪0.010 g) of a dark red crystalline solid subsequently identified crystallographically as $(\eta^5-C_5Me_5)Fe(CO)_2I$ (13) (full crystallographic details are included in the Supporting Information).¹⁸ Subsequent cooling of the supernatant solution to -50 °C then yielded pale yellow crystals of $(\eta^5-C_5Me_5)Fe(CO)_2B(Mes)I$ (11) (0.038 g, 56%). Characterizing data for 11: ¹H NMR (300 MHz, C_6D_6): δ 1.26 (s, 15H, η^5 - C_5Me_5), 2.22 (s, 6H, ortho-CH₃), 2.24 (s, 3H, para-CH₃), 6.70 (s, 2H, aromatic CH). ¹³C NMR (76 MHz, C_6D_6): δ 9.9 (η^5 - C_5Me_5), 20.9 (para-CH₃), 21.1 (ortho-CH₃), 95.5 (η^{5} -C₅Me₅ quaternary), 130.6 (aromatic CH), 129.0, 136.4 (aromatic quaternary), 216.3 (CO). ¹¹B NMR (96 MHz, C₆D₆): δ 110.7. IR (KBr disk, cm⁻¹): ν (CO) 2005 st, 1955 st. MS (EI): fragment ion peaks at m/z 476 [(M - CO)⁺, 25%], 448 $[(M - 2CO)^+, 5\%]$. Periodic sampling of the reaction mixture by infrared spectroscopy revealed, in addition to bands attributable to **11** [ν (CO) 2005 and 1955 cm⁻¹], weaker shoulders at 2017 and 1969 cm⁻¹, which were present even at short reaction times (ca. 30 min) and whose relative intensities (with respect to the bands at 2005 and 1955 cm⁻¹) appeared to vary little. For comparative purposes $(\eta^5-C_5Me_5)Fe(CO)_2I$ (13) in CH₂Cl₂ has been reported to give rise to bands at 2019 and 1971 cm^{-1;18} in addition those measured for a sample of **13** prepared independently from $[(\eta^5-C_5Me_5)Fe(CO)_2]Na$ and I_2 are at 2017 and 1971 cm⁻¹.

Synthesis of $(\eta^5-C_5Me_5)Fe(CO)_2B(Mes)F$ (12) from 5 and ["Bu₄N]BF₄. To a solution of ["Bu₄N]BF₄ (0.056 g, 0.17 mmol) in CH_2Cl_2 (3 cm³) was added slowly a solution of 5 (0.212 g, 0.17 mmol) in CH_2Cl_2 (6 cm³). The reaction mixture was stirred for 2 h, at which point ¹¹B NMR monitoring revealed complete conversion of 5 to a single boron-containing species at δ_B 90.4. Filtration, removal of volatiles in vacuo, and recrystallization from hexanes (ca. 10 cm³) at -50 °C yielded yellow crystals of 12 suitable for X-ray diffraction (0.043 g, 63%). ¹H NMR (300 MHz, C₆D₆): δ 1.49 (s, 15H, η ⁵-C₅Me₅), 2.16 (s, 3H, para-CH₃), 2.43 (s, 6H, ortho-CH₃), 6.73 (s, 2H, aromatic CH). ¹³C NMR (76 MHz, C₆D₆): δ 9.4 (η ⁵-C₅Me₅), 21.0 (para-CH₃), 21.6 (ortho-CH₃), 96.3 (η^{5} -C₅Me₅ quaternary), 128.8 (aromatic CH), 135.9 (d, ${}^{3}J_{CF} = 3.5$ Hz), 136.9 (aromatic quaternary), 216.7 (CO). ¹⁹F NMR (283 MHz, CD₂Cl₂): δ 56.2 (pcq). ¹¹B NMR (96 MHz, C₆D₆): δ 90.4 (b, d, ¹J_{BF} = 180 Hz). The resonance observed in the ${}^{11}B{}^{1}H{}$ spectrum of **12** in C₆D₆ room temperature was broad, with coupling to the ¹⁹F nucleus not completely resolved. Warming to 60 °C however allows the two components of the doublet to be resolved and the coupling constant to be determined (11B{1H} spectra at 20, 40, and 60 °C are included in the Supporting Information). IR (KBr disk, cm⁻¹): ν (CO) 1989 st, 1931 st. MS (EI): M⁺ = 396 (5%), isotopic pattern corresponding to 1 Fe, 1 B atoms, fragment ion peaks at m/z 368 [(M - CO)⁺, 15%], 340 [(M - 2CO)⁺, 100%], and 325 [(M - 2CO - Me)+, 30%]. Exact mass: calcd 396.1354, measd 396.1356.

Reaction of 5 with [PPN][BPh4]. To a solution of [PPN]-[BPh4] (0.150 g, 0.18 mmol) in CH₂Cl₂ (8 cm³) was added slowly a solution of **5** (0.217 g, 0.18 mmol) in CH₂Cl₂ (2 cm³) at -78°C and the resulting mixture warmed slowly to room temperature and stirred for 1 h. After this time, the reaction was judged to be complete by the disappearance of the resonance due to **5** and the appearance of a single peak at δ_B 66.0. The compound giving rise to this resonance was subsequently shown to be BPh₃ by comparison of spectroscopic data with those reported previously.¹⁵ Volatiles were removed in vacuo, and the remaining solid was extracted with hexanes (5 cm³). Cooling this solution to -50 °C yielded orange crystals of (η^5 -C₅Me₅)Fe(CO)₂Ph, the identity of which was confirmed by comparison of spectroscopic data with those reported previously.¹⁶

Reaction of 5 with CO. A solution of 5 (0.217 g, 0.18 mmol) in CH₂Cl₂ (20 cm³) was stirred for 6 h under a continuous flow of CO, after which the reaction was judged to be complete by ¹¹B NMR (by the complete replacement of the peak due to the starting material with a single peak at $\delta_{\rm B}$ 17). Volatiles were removed in vacuo and the remaining solid washed successively with hexanes, toluene, and dichloromethane (ca. 10 cm³ of each). No boron-containing products could be detected in any of the washings by ¹¹B NMR, thus implying significant volatility for the species giving rise to the resonance at δ_B 17 in the original reaction mixture. The red dichloromethanesoluble fraction was filtered, layered with hexanes, and cooled to -30 °C, whereupon red crystals of $[(\eta^5-C_5Me_5)Fe(CO)_3]$ -[BArf₄] (14) suitable for X-ray diffraction were isolated (0.053 g, 75%). ¹H NMR (300 MHz, C₆D₆): δ 2.00 (s, 15H, η^{5} -C₅Me₅), 7.56 (s, 4H, para-H of BAr $_{4}^{f}$), 7.71 (s, 8H, ortho-H of BAr $_{4}^{f}$). ¹³C NMR (76 MHz, C_6D_6): δ 9.8 (η^5 - C_5Me_5), 104.5 (η^5 - C_5Me_5) quaternary), 117.5 (para-CH of $BAr_{4}^{f_{-}}$), 124.6 (q, ${}^{1}J_{CF} = 273$ Hz, CF₃ of BAr^{*f*}₄⁻), 128.9 (q, ${}^{2}J_{CF} = 31$ Hz, meta-C of BAr^{*f*}₄), 134.8 (ortho-CH of BAr^{f_4^-}), 161.8 (q, ${}^1J_{CB} = 53$ Hz, ipso-C of BAr^{f_4^-}), 204.0 (CO). ¹⁹F NMR (283 MHz, CD₂Cl₂): δ -62.7 (CF₃). ¹¹B NMR (96 MHz, CD₂Cl₂): δ -7.6 (BAr^f₄⁻). IR (CH₂Cl₂ solution, cm⁻¹): ν (CO) 2105 st, 2046 st. MS (ES pos): M⁺ = 275 (100%), isotopic pattern corresponding to 1 Fe atom. MS (ES neg): 863 [BAr f_4^- , 100%]. Exact mass (cation): calcd 275.0365, measd 275.0365.

Reaction of 5 with 3,3-Dimethyl-1-butene. To a solution of 3,3-dimethyl-1-butene (0.015 g, 0.18 mmol) in CH₂Cl₂ (2 cm³) was added slowly a solution of 5 (0.223 g, 0.18 mmol) in CH₂Cl₂ (8 cm³). The reaction mixture was stirred for 16 h, at which point complete consumption of the starting material 5 was confirmed by ¹¹B NMR. Volatiles were removed in vacuo, and the remaining solid was washed successively with hexanes, toluene, and dichloromethane (ca. 10 cm³ of each). No boroncontaining products could be detected in any of the washings by ¹¹B NMR. The orange dichloromethane-soluble fraction was filtered, layered with hexanes, and cooled to -30 °C, whereupon deep yellow crystals of $[(\eta^5-C_5Me_5)Fe(CO)_2(\eta^2-H_2C=CH-CO)_2(\eta^2-H_2CC=CH-CO)_2(\eta^2-H_2CC)_2(\eta^2-H_2CC)_2(\eta^2-H_2CC)_2(\eta^2-H_2C$ ^tBu)][BAr^f₄] (15) suitable for X-ray diffraction were isolated (0.125 g, 63%). ¹H NMR (300 MHz, C₆D₆): δ 1.06 (s, 9H, ^{*t*}Bu), 1.82 (s, 15H, η^{5} -C₅Me₅), 2.68 (d, ${}^{3}J_{HH} = 8.3$ Hz (cis), 1H, ^{*t*}BuHC=CH₂), 3.11 (d, ${}^{3}J_{HH} = 15.1$ Hz (trans), 1H, ^{*t*}BuHC= CH_2), 3.99 (dd, ${}^{3}J_{HH} = 8.3$ (cis), 15.1 Hz (trans), 1H, ${}^{4}BuHC =$ CH₂), 7.55 (s, 4H, para-H of BAr $_{4}^{f}$), 7.71 (s, 8H, ortho-H of BAr^{f_4 -). ¹³C NMR (76 MHz, C₆D₆): δ 9.8 (η ⁵-C₅Me₅), 30.2} (quaternary C of 'Bu), 35.6 (CH₃ of 'Bu), 98.7 (η^{5} -C₅Me₅ quaternary), 102.5 (CH₂ of alkene), 117.5 (para-CH of BAr $_{4}^{f}$ -), 124.6 (q, ${}^{1}J_{CF} = 272$ Hz, CF₃ of BAr^{*f*}₄⁻), 128.9 (q, ${}^{2}J_{CF} = 32$ Hz, meta-C of BAr^f₄⁻), 134.7 (CH of alkene), 134.9 (ortho-CH of BAr $_{4}^{f}$), 161.7 (q, ${}^{1}J_{CB} = 50$ Hz, ipso-C of BAr $_{4}^{f}$), 213.1 (CO). ¹⁹F NMR (283 MHz, CD_2Cl_2): δ -62.7 (CF₃). ¹¹B NMR (96 MHz, CD₂Cl₂): δ -7.6 (BAr^f₄⁻). IR (CH₂Cl₂ solution, cm⁻¹): ν (CO) 2033 md, 1997 md. MS (ES pos): M⁺ = 331 (50%), isotopic pattern corresponding to 1 Fe atom, fragment ion peaks at m/z 275 [(M – 2CO)⁺, 100%], 247 [(M – alkene)⁺, 40%]. MS (ES neg): 863 [BAr^f₄⁻, 100%]. Exact mass (cation): calcd 331.1355, measd 331.1352.

Reaction of 5 with Benzophenone. To a solution of benzophenone (0.028 g, 0.15 mmol) in CH_2Cl_2 (2 cm³) was added slowly a solution of **5** (0.191 g, 0.15 mmol) in CH_2Cl_2 (8 cm³). The reaction mixture was stirred for 3 h, after which the reaction was judged to be complete by ¹¹B NMR (by the replacement of the peak due to the starting material with a single peak at δ_B 17). Volatiles were removed in vacuo, and the remaining solid was washed successively with hexanes, toluene, and dichloromethane (ca. 10 cm³ of each). No boron-containing products could be detected in any of the washings by ¹¹B NMR. The red dichloromethane-soluble fraction was filtered, layered with hexanes, and cooled to -30 °C, where-upon red crystals of $[(\eta^5-C_5Me_5)Fe(CO)_2(\eta^1-O=CPh_2)][BAr_{4}^{f_4}]$ (**16**) suitable for X-ray diffraction were isolated (0.109 g, 56%).

⁽¹⁸⁾ Akita, M.; Terada, M.; Tanaka, M.; Morooka, Y. J. Organomet. Chem. **1996**, *510*, 255.

¹H NMR (300 MHz, C₆D₆): δ 1.75 (s, 15H, η^{5} -C₅Me₅), 7.39 (m, 2H, para-H of benzophenone), 7.56 (m, 8H, overlap of meta-H of benzophenone and para-H of BAr_{4}^{f}), 7.73 (m, 12H, overlap of ortho-H of benzophenone and ortho-H of BAr^f₄⁻). ¹³C NMR (76 MHz, C₆D₆): δ 9.3 (η ⁵-C₅Me₅), 98.0 (η ⁵-C₅Me₅ quaternary), 117.5 (para-CH of BAr^{f_4 -), 124.6 (q, ${}^{1}J_{CF} = 272$ Hz, CF₃ of} BAr^{f_4 -), 128.3 (para-C of benzophenone), 128.7 (q. $^2J_{CF} = 27$} Hz, meta-C of BAr_{4}^{f}), 129.1 (meta-C of benzophenone), 129.4 (ortho-C of benzophenone), 134.0 (ortho-CH of BAr^f₄⁻), 136.4 (ipso-C of benzophenone), 161.8 (q, ${}^{1}J_{CB} = 50$ Hz, ipso-C of BAr_{4}^{f}), 210.1 (CO of benzophenone), 215.1 (metal bound CO). ¹⁹F NMR (283 MHz, CD₂Cl₂): δ -62.7 (CF₃). ¹¹B NMR (96 MHz, CD₂Cl₂): δ -7.6 (BAr^f₄⁻). IR (KBr, cm⁻¹): ν (CO) 2050 md, 2004 md, 1612 md (benzophenone). MS (ES pos): M^+ = 429 (75%), isotopic pattern corresponding to 1 Fe atom, fragment ion peaks at m/z 401 [(M - CO)+, 20%], 373 [(M -2CO)⁺, 30%]. MS (ES neg): 863 [BAr^f₄⁻, 100%]. Exact mass (cation): calcd 429.1153, measd 429.1149.

Thermolysis of 5 in Dichloromethane Solution. A solution containing 5 (0.152 g, 0.12 mmol) in CD_2Cl_2 (1 cm³) was transferred to a flame-dried Young's NMR tube. ¹¹B{¹H} and ¹H spectra were measured at room temperature and then periodically over a period of ca. 24 h at 40 °C. The relative concentration of 5 in solution was assessed by integration of the signal at $\delta_{\rm H}$ 2.63 due to the six ortho methyl protons of the mesityl substituent. The procedure was repeated in CH₂Cl₂, using a sealed internal deuterium lock. First-order rate constants were then obtained from the (linear) plots of $\ln([5]/[5]_0)$ versus time.

Chemical Trapping of the Mesitylborylene Fragment: Reaction of 5 with Me₂S₂. To a solid sample of 5 (0.206 g, 0.17 mmol) was added a solution of Me₂S₂ (0.262 g, 0.262 g)0.28 mmol) in hexanes and the reaction mixture stirred at room temperature for 2 h. At this point the ¹¹B NMR spectrum of the hexane-soluble fraction showed a single strong resonance at $\delta_{\rm B}$ 66.0, characteristic of MesB(SMe)₂ (17).¹⁹ Filtration and removal of volatiles in vacuo led to the isolation of a colorless oil, which was confirmed to be MesB(SMe)₂ by further comparison of spectroscopic data with those reported previously.¹⁹

(iii) General Crystallographic Method. Data for compounds 5, 10, 12, 13, 14, 15, and 16 were collected on an Enraf Nonius Kappa CCD diffractometer; data collection and cell refinement were carried out using DENZO and COLLECT, 20,21 and structure solution and refinement using SHELXS-97 and SHELXL-97, respectively.²² With the exception of $(\eta^5-C_5Me_5)$ -Fe(CO)₂I (13) details of each data collection, structure solution, and refinement can be found in Table 1. Relevant bond lengths and angles are included in the figure captions (figures for compounds 14 and 15 are included in the Supporting Information), and complete details of each structure have been deposited with the CCDC (numbers as listed in Table 1). In addition complete details for each structure (including CIF files) have been included in the Supporting Information. The structure of compound 13 has previously been reported,¹⁸ and the crystallographic study undertaken here merely served to unambiguously confirm the identity of a minor (yet chemically significant) side product isolated in low yield. Details of this structure are included in the Supporting Information.

The crystal structure of compound 5 was solved and refined in the monoclinic space group C2/c. Two crystallographically independent cations and anions, in addition to one molecule of dichloromethane, were located and refined in the asymmetric unit. There were no significant geometric differences found between the two independent cations or the two independent anions. The relatively high R-factor for the crystal structure arises from the fact that the crystal chosen for the experiment was found to diffract weakly at high angle. This is despite the crystal being relatively large ($0.35 \times 0.35 \times 0.15$ mm) and of relatively good quality. Prior to the collection of data on this crystal, data collections on a number of other samples of the compound were attempted, but all samples showed similar problems. Despite the poor quality of the data all indicators point toward a well-behaved structure and the molecular connectivity is unambiguous. A number of the fluorine atoms within the CF₃ groups on both anions showed high anisotropic temperature factors, suggesting disorder within these groups. Attempts were made to model this disorder in all such CF₃ groups with limited success. The disorder in three of the CF₃ groups was successfully modeled, but in all others it was not possible to do so, presumably due to dynamic disorder within these groups. The fluorine atoms on these groups were, however, refined anisotropically.

(iv) Computational Methodology. The computational approach utilized for geometry optimization and bond dissociation energy (BDE) calculations on 5, 8 and $[(\eta^5-C_5H_5)Fe-$ (PMe₃)₂(BMes)]⁺ was identical to that reported previously for similar studies on metal complexes containing boron-based ligand systems.4b,23 The ADF2002.03 code was employed, together with BLYP exchange-correlation functionals;^{24,25} a basis set derived from Slater-type orbitals with a triple- ζ valence shell and two polarization functions per atom was used in all cases, except for $[(\eta^5-C_5H_5)Fe(PMe_3)_2(BMes)]^+$, where, due to the larger number of atoms, a smaller basis set was chosen for the peripheral hydrogen and carbon atoms of the PMe₃ ligands (double- ζ valence shell with one polarization function per atom). The frozen core approximation was employed for atoms other than hydrogen. For the atoms of the second period (B, C, N, O) the core orbitals were defined as 1s, while for phosphorus and iron orbitals up to the 2p and 3p, respectively, were included in the core. All structures were fully optimized based on unrestricted electronic structure calculations with complexes in the singlet ground state.

The bond dissociation energy for given MB bonds was calculated by estimating the energy change associated with the bond cleavage reaction:

$$[(\eta^{5}-C_{5}R_{5})Fe(L)_{2}BX]^{+} \rightarrow [(\eta^{5}-C_{5}R_{5})Fe(L)_{2}]^{+} + BX$$

The structures of the products from this reaction were independently optimized to allow for the inclusion of any molecular relaxation.²³ The σ and π contributions to the bonding energies were determined in the same way as reported previously for transition metal boryl complexes.²³ In each case a single-point calculation was carried out with the optimized structure aligned so that the M=B bond was along the z-axis. A specially developed analysis program was then used to carry out an adapted Mulliken analysis, which separates the bonding density into contributions from atomic orbitals of σ and π

⁽¹⁹⁾ Siebert, W.; Schaper, K.-J.; Schmidt, M. J. Organomet. Chem. **1970**, *25*, 315.

⁽²⁰⁾ Otwinowski, Z.; Minor, W. In Methods in Enzymology, Carter, C. W., Sweet, R. M., Eds.; Academic Press: New York, 1996; Vol. 276, p 307.

⁽²¹⁾ COLLECT, Data collection software; Nonius B.V., 1999.

 ⁽²²⁾ Sheldrick, G. M. SHELX97: Programs for Crystal Structure Analysis (Release 97–2); University of Göttingen: Göttingen, Germany, 1998.

⁽²³⁾ Dickinson, A. A.; Willock, D. J.; Calder, R. J.; Aldridge, S. Organometallics 2002, 21, 1146.

^{(24) (}a) ADF2002.03 was obtained from SCM, Theoretical Chemis-(24) (a) ADF2002.05 was obtained from SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, Netherlands, http://www.scm.com.
(b) te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Fonseca Guerra, C.; Baerends, E. J.; Snijders, J. G.; Ziegler, T. J. Comput. Chem. 2001, 22, 931. (c) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Theor. Chem. Acc. 1998, 99, 391.
(25) (a) Becke, A. D. Phys. Rev. A 1988, 38, 3098. (b) Lee, C.; Yang, W.; Born P. C. Dhug. Pure Rev R 1098

W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.

Table 1. Crystallographic Data for Compounds 5, 10, 12, 14, 15, and 16						
	$5 \cdot 1/2 CH_2 Cl_2$	10	12			
empirical formula	C _{53.5} H ₃₉ B ₂ ClF ₂₄ FeO ₂	C ₂₁ H ₂₆ BClFeO ₂	C ₂₁ H ₂₆ BFFeO ₂			
CCDC deposit number	213762	210381	229790			
fw	1282.77	412.53	396.08			
temperature (K)	150(2)	120(2)	150(2)			
wavelength (A)	0.71073	0.71073	0.71073			
cryst syst	monoclinic	$\frac{1}{2} \frac{1}{2} \frac{1}$				
space group unit cell dimens: $a(Å)$	36 301(7)	P21/C 9 5840(2)	F1 8 0000(16)			
h (Å)	25.675(5)	17.3711(3)	8.6770(17)			
c (Å)	23.956(5)	12.9997(2)	14.650(3)			
α (deg)	90	90	92.67(3)			
β (deg)	93.81(3)	111.249(1)	101.17(3)			
γ (deg)	90	90	97.57(3)			
volume (A ³)	22278(8)	2017.11(6)	986.3(3)			
Z donsity(calc) (Ma/m ³)	10	4 1.358	۲ 1 334			
abs coeff (mm^{-1})	0.440	0.892	0 785			
F(000)	10320	864	416			
cryst color, habit	colorless plate	vellow plate	vellow plate			
cryst size (mm ³)	0.35 imes 0.35 imes 0.15	$0.40 \times 0.20 \times 0.08$	$0.20 \times 0.15 \times 0.10$			
θ range for data colln (deg)	2.91 to 25.02	3.27 to 27.48	3.43 to 26.34			
index ranges (<i>h, k, 1</i>)	-43 to 43, -30 to 27, -28 to 28	-12 to 12, -22 to 22, -16 to 16	-9 to 9, -10 to 10, -18 to 18			
no. of refins collected	34 393	35 998	12 594			
no. of indep refins/ R_{int}	19 345 (0.0553)	4627 (0.0516)	3933 (0.0907)			
absorp corr	90.5 Sortav	somiomnifical from oquivalents	Sortay			
max, and min, transmn	0.9370. 0.8613	0.8321, 0.7168	0.9856 to 0.4788			
refinement method	full matrix least squares on F^2	full matrix least squares on F^2	full matrix least squares on F^2			
no. of data/restraints/params	19 345/111/1560	4627/0/244	3933/0/244			
goodness-of-fit on F ²	1.030	1.030	1.041			
final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0888, wR2 = 0.1974	R1 = 0.0286, wR2 = 0.0713	R1 = 0.0446, $wR2 = 0.1059$			
R indices (all data)	R1 = 0.1679, wR2 = 0.2356	R1 = 0.0353, wR2 = 0.0754	R1 = 0.0544, wR2 = 0.1111			
(e Å ⁻³)	0.756 and -0.561	0.319 and -0.313	0.811 and -0.567			
	14	15	$16 \cdot 1/4C_6H_{14}$			
empirical formula	14 СлеНатВЕалЕеОа	15 C50H20BF24FeO2	16 ·1/4C ₆ H ₁₄			
empirical formula CCDC deposit number	14 C ₄₅ H ₂₇ BF ₂₄ FeO ₃ 229791	15 C ₅₀ H ₃₉ BF ₂₄ FeO ₂ 229792	$\frac{161/4C_6H_{14}}{C_{58.5}H_{40.5}BF_{24}FeO_3}$ 229793			
empirical formula CCDC deposit number fw	14 C ₄₅ H ₂₇ BF ₂₄ FeO ₃ 229791 1138.33	15 C ₅₀ H ₃₉ BF ₂₄ FeO ₂ 229792 1194.47	16 1/4C ₆ H ₁₄ C _{58.5} H _{40.5} BF ₂₄ FeO ₃ 229793 1314.07			
empirical formula CCDC deposit number fw temperature (K)	14 C ₄₅ H ₂₇ BF ₂₄ FeO ₃ 229791 1138.33 150(2)	$\begin{array}{c} {\color{red} 15} \\ \hline C_{50}H_{39}BF_{24}FeO_2 \\ 229792 \\ 1194.47 \\ 150(2) \end{array}$	16 1/4C ₆ H ₁₄ C _{58,5} H _{40,5} BF ₂₄ FeO ₃ 229793 1314.07 150(2)			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å)	14 C ₄₅ H ₂₇ BF ₂₄ FeO ₃ 229791 1138.33 150(2) 0.71073	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ \end{array}$	161/4C6H14 C58.5H40.5BF24FeO3 229793 1314.07 150(2) 0.71073			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst	14 C ₄₅ H ₂₇ BF ₂₄ FeO ₃ 229791 1138.33 150(2) 0.71073 monoclinic	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Planet Planet$	16 1/4C ₆ H ₁₄ C _{58,5} H _{40,5} BF ₂₄ FeO ₃ 229793 1314.07 150(2) 0.71073 monoclinic			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group	14 C ₄₅ H ₂₇ BF ₂₄ FeO ₃ 229791 1138.33 150(2) 0.71073 monoclinic <i>P</i> 2 ₁ / <i>c</i> 12.986 (2)	15 C ₅₀ H ₃₉ BF ₂₄ FeO ₂ 229792 1194.47 150(2) 0.71073 orthorhombic <i>Pbca</i> 17.025(4)	16 ¹ /4C ₆ H ₁₄ C _{58,5} H _{40,5} BF ₂₄ FeO ₃ 229793 1314.07 150(2) 0.71073 monoclinic <i>P</i> 2 ₁ / <i>n</i> 21.5562(2)			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å)	14 C ₄₅ H ₂₇ BF ₂₄ FeO ₃ 229791 1138.33 150(2) 0.71073 monoclinic <i>P</i> 2 ₁ /c 12.286(3) 19.347(4)	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å)	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg)	$\begin{array}{c} \textbf{14} \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ \end{array}$	$\begin{array}{c} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg)	$\begin{array}{c} {\color{black} 14} \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ \end{array}$	$\begin{array}{r} {\color{red} 1/4 C_6 H_{14}} \\ \hline C_{58,5} H_{40,5} BF_{24} FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³)	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ \hline \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.619 \\ \end{array}$	$\begin{array}{r} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1500\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absom coeff (mm ⁻¹)	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.372 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) Fl0000	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color. habit.	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ vellow plate \\ \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ vellow cube\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³)	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ yellow plate \\ 0.20 \times 0.20 \times 0.10 \\ \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow\ cube\\ 0.35\times 0.30\times 0.25\\ \end{array}$	$\begin{array}{c} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg)	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ yellow plate \\ 0.20 \times 0.20 \times 0.10 \\ 2.95 \text{ to } 25.35 \\ \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow\ cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \text{ to } 26.04 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h, k, l)	$\begin{array}{c} {\bf 14} \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ yellow plate \\ 0.20 \times 0.20 \times 0.10 \\ 2.95 \ to \ 25.35 \\ -14 \ to \ 14; -23 \ to \ 23; -24 \ to \ 24 \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow\ cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ \end{array}$	$\begin{array}{c} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \text{ to } 26.04 \\ -26 \text{ to } 26; -15 \text{ to } 15; -28 \text{ to } 28 \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h, k, l) no. of reflns collected	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ yellow plate \\ 0.20 \times 0.20 \times 0.10 \\ 2.95 \text{ to } 25.35 \\ -14 \text{ to } 14; -23 \text{ to } 23; -24 \text{ to } 24 \\ 31.959 \\ 91 \\ 92 \\ 93 \\ 94 \\ 94 \\ 94 \\ 94 \\ 95 \\ 95 \\ 94 \\ 95 \\ 94 \\ 95 \\ 94 \\ 95 \\ 94 \\ 95 \\ 94 \\ 95 \\ 94 \\ 95 \\ 94 \\ 94$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow\ cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ 50\ 616\\ \hline \end{array}$	$\begin{array}{c} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \text{ to } 26.04 \\ -26 \text{ to } 26; -15 \text{ to } 15; -28 \text{ to } 28 \\ 47.003 \\ 14.003 \\ 1500 \\ 1000 \\$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (d	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ yellow plate \\ 0.20 \times 0.20 \times 0.10 \\ 2.95 \text{ to } 25.35 \\ -14 \text{ to } 14; -23 \text{ to } 23; -24 \text{ to } 24 \\ 31 959 \\ 8579 (0.0413) \\ 20.7 \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow\ cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 90\\ 90\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ \mathcal{P}_{2_1/n} \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \ to \ 26.04 \\ -26 \ to \ 26; -15 \ to \ 15; -28 \ to \ 28 \\ 47 \ 003 \\ 11 \ 596 \ (0.0682) \\ \hline \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h, k, h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%)	$\begin{array}{c} 14\\ \hline C_{45}H_{27}BF_{24}FeO_{3}\\ 229791\\ 1138.33\\ 150(2)\\ 0.71073\\ monoclinic\\ P2_{1}/c\\ 12.286(3)\\ 19.347(4)\\ 20.360(4)\\ 90\\ 104.19(3)\\ 90\\ 104.19(3)\\ 90\\ 4691.9(16)\\ 4\\ 1.612\\ 0.457\\ 2272\\ yellow plate\\ 0.20\times0.20\times0.10\\ 2.95\ to\ 25.35\\ -14\ to\ 14;\ -23\ to\ 23;\ -24\ to\ 24\\ 31\ 959\\ 8579\ (0.0413)\\ 99.7\\ Sertex \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sartay\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \ to \ 26.04 \\ -26 \ to \ 26; -15 \ to \ 15; -28 \ to \ 28 \\ 47 \ 003 \\ 11 \ 596 \ (0.0682) \\ 99.1 \\ Sortow \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h, k, h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max, and min_transmp	$\begin{array}{c} 14\\ \hline C_{45}H_{27}BF_{24}FeO_{3}\\ 229791\\ 1138.33\\ 150(2)\\ 0.71073\\ monoclinic\\ P2_{1}/c\\ 12.286(3)\\ 19.347(4)\\ 20.360(4)\\ 90\\ 104.19(3)\\ 90\\ 104.19(3)\\ 90\\ 4691.9(16)\\ 4\\ 1.612\\ 0.457\\ 2272\\ yellow plate\\ 0.20\times0.20\times0.10\\ 2.95\ to\ 25.35\\ -14\ to\ 14;\ -23\ to\ 23;\ -24\ to\ 24\\ 31\ 959\\ 8579\ (0.0413)\\ 99.7\\ Sortav\\ 0.9557\ 0.9141\\ \end{array}$	$\begin{array}{r} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0\ 933\ 0\ 692\\ \end{array}$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \ to \ 26.04 \\ -26 \ to \ 26; -15 \ to \ 15; -28 \ to \ 28 \\ 47 \ 003 \\ 11 \ 596 \ (0.0682) \\ 99.1 \\ Sortav \\ 0 \ 953 \ and \ 0 \ 876 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h, k, h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max. and min. transmn refinement method	14 $C_{45}H_{27}BF_{24}FeO_3$ 229791 1138.33 150(2) 0.71073 monoclinic $P_{21/c}$ 12.286(3) 19.347(4) 20.360(4) 90 104.19(3) 90 4691.9(16) 4 1.612 0.457 2272 yellow plate 0.20 × 0.20 × 0.10 2.95 to 25.35 -14 to 14; -23 to 23; -24 to 24 31 959 8579 (0.0413) 99.7 Sortav 0.9557, 0.9141 full matrix least squares on F^2	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21, -23\ to\ 23, -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0.933,\ 0.692\\ full matrix least squares on F^2$	$\begin{array}{r} \textbf{16} 1/4C_6H_{14} \\ \hline C_{58,5}H_{40,5}BF_{24}FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \ to \ 26.04 \\ -26 \ to \ 26; \ -15 \ to \ 15; \ -28 \ to \ 28 \\ 47 \ 003 \\ 11 \ 596 \ (0.0682) \\ 99.1 \\ Sortav \\ 0.953 \ and \ 0.876 \\ full matrix least squares on \ F^2 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h , k , h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max. and min. transmn refinement method no. of data/restraints/narams	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ yellow plate \\ 0.20 \times 0.20 \times 0.10 \\ 2.95 \ to 25.35 \\ -14 \ to 14; -23 \ to 23; -24 \ to 24 \\ 31 \ 959 \\ 8579 \ (0.0413) \\ 99.7 \\ Sortav \\ 0.9557, 0.9141 \\ full matrix least squares on F^2 \\ 8579/36/712 \end{array}$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0.933,\ 0.692\\ full\ matrix\ least\ squares\ on\ F^2\\ 9212/624/712\\ \end{array}$	$\begin{array}{r} {\bf 16} 1/4 C_6 H_{14} \\ \hline C_{58,5} H_{40,5} BF_{24} FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \ to \ 26.04 \\ -26 \ to \ 26; -15 \ to \ 15; -28 \ to \ 28 \\ 47 \ 003 \\ 11 \ 596 \ (0.0682) \\ 99.1 \\ Sortav \\ 0.953 \ and \ 0.876 \\ full matrix least squares on \ F^2 \\ 11 \ 596/168/974 \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h , k , h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max. and min. transmn refinement method no. of data/restraints/params goodness-of-fit on F^2	$\begin{array}{c} 14 \\ \hline C_{45}H_{27}BF_{24}FeO_3 \\ 229791 \\ 1138.33 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 12.286(3) \\ 19.347(4) \\ 20.360(4) \\ 90 \\ 104.19(3) \\ 90 \\ 104.19(3) \\ 90 \\ 4691.9(16) \\ 4 \\ 1.612 \\ 0.457 \\ 2272 \\ yellow plate \\ 0.20 \times 0.20 \times 0.10 \\ 2.95 to 25.35 \\ -14 to 14; -23 to 23; -24 to 24 \\ 31 959 \\ 8579 (0.0413) \\ 99.7 \\ Sortav \\ 0.9557, 0.9141 \\ full matrix least squares on F^2$	$\begin{array}{c} 15\\ \hline C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0.933,\ 0.692\\ full\ matrix\ least\ squares\ on\ F^2\\ 9212/624/712\\ 1.035\\ \end{array}$	$\begin{array}{r} {\bf 16} 1/4 C_6 H_{14} \\ \hline C_{58,5} H_{40,5} BF_{24} FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ monoclinic \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ red cube \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \ to \ 26.04 \\ .26 \ to \ 26; -15 \ to \ 15; -28 \ to \ 28 \\ 47 \ 003 \\ 11 \ 596 \ (0.0682) \\ 99.1 \\ Sortav \\ 0.953 \ and \ 0.876 \\ full matrix least squares on \ F^2 \\ 11 \ 596/168/974 \\ 1.039 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h , k , h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max. and min. transmn refinement method no. of data/restraints/params goodness-of-fit on F^2 final R indices [$I > 2\sigma(I)$]	$\begin{array}{c} 14\\ \hline \\ C_{45}H_{27}BF_{24}FeO_{3}\\ 229791\\ 1138.33\\ 150(2)\\ 0.71073\\ monoclinic\\ P2_{1/c}\\ 12.286(3)\\ 19.347(4)\\ 20.360(4)\\ 90\\ 104.19(3)\\ 90\\ 4691.9(16)\\ 4\\ 1.612\\ 0.457\\ 2272\\ yellow plate\\ 0.20\times0.20\times0.10\\ 2.95\ to\ 25.35\\ -14\ to\ 14;\ -23\ to\ 23;\ -24\ to\ 24\\ 31\ 959\\ 8579\ (0.0413)\\ 99.7\\ Sortav\\ 0.9557,\ 0.9141\\ full\ matrix\ least\ squares\ on\ F^{2}\\ 8579/36/712\\ 1.025\\ R1\ =\ 0.0814,\ wR2\ =\ 0.2196\\ \end{array}$	$\begin{array}{c} 15\\ \hline \\ C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21,\ -23\ to\ 23,\ -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0.933,\ 0.692\\ full\ matrix\ least\ squares\ on\ F^2\\ 9212/624/712\\ 1.035\\ R1\ =\ 0.0744,\ wR2\ =\ 0.1938\\ \end{array}$	$\label{eq:heat} \begin{array}{c} 16 1/4 C_6 H_{14} \\ \hline C_{58,5} H_{40,5} BF_{24} FeO_3 \\ 229793 \\ 1314.07 \\ 150(2) \\ 0.71073 \\ \text{monoclinic} \\ P2_1/n \\ 21.5502(3) \\ 12.5448(2) \\ 22.8344(5) \\ 90 \\ 106.4300(10) \\ 90 \\ 5921.04(18) \\ 4 \\ 1.474 \\ 0.373 \\ 2650 \\ \text{red cube} \\ 0.25 \times 0.20 \times 0.18 \\ 3.07 \ \text{to } 26.04 \\ -26 \ \text{to } 26; -15 \ \text{to } 15; -28 \ \text{to } 28 \\ 47 \ 003 \\ 11 \ 596 \ (0.0682) \\ 99.1 \\ \text{Sortav} \\ 0.953 \ \text{and } 0.876 \\ \text{full matrix least squares on } F^2 \\ 11 \ 596/168/974 \\ 1.039 \\ \text{R1} = 0.0547, \ \text{wR2} = 0.1392 \\ \end{array}$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h , k , h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max. and min. transmn refinement method no. of data/restraints/params goodness-of-fit on F^2 final R indices [$I \ge 2\sigma(I)$] R indices (all data)	$\begin{array}{c} 14\\ \hline \\ C_{45}H_{27}BF_{24}FeO_{3}\\ 229791\\ 1138.33\\ 150(2)\\ 0.71073\\ monoclinic\\ P2_{1/c}\\ 12.286(3)\\ 19.347(4)\\ 20.360(4)\\ 90\\ 104.19(3)\\ 90\\ 4691.9(16)\\ 4\\ 1.612\\ 0.457\\ 2272\\ yellow plate\\ 0.20\times0.20\times0.10\\ 2.95\ to\ 25.35\\ -14\ to\ 14;\ -23\ to\ 23;\ -24\ to\ 24\\ 31\ 959\\ 8579\ (0.0413)\\ 99.7\\ Sortav\\ 0.9557,\ 0.9141\\ full\ matrix\ least\ squares\ on\ F^{2}\\ 8579/36/712\\ 1.025\\ R1\ =\ 0.0814,\ wR2\ =\ 0.2196\\ R1\ =\ 0.1007,\ wR2\ =\ 0.2358\\ \end{array}$	$\begin{array}{c} 15\\ \hline \\ C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21, -23\ to\ 23, -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0.933,\ 0.692\\ full\ matrix\ least\ squares\ on\ F^2\\ 9212/624/712\\ 1.035\\ R1\ =\ 0.0744,\ wR2\ =\ 0.1938\\ R1\ =\ 0.1151,\ wR2\ =\ 0.2180\\ \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h , k , h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max. and min. transmn refinement method no. of data/restraints/params goodness-of-fit on F^2 final R indices [$I > 2\sigma(I)$] R indices (all data) largest diff peak and hole	$\begin{array}{c} 14\\ \hline \\ C_{45}H_{27}BF_{24}FeO_{3}\\ 229791\\ 1138.33\\ 150(2)\\ 0.71073\\ monoclinic\\ P2_{1/c}\\ 12.286(3)\\ 19.347(4)\\ 20.360(4)\\ 90\\ 104.19(3)\\ 90\\ 4691.9(16)\\ 4\\ 1.612\\ 0.457\\ 2272\\ yellow plate\\ 0.20\times0.20\times0.10\\ 2.95\ to\ 25.35\\ -14\ to\ 14;\ -23\ to\ 23;\ -24\ to\ 24\\ 31\ 959\\ 8579\ (0.0413)\\ 99.7\\ Sortav\\ 0.9557,\ 0.9141\\ full\ matrix\ least\ squares\ on\ F^{2}\\ 8579/36/712\\ 1.025\\ R1\ =\ 0.0814,\ wR2\ =\ 0.2196\\ R1\ =\ 0.1007,\ wR2\ =\ 0.2358\\ 0.931\ and\ -0.606\\ \end{array}$	$\begin{array}{c} 15\\ \hline \\ C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21, -23\ to\ 23, -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0.933,\ 0.692\\ full\ matrix\ least\ squares\ on\ F^2\\ 9212/624/712\\ 1.035\\ R1\ =\ 0.0744,\ wR2\ =\ 0.1938\\ R1\ =\ 0.1151,\ wR2\ =\ 0.2180\\ 1.326\ and\ -0.495\\ \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
empirical formula CCDC deposit number fw temperature (K) wavelength (Å) cryst syst space group unit cell dimens: a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z density(calc) (Mg/m ³) absorp coeff (mm ⁻¹) F(000) cryst color, habit, cryst size (mm ³) θ range for data colln (deg) index ranges (h , k , h) no. of reflns collected no. of indep reflns/ R_{int} completeness to θ_{max} (%) absorp corr max. and min. transmn refinement method no. of data/restraints/params goodness-of-fit on F^2 final R indices [$I > 2\sigma(I)$] R indices (all data) largest diff peak and hole (e Å ⁻³)	$\begin{array}{c} 14\\ \hline C_{45}H_{27}BF_{24}FeO_{3}\\ 229791\\ 1138.33\\ 150(2)\\ 0.71073\\ monoclinic\\ P2_{1/c}\\ 12.286(3)\\ 19.347(4)\\ 20.360(4)\\ 90\\ 104.19(3)\\ 90\\ 4691.9(16)\\ 4\\ 1.612\\ 0.457\\ 2272\\ yellow plate\\ 0.20\times0.20\times0.10\\ 2.95\ to\ 25.35\\ -14\ to\ 14;\ -23\ to\ 23;\ -24\ to\ 24\\ 31\ 959\\ 8579\ (0.0413)\\ 99.7\\ Sortav\\ 0.9557,\ 0.9141\\ full\ matrix\ least\ squares\ on\ F^{2}\\ 8579/36/712\\ 1.025\\ R1\ =\ 0.0814,\ wR2\ =\ 0.2196\\ R1\ =\ 0.1007,\ wR2\ =\ 0.2358\\ 0.931\ and\ -0.606\end{array}$	$\begin{array}{c} 15\\ \hline \\ C_{50}H_{39}BF_{24}FeO_2\\ 229792\\ 1194.47\\ 150(2)\\ 0.71073\\ orthorhombic\\ Pbca\\ 17.935(4)\\ 19.412(4)\\ 29.048(6)\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90\\ 10\ 113(4)\\ 8\\ 1.569\\ 0.427\\ 4816\\ yellow cube\\ 0.35\times 0.30\times 0.25\\ 2.97\ to\ 25.34\\ -21\ to\ 21, -23\ to\ 23, -34\ to\ 34\\ 50\ 616\\ 9212\ (0.0866)\\ 99.6\\ Sortav\\ 0.933,\ 0.692\\ full\ matrix\ least\ squares\ on\ F^2\\ 9212/624/712\\ 1.035\\ R1\ =\ 0.0744,\ wR2\ =\ 0.1938\\ R1\ =\ 0.1151,\ wR2\ =\ 0.2180\\ 1.326\ and\ -0.495\\ \end{array}$	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			

and Mayer bond orders were obtained for comparison with the ADF output to ensure the accuracy of the analysis program.

(26) Dickinson, A. A. Ph.D. Thesis, Cardiff University, 2003.

for boron-centered substitution chemistry, leading to a

Scheme 1. Substitution and Abstraction Chemistry of Asymmetric Haloboryl Complexes, L_nM-B(ER_n)X

Scheme 2. Syntheses of Asymmetric Aryl(halo)boryl Complexes 1–4^a

 a Reaction conditions: (i) $Na[(\eta^5\mbox{-}C_5R_5)\mbox{Fe}(\mbox{CO})_2]$ 1 equiv, toluene, 18 °C, 4–96 h.

range of novel bridging borylene and asymmetric boryl complexes.^{8,11} Given that *abstraction* of anionic fragments from coordinated ligands has previously been used to great effect in the synthesis of low-coordinate or unsaturated systems (e.g., silylenes and germylenes²), we speculated that a similar methodology applied to haloboryl complexes might offer a versatile new route to terminally bound group 13 diyl complexes (Scheme 1). Although relatively electron-rich phosphine-containing metal fragments have typically been employed, for example in the synthesis of terminal silylenes {e.g., $[(\eta^5-C_5Me_5)Ru(PMe_3)_2(=SiMe_2)]^+ 2^b$ }, our initial attempts to produce analogous cationic terminal borylene complexes have utilized the more readily accessible $[(\eta^5-C_5R_5)Fe-(CO)_2]^+$ moiety (R = H, Me).

Asymmetric haloboryl complexes incorporating aryl functions of varying steric bulk (e.g., 1-4) have been shown in previous work to be readily and cleanly accessible by simple substitution chemistry (Scheme 2).^{8,11} Thus, such species appeared to represent suitable precursors for the halide abstraction chemistry outlined in Scheme 1. In practice, both the steric properties of the putative borylene substituent (and of the metal fragment) and the inherent coordinating properties/ reactivity of the counterion employed appear to play key roles in the isolation (or otherwise) of stable, tractable cationic borylene complexes. Thus, attempted halide abstraction from complexes 1, 3, and 4, which contain steric shielding at either the boron or the iron center (but not both), leads to the generation of no observable borylene products even at -78 °C. In the case of boryl precursor 2, however, which contains sterically bulky substituents at both metal and boron centers [i.e., both mesityl and (η^5 -C₅Me₅) groups], reaction with Na[BAr^f₄], filtration, layering with hexanes, and cooling to -50 °C for one week led to the isolation of 5 as colorless crystals in yields of ca. 55% (100 mg scale) (Scheme 3).4a

IR-measured carbonyl stretching frequencies for **5** (2055 and 2013 cm⁻¹) are shifted to significantly higher wavenumber compared to the starting boryl complex **2** (2006 and 1961 cm⁻¹)^{8b} and are consistent with the presence of a cationic complex containing the (η^{5} -C₅-

Scheme 3. Synthesis of Cationic Mesitylborylene Complex $[(\eta^5-C_5Me_5)Fe(CO)_2(BMes)][BAr_4]$ (5) by Bromide Abstraction^a

 a Reaction conditions: (i) Na[BAr $^{f}_{4}]$ 1 equiv, dichloromethane, -78 to 18 °C, 1 h.

Me₅)Fe(CO)₂ unit.²⁷ ¹H and ¹³C NMR data for 5 confirm the presence of mesityl, (η^5 -C₅Me₅), and CO fragments, and mass spectra display peaks consistent with [M -CO]⁺ and $[M - 2CO]^+$ (EI) and $[BAr_{4}^{f}]^-$ ions (ES–). Additionally, the strongly downfield ¹¹B NMR shift (δ_{B} 145.0) is similar to that observed previously for iron complexes containing mesitylborylene ligands, albeit adopting a μ_2 bridging mode of coordination {cf. δ_B 158.0 and 161.9 for $[(\eta^5-C_5H_5)Fe(CO)_2]_2(\mu$ -BMes) and trans- $[(\eta^5-C_5H_5)Fe(CO)]_2(\mu$ -BMes)(μ -CO), respectively}.^{8b 11}B shifts in the range $\delta_{\rm B}$ 87–204 have previously been reported by Braunschweig for terminal borylene complexes containing metals from groups 5, 6, and 8;3b-f lower field values have typically been obtained for borylene ligands containing weakly π donor substituents. The measured ¹¹B shift for 5 is therefore consistent with a terminally bound BMes ligand, a structural inference that has subsequently been confirmed by X-ray crystallography (vide infra).

Attempts to generate similar cationic complexes using the commercially available halide abstraction reagents Na[BPh₄] and Ag[BF₄] proceed with rapid and complete consumption of the starting material 2, but lead to the isolation of no tractable borylene products. In the case of Ag[BF₄] spectroscopic data are inconsistent with the presence of either boryl or borylene species in solution. Additionally, subsequent studies have revealed that the highly Lewis acidic boron center in $[(\eta^5-C_5Me_5)Fe(CO)_2-$ (BMes)]⁺ is incompatible with the tetrafluoroborate counterion; reaction of 5 with ["Bu₄N][BF₄] generates the neutral fluoroboryl complex $(\eta^5-C_5Me_5)Fe(CO)_2B$ -(Mes)F in high yield by fluoride exchange (vide infra). By contrast, the reaction of 2 with a suspension of Na[BPh₄] in dichloromethane leads to the generation of BPh₃ and $(\eta^5$ -C₅Me₅)Fe(CO)₂Ph (**6**) (Scheme 4).

A possible pathway for the formation of these products involves initial removal of bromide from boryl precursor **2**, yielding the cationic borylene as the tetraphenylborate salt, i.e., $[(\eta^5-C_5Me_5)Fe(CO)_2(BMes)][BPh_4]$; abstraction of phenyl anion from tetraphenylborate and displacement of the mesitylborylene ligand would then yield the observed products. Displacement of the mesitylborylene fragment from the coordination sphere of the $[(\eta^5-C_5Me_5)Fe(CO)_2]^+$ unit by nucleophiles is found to be one of its principal modes of reactivity (vide infra),

Scheme 4. Reaction of Bromoboryl Complex 2 with Na[BPh₄]^a

^{*a*} Reaction conditions: (i) Na[BPh₄] 1 equiv, dichloromethane, -78 to 18 °C, 30 min.

and consistent with the proposed mechanism, independent reaction of the $[BAr_4^r]^-$ salt of $[(\eta^5-C_5Me_5)Fe(CO)_2-(BMes)]^+$ (5) with $[PPN][BPh_4]$ (a dichloromethane-soluble $[BPh_4]^-$ source) leads to very rapid generation of BPh₃ and $(\eta^5-C_5Me_5)Fe(CO)_2Ph$. Further details of this and other reactions of complex 5 are outlined below.

In an attempt to extend the halide abstraction methodology to the synthesis of further cationic borylene complexes, we have examined the reactivity of amino-(bromo)boryl complex (η^5 -C₅Me₅)Fe(CO)₂B(NMe₂)Br (7) with Na[BAr $^{f}_{4}$]. 7 is readily synthesized from Me₂NBBr₂ according to literature procedures¹⁴ and reacts readily with Na[BAr^{f_4}] in dichloromethane at -20 °C. The complex so generated is characterized by two ¹¹B NMR resonances, a sharp signal at δ_B –7.7 characteristic of the $[BAr_4^f]^-$ anion and a broad signal at δ_B 88.0. The position of the latter resonance is very similar to those reported previously for charge neutral terminal aminoborylene complexes [e.g., $\delta_{\rm B}$ 98.3, 92.3, 86.6, and 88.2 for $L_nMBN(SiMe_3)_2$, $L_nM = (\eta^5 - C_5H_5)V(CO)_3$, $(OC)_5Cr$, (OC)₅W, and (OC)₄Fe, respectively^{3b,c,e,f}]. Additionally IR-measured carbonyl stretching frequencies for the new species (2050 and 2006 cm⁻¹) are similar to those reported for 5, being similarly indicative of a cationic $[(\eta^5-C_5Me_5)Fe(CO)_2]^+$ fragment.²⁷

In our hands, attempts to isolate this complex as a pure solid material have met with no success, due to its extreme moisture and air sensitivity. NMR monitoring of the reaction of **7** with Na[BAr^{f_4}] in CD₂Cl₂ over the temperature range -70 to -20 °C, however, allows the new complex (8) to be synthesized in solution in very high purity; complete conversion of 7 to 8 is achieved by warming the reaction mixture to -20 °C (see Figure 1), and full multinuclear NMR data for 8 can thus be obtained. These data are consistent with the presence of the $[BAr_4^f]^-$ counterion, with $(\eta^5-C_5Me_5)$ and CO ligands at the metal center, and with *equivalent* nitrogenbound methyl substituents. In addition, further characterization of the new complex was attempted by examining the products of its reaction with [PPN]Cl in CD₂Cl₂. The reaction of cationic mesitylborylene complex 5 with the same reagent has been shown to generate $(\eta^5-C_5Me_5)Fe(CO)_2B(Mes)Cl$ by chloride addition to the boron center (vide infra). Hence the formation of the known compound $(\eta^5-C_5Me_5)Fe(CO)_2B(NMe_2)Cl$ (9)^{7d} would provide further evidence that the new species (8) is the $[BAr_{4}]^{-}$ salt of the cationic aminoborylene $[(\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}(BNMe_{2})]^{+}$ (Scheme 5). In practice this reaction proceeds very cleanly as expected

Figure 1. ¹¹B{¹H} NMR monitoring of the conversion of $(\eta^5-C_5Me_5)Fe(CO)_2B(NMe_2)Br$ (7) to $[(\eta^5-C_5Me_5)Fe(CO)_2-(BNMe_2)][BAr^{\ell}_4]$ (8) and ultimately $(\eta^5-C_5Me_5)Fe(CO)_2B-(NMe_2)Cl$ (9) in CD_2Cl_2 . The spectra reproduced are (a) 7 at 18 °C prior to mixing with Na[BAr^{\ell}_4]; (b) a mixture of 7 and 8 at -40 °C, 30 min after mixing of 7 with Na[BAr^{\ell}_4]; (c) 8, after a further 30 min reaction time at -20 °C; and (d) 9, after subsequent addition of [PPN]Cl to the reaction mixture and warming to room temperature.

(see Figure 1), with complete conversion of **7** to **8** being achieved by reaction with 1 equiv of Na[BAr^f₄] at -20°C and chloroboryl complex **9** subsequently being formed quantitatively on addition of [PPN]Cl and warming to room temperature. Identification of final product **9** was made by comparison of its spectroscopic data with those reported previously by Braunschweig.^{7d}

The observation of equivalent methyl groups within the amino substituent of 8 even at -80 °C (sharp singlets at $\delta_{\rm H}$ 2.74 and $\delta_{\rm C}$ 32.5 at -80 °C) contrasts with the situation found in boryl complexes 7 and 9,7d,14 but is consistent with that found for the analogous SiMe₃ groups in $(\eta^5-C_5H_5)V(CO)_3BN(SiMe_3)_2$.^{3e} As such, these data are consistent either with a static structure in which the methyl groups are related by a plane of symmetry encompassing the (η^5 -C₅Me₅) centroid, Fe, B, and N atoms, or with a freely rotating NMe₂ unit and a low barrier to rotation about the Fe-B bond. The feasibility of both of these possibilities has been demonstrated by DFT calculations. A very low barrier to rotation (ca. 2.2 kcal mol⁻¹) has been predicted around the V-B bond in the model vanadium aminoborylene complex $(\eta^5$ -C₅H₅)V(CO)₃BNH₂;^{3e} additionally the minimum energy conformation of the cation $[(\eta^5-C_5Me_5)Fe (CO)_2(BNMe_2)$ ⁺ has been calculated to feature a (η^5 -

⁽²⁷⁾ See, for example: Nlate, S.; Guerchais, V.; Lapinte, C. J. Organomet. Chem. **1992**, 434, 89. (b) McArdle, P.; MacHale, D.; Cunningham, D.; Manning, A. R. J. Organomet. Chem. **1991**, 419, C18.

Scheme 5. Generation and Trapping of Cationic Aminoborylene Complex $[(\eta^5-C_5Me_5)Fe(CO)_2(BNMe_2)][BAr_4^f]$ (8)^a

^{*a*} Reaction conditions: (i) Na[BAr^{ℓ_4}] 1 equiv, d_2 -dichloromethane, -20 °C, 30 min; (ii) [PPN]Cl ca. 5 equiv, d_2 -dichloromethane, -20 to 18 °C, 30 min.

Figure 2. Structure of one of the two crystallographically independent cations in the asymmetric unit of $[(\eta^{5}-C_5Me_5)-Fe(CO)_2(BMes)][BAr_{4}]$, **5**. Relevant bond lengths (Å), angles (deg), and torsion angles (deg): Fe(1)–B(1) 1.792(8), Fe(1)–C(20) 1.768(7), Fe(1)– $(\eta^{5}-C_5Me_5)$ centroid 1.733(7), B(1)–C(1) 1.491(10), Fe(1)–B(1)–C(1) 178.3(6), ($\eta^{5}-C_5Me_5$) centroid–Fe(1)–C(1)–C(2) 91.3(6). Hydrogen atoms are omitted for clarity.

 C_5Me_5) centroid-Fe-N-C torsion angle of ca. 90° (84.6°) (see Supporting Information).^{4b}

(ii) Bonding Description. The solid state structure of 5 (see Figure 2 and Table 1) is based around an asymmetric unit containing two (essentially identical) $[(\eta^5-C_5Me_5)Fe(CO)_2(BMe_5)]^+$ cations, two $[BAr_4^f]^-$ anions, and a molecule of CH_2Cl_2 solvent. There are no short cation-anion or cation-solvent contacts. Of particular interest is the near linear Fe–B–C unit $[\angle Fe(1) B(1)-C(1) = 178.3(6)^{\circ}$ and the Fe-B distance [1.792(8) Å], which is significantly shorter than any transition metal to boron linkage previously reported. It is also 11% shorter than that found in $(\eta^5-C_5Me_5)BFe(CO)_4$ [2.010(3) A] (a compound that contains a B \rightarrow Fe donor/ acceptor linkage), 18% shorter than the σ -only single bond found in the four-coordinate boryl complex (η^5 -C₅-Me₄Et)Fe(CO)₂BH₂·PMe₃ [2.195(14) Å], and 8.5% shorter than the shortest Fe-B distance found for any threecoordinate boryl complex [1.959(6) Å for $(\eta^5-C_5H_5)Fe(CO)_2$ -Bcat].^{3a,5d,28,29} By means of comparison, the Fe-C distance in $[(\eta^5 - C_5 H_5)Fe(CO)_2(=CCl_2)]^+$ [1.808(12) Å] is ca. 12% shorter than found in typical $(\eta^5-C_5H_5)Fe(CO)_2$ alkyl complexes,^{30,31} and the Ru–Si distance in $[(\eta^5-C_5-$ Me₅)Ru(PMe₃)₂(=SiMe₂)]⁺ [2.238(2) Å] is 6% shorter than that found in $[(\eta^5-C_5Me_5)Ru(PMe_3)_2(SiMe_2CH_2-$ PPh₃)]⁺ [2.381(2) Å].^{2b,e} The shortening of the Fe–B distance in **5** compared to Fe–B σ -type bonds is therefore as expected for a ligand containing a first-row element and is consistent with the presence of an Fe=B double bond.

Tilley has proposed that the Ru=Si double bond in the cationic silvlene complex $[(\eta^5-C_5Me_5)Ru(PMe_3)_2(=$ $SiMe_2$]⁺ is composed of a Si \rightarrow Ru donor/acceptor σ component supplemented by Ru \rightarrow Si π back-bonding into the vacant Si-based p orbital.^{2b} A similar bonding arrangement for 5 would imply a significantly greater Fe \rightarrow B back-bonding component than is found in (η^5 -C₅-Me₅)BFe(CO)₄.^{3a,5d} Such an arrangement is conceivable given the highly electrophilic nature of the boron center in 5 and the significantly higher DFT-predicted π bonding capability of the BPh ligand compared to $B(\eta^{5}$ - C_5H_5).⁵ⁱ The presence of an appreciable Fe \rightarrow B backbonding component for 5 is implied by carbonyl stretching frequencies (2055, 2013 cm^{-1}) in excess of those of $[(\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}{=CMe(OMe)}]^{+}$ (2045, 1999 cm⁻¹).^{27a} That these values are still short of those reported for $[(\eta^5-C_5Me_5)Fe(CO)_3]^+$ (2105, 2045 cm⁻¹), however, almost certainly reflects the stronger σ donor nature of BR over CO.^{27b} Stronger σ donor properties than CO have been predicted by Hoffmann and Baerends for the borylene ligands BX (X = F, NH₂, NMe₂) on the basis of DFT calculations. Such properties are thought to reflect the higher HOMO energy for the boron-based ligands.5a-c

The orientation of the mesityl fragment in 5 [torsion, $\angle (\eta^5 - C_5 Me_5)$ centroid – Fe(1) – C(1) – C(2) = 91.3(6)°] is such that an Fe \rightarrow B π interaction involving the HOMO of the $[(\eta^5-C_5Me_5)Fe(CO)_2]^+$ fragment³² could populate one of the two perpendicular vacant p orbitals at boron, with the other being stabilized by π interaction with the mesityl ring. Consistent with this, the distance B(1)-C(1) [1.491(10) Å] is significantly shorter than that found in **2** [1.569(3) Å].^{8b} To explore more rigorously the bonding situation in **5**, DFT calculations were carried out for the cation $[(\eta^5-C_5Me_5)Fe(CO)_2(BMes)]^+$ at the BLYP/TZP level of theory using methods previously described. The agreement between (fully optimized) calculated [Fe(1)−B(1) 1.843 Å, B(1)−C(1) 1.495 Å, ∠Fe- $(1)-B(1)-C(1) = 177.8^{\circ}$, torsion = 81.6°] and measured geometric parameters is generally very good, with a 2-3% overestimate in the Fe-B bond length mirroring previous studies.^{23,33} On the basis of a population analysis of the molecular orbitals at the DFT relaxed

⁽²⁸⁾ Yasue, T.; Kawano, Y.; Shimoi, M. *Chem. Lett.* 2000, 58.
(29) Hartwig, J. F.; Huber, S. *J. Am. Chem. Soc.* 1993, *115*, 4908.
(30) Crespi, A. M.; Shriver, D. F. *Organometallics* 1985, *4*, 1830.

⁽³¹⁾ For example, an Fe–C bond length of 2.069(10) Å has been reported for the complex (η^5 -C₅H₅)Fe(CO)₂(n-C₅H₁): Hill, R. O.; Marais, C. F.; Moss, J. R.; Naidoo, K. J. *J. Organomet. Chem.* **1999**, *587*, 28.

⁽³²⁾ Schilling, B. E. R.; Hoffmann, R.; Lichtenberger, D. J. Am. Chem. Soc. **1979**, 101, 585.

^{(33) (}a) McCullough, E. A., Jr.; Aprà, E.; Nichols, J. *J. Phys. Chem.* A **1997**, *101*, 2502. (b) Giju, K. T.; Bickelhaupt, M.; Frenking, G. *Inorg. Chem.* **2000**, *39*, 4776.

Figure 3. DFT (BLYP/TZP) calculated HOMO-3 for the cation $[(\eta^5-C_5Me_5)Fe(CO)_2(BMes)]^+$ showing Fe–B π bonding character.

Figure 4. DFT (BLYP/TZP) calculated HOMO-9 for the cation $[(\eta^5-C_5Me_5)Fe(CO)_2(BMes)]^+$ showing C-B π bonding character.

geometry, the Fe–B bond has a 62:38 σ : π breakdown of the covalent contribution to bonding {cf. 64:36 for $[(\eta^5 C_5H_5$)Fe(CO)₂(=CH₂)]⁺}. For the lowest energy conformation of the complex 5, examination of the relevant molecular orbitals (Figures 3 and 4) reveals that the Fe–B bond is characterized by (i) a deep lying orbital (HOMO-7, -10.56 eV) with considerable Fe–B σ bonding character (21.4% Fe 3dz², 12.8% B 2pz) and (ii) a π type interaction predominantly featuring the Fe $3d_{xz}$ and B $2p_x$ orbitals. Both the HOMO-3 (-9.21 eV) and the HOMO-6 (-9.85 eV) feature significant in-phase contributions from these atomic orbitals (HOMO-3: 17.6% Fe 3d_{xz}, 4.9% B 2p_x; HOMO-6: 18.1% Fe 3d_{xz}, 3.1% B $2p_x$). The LUMO+3 is the corresponding orbital of predominantly π^* character (10.4% Fe 3d_{xz}, 35.4% B $2p_x$). In addition it is possible to identify molecular orbitals [chiefly the HOMO-9 (-10.98 eV) and HOMO-2 (-8.91 eV)] that possess C-B π bonding character characterized by in-phase contributions from the $2p_{y}$ atomic orbitals of the boron and ipso carbon atoms which lie perpendicular to the Fe–B π bond. These calculations therefore support a bonding model in which boron engages in π bonding to both $[(\eta^5 - C_5 Me_5)Fe(CO)_2]^+$ and Mes moieties.

A substantial bond dissociation energy (BDE, D_0) of 147.5 kcal mol⁻¹ has been calculated for the removal of the mesitylborylene ligand from 5. This figure is elevated slightly on replacement of the ancillary carbonyl ligands by trimethylphosphines {e.g., 153.0 kcal mol⁻¹ for model compound $[(\eta^5 - C_5H_5)Fe(PMe_3)_2(BMes)]^+$ but is significantly smaller for the removal of BNMe₂ from $[(\eta^5-C_5Me_5)Fe(CO)_2(BNMe_2)]^+$ (8) (125.9 kcal mol⁻¹). These changes are primarily due to differences in the orbital (covalent) contribution to the Fe-B bond; these in turn reflect the expected trends in the σ and π properties of the BX ligand and the electronic properties of the metal center.^{4b} Consistent with this, the calculated Fe–B distances for $[(\eta^5-C_5H_5)Fe(PMe_3)_2(BMes)]^+$ and 8 are, respectively, 2.4% shorter and 1.4% longer than in 5, and the B-C_{ipso} distance in $[(\eta^5-C_5H_5)Fe-$

 $(PMe_3)_2(BMes)]^+$ shows a complementary lengthening by 2.3%. Additionally, the BDE predicted for 5 is significantly greater than that calculated for removal of the very similar BPh ligand from the most stable (axial) isomer of the charge neutral complex (OC)₄FeBPh (110.3 kcal mol⁻¹).⁵ⁱ Energy decomposition analyses indicate that this is almost entirely accounted for by a reduction in the repulsive Pauli term. This in turn is associated with the more contracted nature of the frontier orbitals of the metal and borylene fragments in the cationic complex.^{4b} Finally, comparison of isoelectronic Fe=B and Fe=C containing systems {e.g., 8 and $[(\eta^5-C_5Me_5)Fe(CO)_2(CCMe_2)]^+$ reveals a ca. 10 kcal mol⁻¹ higher BDE for the boron-based ligand.^{4b} This finding is entirely consistent with the stronger σ donor properties and comparable π acceptor role predicted for the BNR₂ ligand by previous studies.^{5a}

Previous computational studies have predicted significant boron-centered reactivity toward nucleophiles for terminal borylene complexes due to the high positive charge and LUMO amplitude at boron.^{5b} On the other hand, the current study shows that in the presence of suitable steric shielding, even complexes bearing a net positive charge can be isolated. Indeed, it seems likely that the combination of charge and steric shielding in **5** retards the dimerization process observed for the putative isolectronic manganese system $[(\eta^5-C_5H_4Me)-$ Mn(CO)₂(BCl)].³⁴ The calculated partial charge at boron (+0.356, Mulliken method) in **5** is certainly consistent with a highly electrophilic boron center, although the composition of the LUMO (29.3% Fe $3d_{x^2-y^2}$, 4.6% Fe $3d_{xz}$, 4.4% Fe $3d_{yz}$, 4.2% B $2p_x$) suggests that attack by nucleophiles at the iron center may also be feasible.

(iii) Reactivity. The reactivity of cationic borylene complex 5 toward a number of different types of reagent has been investigated, with the aim of elucidating fundamental patterns of reactivity for this class of compound. Although some reports of substitution chemistry for base-stabilized borylenes^{3g,h} and of elegant metal-to-metal borylene transfer chemistry have appeared in the recent literature, 3c,e,f the fundamental reactivity of group 13 diyl complexes remains a largely uncharted area. A number of extensive theoretical studies have predicted thermodynamically strong M-E bonds for diyl complexes,⁵ but point to probable kinetic lability stemming from the buildup of positive charge at the group 13 element on coordination.^{5b} With this in mind we have examined the reactivity of 5 toward a range of anionic and neutral nucleophiles, with the aim of exploiting the electrophilicity of the boron center toward the controlled synthesis of complexes containing new B-X bonds. In addition, given the similarities between cationic borylene complexes such as 5 and silvlene and Fischer carbene complexes of the type $[L_nM=EX_2]^+$ (E = Si, C) we were interested in examining the reactivity of 5 toward unsaturated substrates. Of particular interest, given the known highly indiscriminate reactivity of the "free" borylene fragment, is the development of controlled metal-mediated reactivity toward organic or organometallic substrates.

(a) Reactivity toward Nucleophiles. The likelihood of nucleophilic attack at the boron center in 5,

⁽³⁴⁾ Braunschweig, H.; Colling, M.; Hu, C.; Radacki, K. Angew. Chem., Int. Ed. 2002, 41, 1359.

 a Reaction conditions: (i) halide source ([PPN]Cl, [Ph₄P]Br, or [^Bu₄N]I) 1 equiv, dichloromethane, 18 °C, 1.5–2 h.

widely predicted for analogous charge neutral systems, would appear to be increased by the net positive charge and a calculated Mulliken charge at boron of +0.356. We therefore set out, in the first instance, to examine its reactivity toward a range of anionic nucleophiles. The reaction of 5 with convenient soluble sources of halide anions in dichloromethane leads, as expected, to nucleophilic addition at the boron center (Scheme 6). The chloro-, bromo-, and iodoboryl complexes are formed very rapidly (as judged by the ¹¹B NMR spectrum of the reaction mixture) and can be isolated in reasonable yields (60–80%). In the case of the reaction with $[Ph_4P]$ -Br, the known (structurally characterized) precursor bromoboryl complex 2 is formed;^{8b} reaction with [PPN]-Cl or ["Bu₄N]I leads to the isolation of the new boryl complexes 10 and 11, together with the appropriate $[BAr_{4}^{f}]^{-}$ salt (e.g., $[PPN][BAr_{4}^{f}]$ in the case of **10**). Furthermore, a similar type of halide transfer reactivity is observed with ["Bu₄N][BF₄]. Abstraction of fluoride from the tetrafluoroborate anion leads to the formation of fluoroboryl complex 12 in good yield (Scheme 7).

Thus the chemistry outlined in Schemes 6 and 7 represents a new synthetic route to asymmetric boryl complexes, and one which gives access to the complete range of halide-substituted complexes (η^{5} -C₅Me₅)Fe-(CO)₂B(Mes)X (X = F, Cl, Br, I). Spectroscopic data for the new compounds **10–12** are in agreement with the proposed formulations, and in the cases of **10** and **12**, these inferences have been confirmed by the results of a single-crystal X-ray diffraction study (see Figures 5 and 6 and Table 1).

The molecular structure of chloroboryl complex (η^{5} -C₅Me₅)Fe(CO)₂B(Mes)Cl (10) has much in common with that reported previously for bromoboryl analogue 2 and for most other complexes of the type $(\eta^5-C_5R_5)Fe(CO)_2B$ -(Mes)X (X = halide, alkoxide, aryloxide, etc.).^{8b,11} As such, the plane defined by the boryl ligand [i.e., by atoms B(1), C(1), and Cl(1) is essentially coplanar with that defined by the cyclopentadienyl centroid, Fe(1) and B(1) [\angle centroid-Fe(1)-B(1)-C1(1) = 179.5(2)°] and nearly perpendicular to that defined by the mesityl fragment $[\angle Cl(1) - B(1) - C(1) - C(8) = 89.5(2)^{\circ}]$. This ligand orientation seems to be influenced to a large degree by minimizing steric interactions between the bulky mesityl and pentamethylcyclopentadienyl substituents. The molecular structure of fluoroboryl complex 12, however, offers an instructive contrast with those of related compounds. A significantly longer Fe-B distance [2.017(3) vs 1.985(2) Å for **10**] and a markedly different orientation of the boryl ligand [∠centroid $Fe(1)-B(1)-F(1) = 37.6(2)^{\circ}$ allow for the presence of an intramolecular C-H···F hydrogen bond incorporating the fluorine substituent and one of the methyl groups of the $(\eta^5$ -C₅Me₅) ligand (Figure 6). The H···F and C···F distances [2.44 and 3.054(4) Å] and the C-H···F angle (120.4°) fall within the ranges expected for such an interaction.³⁵ The ability of a relatively weak C-H···X hydrogen bond to influence conformational geometry in organometallic boryl systems finds precedent in the solid state structure of tetrachlorocatecholboryl complex (η^5 -C₅H₄Me)Fe(CO)₂BO₂C₆Cl₄ and provides further experimental evidence for the relatively low barrier to rotation about the Fe-B bond that has been predicted by DFT.^{23,36} It should be noted that there is no evidence on the basis of spectroscopic data for the existence of an intramolecular hydrogen bond in solution. The packing of **12** in the solid state is also influenced by π stacking, this interaction being characterized by interplanar distances (ca. 3.5 Å) that are similar to those reported for analogous systems.³⁷

The synthesis and characterization of the complete series of haloboryl complexes (η^5 -C₅Me₅)Fe(CO)₂B-(Mes)X [X = F (**12**), Cl (**10**), Br (**2**), I (**11**)] offers a unique opportunity to investigate the electronic influence of the boron-bound substituents in organometallic boryl complexes. Relevant spectroscopic and structural data for the four complexes are included in Table 2.

The most obvious structural trend is the sequential increase in the Fe–B distance on going from bromoboryl complex **2** to its chloro- and fluoro-substituted analogues **10** and **12**. Such a trend can be rationalized in terms of the expected reduction of both σ donor and π acceptor properties along the series of ligands –B(Mes)Br, –B(Mes)Cl, and –B(Mes)F. Hence complex **12** features easily the longest Fe–B bond (with presumably the smallest absolute π back-bonding component), a factor that allows for greater rotational freedom by reducing steric interactions between the bulky metal- and boryl-bound substituents. This then helps explain the mark-edly different conformation adopted by the fluoroboryl complex and the presence of an intramolecular C–H···F hydrogen bond in the solid state.

Carbonyl stretching frequencies for these complexes decrease from values for iodoboryl **11** (2005 and 1955 cm⁻¹), which are similar to those of corresponding alkyl compounds,³⁸ to values that are somewhat lower (e.g., 1989 and 1931 cm⁻¹ for fluoroboryl **9**). Such a trend mirrors the expected decrease in the π acceptor properties of the boryl ligand on going from -B(Mes)I to -B(Mes)F, this in turn being determined by competing $X \rightarrow B \pi$ donation from the halide. ¹¹B NMR shifts are also known to be strongly influenced by the π donor

⁽³⁵⁾ See, for example: (a) Desiraju, G. R. Acc. Chem. Res. **1991**, 24, 290. (b) Jeffrey, G. A. J. Mol. Struct. **1999**, 485–486, 293. (c) Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. J. Am. Chem. Soc. **2000**, 122, 4750.

⁽³⁶⁾ Aldridge, S.; Calder, R. J.; Baghurst, R. E.; Light, M. E.;
Hursthouse, M. B. J. Organomet. Chem. 2002, 694, 9.
(37) See, for example: Hunter, C. A.; Sanders, J. K. M. J. Am. Chem.

⁽³⁷⁾ See, for example: Hunter, C. A.; Sanders, J. K. M. *J. Am. Chem.*

⁽³⁸⁾ Carbonyl stretching frequencies for alkyl compounds of the type (η^{5} -C₅Me₅)Fe(CO)₂R typically fall in the ranges 2005–1999 and 1944–1938 cm⁻¹: DeLuca, N.; Wojcicki, A. *J. Organomet. Chem.* **1980**, *193*, 359.

^{*a*} Reaction conditions: (i) [PPN][BPh₄] 1 equiv, dichloromethane, 18 °C, 1 h; (ii) [^{*n*}Bu₄N][BF₄] 1 equiv, dichloromethane, 18 °C, 2 h.

Figure 5. Molecular structure of $(\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}B-(Mes)Cl,$ **10.** $Relevant bond lengths (Å), angles (deg), and torsion angles (deg): Fe(1)-B(1) 1.985(2), B(1)-Cl(1) 1.834(2), B(1)-C(1) 1.569(2), Fe(1)-(\eta^{5}-C_{5}Me_{5}) centroid 1.748(2), (\eta^{5}-C_{5}Me_{5}) centroid-Fe(1)-B(1)-Cl(1) 179.5(2), Cl(1)-B(1)-C(1)-C(8) 89.5(2). Hydrogen atoms are omitted for clarity.$

Figure 6. Molecular structure of $(\eta^5-C_5Me_5)Fe(CO)_2B-(Mes)F$, **12**, showing intramolecular C-H···F hydrogen bonding. Relevant bond lengths (Å), angles (deg), and torsion angles (deg): Fe(1)-B(1) 2.017(3), B(1)-F(1) 1.350(3), B(1)-C(3) 1.581(4), Fe(1)-(\eta^5-C_5Me_5) centroid 1.736(3), H(21b)-F(1) 2.44, C(21)···F(1) 3.054(4), C(21)-H(21b)-F(1) 120.4, (\eta^5-C_5Me_5) centroid-Fe(1)-B(1)-F(1) 37.6(2), F(1)-B(1)-C(3)-C(8) 70.7(2). Hydrogen atoms except those attached to C(21) are omitted for clarity.

properties of boron-bound substituents;³⁹ the strongly upfield resonance measured for fluoroboryl complex **12** compared to **2**, **10**, and **11** therefore reflects the known

 Table 2. Comparison of Structural and

 Spectroscopic Data for Haloboryl Complexes of

 the Type (η⁵-C₅Me₅)Fe(CO)₂B(Mes)X

	11	2	10	12
X in –B(Mes)X	Ι	Br	Cl	F
ν (CO)/cm ⁻¹	2005, 1955	1999, 1942	1996, 1937	1989, 1931
d(Fe−B)/Å	-	1.972(2)	1.985(2)	2.017(3)
$\delta_{\rm B}$ /ppm	110.7	113.0	112.1	90.4

 π donor properties of fluoride. Very similar trends have been observed previously, for example in the reported resonances of the phenylboron dihalides PhBX₂ [$\delta_{\rm B}$ 23.8–24.5, 54.1–55.9, 56.1–60.6, and 44.6–48.2 for X = F, Cl, Br, and I, respectively⁴⁰].

In the case of the reaction of 5 with $[^{n}Bu_{4}N]I$, periodic monitoring of reaction mixture by IR spectroscopy reveals that a second, minor product is also formed (albeit in low yield). This product is present even at short reaction times (ca. 30 min), and its relative concentration (with respect to that of the major product, iodoboryl 11) does not appear to vary significantly with time. This second compound gives rise to two carbonyl stretching bands (2017 and 1969 cm⁻¹) which are in agreement both with the values reported previously by Akita, Morooka, and co-workers for $(\eta^5-C_5Me_5)Fe(CO)_2I$ in CH_2Cl_2 (2019 and 1971 cm⁻¹)¹⁸ and with those measured for a sample of $(\eta^5-C_5Me_5)Fe(CO)_2I$ prepared independently from $[(\eta^5 - C_5 Me_5)Fe(CO)_2]Na$ and I_2 (2017) and 1971 cm⁻¹). Additional confirmation of the identity of this compound was obtained crystallographically; the less soluble (η^5 -C₅Me₅)Fe(CO)₂I can be separated from 11 by fractional crystallization from a hexane solution. Although there are minor differences from the literature data, the crystal structure obtained (and which is reproduced in the Supporting Information) unambiguously identifies the minor product as $(\eta^5-C_5Me_5)Fe(CO)_2I$ (13).¹⁸ Given the patterns of reactivity that emerge for 5 toward *neutral* two-electron-donor ligands (vide infra), together with the seemingly invariant relative concentrations of 11 and 13 in the reaction mixture, it seems likely that 13 is formed by competing attack of iodide at the iron center of 5, rather than by decomposition of boryl complex 11. Although nucleophilic attack at iron formally involves reaction at an 18-electron metal center, an interchange type mechanism involving concerted loss (and scavenging) of the BMes ligand is implied by kinetic data for other reactions of this type (vide infra).

The notion of the iron center as a competing site of electrophilicity is given further impetus by examination

⁽³⁹⁾ For a discussion of the influence of π donor substituents on ¹¹B chemical shifts in boryl systems see, for example: Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. *Chem. Rev.* **1998**, *98*, 2685. In the case of boron-bound iodine substituents, relativistic effects can also be important: Kaupp, M.; Malkina, O. L.; Malkin, V. G. *Chem. Phys. Lett.* **1997**, *265*, 55.

⁽⁴⁰⁾ Nöth, H.; Wrackmeyer B. In *NMR Basic Principles and Progress*; Diehl, P., Fluck, E., Kosfeld, R., Eds.; Springer-Verlag: Berlin, 1978; Vol. 14.

of the reaction of 5 with $[BPh_4]^-$ (Scheme 7). Thus the reaction of $[(\eta^5-C_5Me_5)Fe(CO)_2(BMe_5)][BAr_4^f]$ with a single equivalent of the soluble [PPN]⁺ salt of [BPh₄]⁻ in dichloromethane proceeds very rapidly (as judged by ¹¹B NMR) to the formation of BPh₃ and $(\eta^5$ -C₅Me₅)Fe-(CO)₂Ph (6). Reaction of the tetraphenylborate counterion with an electrophilic metal center to generate BPh₃ finds precedent, for example, in the chemistry of cationic vanadocene complexes.41 In monitoring the reaction of 5 with [BPh₄]⁻ by ¹¹B NMR spectroscopy, no evidence was obtained for any competing reaction involving nucleophilic transfer of the Ph- moiety to the boron center. It might reasonably be expected that the product of such a reaction, $(\eta^5-C_5Me_5)Fe(CO)_2B(Mes)Ph$, might give rise to a ¹¹B resonance similar to that reported previously by Hartwig for the diphenylboryl complex (η^{5} - C_5H_5)Fe(CO)₂BPh₂ (δ_B 121).²⁹ In the event no signals in this region of the spectrum were observed at any time. Although it is not possible to rule out conclusively a mechanism involving *initial* transfer of Ph⁻ to the boron center followed by rapid decomposition of the boryl complex, $(\eta^5-C_5Me_5)Fe(CO)_2B(Mes)Ph$, so formed, such a pathway would appear unlikely because (i) thermolysis of the related compound $(\eta^5-C_5H_5)Fe(CO)_2$ -BPh₂ proceeds rapidly only at elevated temperatures $(75-95 \text{ °C})^{29,42}$ and (ii) decomposition of $(\eta^5-C_5H_5)$ Fe(CO)₂-BPh₂ under either thermal or photochemical conditions has been reported to generate (in addition to BPh₃) the dimer $[(\eta^5-C_5H_5)Fe(CO)_2]_2$ rather than $(\eta^5-C_5H_5)Fe(CO)_2$ -Ph.²⁹

The experimental observation of alternative sites of reactivity toward nucleophiles finds ample precedent, for example in the chemistry of closely related carbonyl complexes. Thus displacement of CO from the metal center in $[(\eta^5-C_5R_5)Fe(CO)(L)_2]^+$ by an incoming twoelectron donor is a textbook reaction, with alternative carbon-centered reactivity being observed, for example, in the reaction with hydroxide to generate metallocarboxylates such as $[(\eta^5 - C_5 R_5)Fe(CO)(PPh_3)(CO_2)]^{-43}$ What is particularly intriguing in the case of 5 is that reactivity toward the borate anions [BPh₄]⁻ and [BF₄]⁻ should apparently lead to highly selective, but opposing sites of attack. Given the calculated partial charges at boron and iron (+0.356 and -0.338, respectively) and the composition of the LUMO (38.3% total from Fe $3d_{x^2-y^2}$, $3d_{xz}$, and $3d_{yz}$; 4.2% from B $2p_x$), an attractive (if simplistic) interpretation is that attack by the harder nucleophile $[BF_4]^-$ is charge driven (toward boron), while that by the softer nucleophile [BPh₄]⁻ is influenced by the predominant localization of the LUMO at iron.

The reactivity of **5** toward archetypal *neutral* twoelectron ligands such as phosphines and CO has also been examined. In the case of tertiary phosphines (exemplified by PPh₃) an oily mixture of products was obtained on addition of 1 equiv of the ligand to a solution of **5** in dichloromethane. The analogous reaction of **5** with CO over a period of 6 h also proceeds with complete consumption of the starting material (as judged by ¹¹B

 a Reaction conditions: (i) excess ligand (CO, H₂C=CH/Bu, or O=CPh₂), dichloromethane, 18 °C, 2–16 h.

NMR), but in this case results in the formation of a single metal-containing species. Filtration of the reaction mixture, removal of volatile components in vacuo, and recrystallization from a dichloromethane/hexane mixture at -30 °C leads to the isolation of $[(\eta^5-C_5Me_5)-Fe(CO)_3][BAr_4^r]$ (14) as a red crystalline material in ca. 75% yield. 14 has been characterized by IR and multinuclear NMR spectroscopies and by mass spectrometry, with unambiguous confirmation being obtained by single-crystal X-ray diffraction (see Table 1 and Supporting Information). Structural and spectroscopic data for the $[(\eta^5-C_5Me_5)Fe(CO)_3]^+$ cation in 14 are very similar to those reported previously by McArdle for the corresponding $[BF_4]^-$ salt.^{27b}

The isolation of **14** as the metal-containing product from the reaction of 5 with CO implies that displacement of the BMes ligand from the coordination sphere of iron is not limited to its reactions with anionic nucleophiles such as $[BPh_4]^-$ or I^- (see Scheme 8). Similar reactivity has been reported by Tilley for cationic ruthenium silvlene complexes toward ligands containing nitrogen or phosphorus donor atoms. Thus reaction of $[(\eta^5-C_5Me_5)Ru(PMe_3)_2(SiMe_2)]^+$ with PMe₃ or PPh₃ ultimately leads to $[(\eta^5-C_5Me_5)Ru(PMe_3)_2(PR_3)]^+$ (R = Me, Ph) through decomposition of the initially formed Si-ligated complex [(η^5 -C₅Me₅)Ru(PMe₃)₂(SiMe₂-PR₃)]⁺.^{2e} Although no analogous intermediate species could be definitively identified in the reaction of 5 with either PPh_3 or CO, it is not possible to rule out an overall substitution pathway involving initial formation of a labile B-ligated complex.

(b) Reactivity toward Unsaturated Substrates. The versatile and widely exploited reactivity toward unsaturated substrates of organometallic complexes containing M=C double bonds,¹ together with the obvious similarities between electrophilic Fischer carbene and borylene complexes, prompted us to examine the reactivity of **5** toward simple unsaturated species containing C=C, C=C, or C=O bonds. However these studies reveal that the predominant mode of reactivity of **5** toward compounds of this type does not involve the cyclopropanation or metathesis chemistry typical of M=C bonds,^{1,44} but rather involves borylene ligand displacement, even by substrates that are typically thought of as forming weak metal-ligand bonds.

Reaction of **5** with 3,3-dimethyl-1-butene over a period of 16 h leads to complete consumption of the starting

⁽⁴¹⁾ Choukroun, R.; Douziech, B.; Pan, C.; Dahan, F.; Cassoux, P. Organometallics 1995, 14, 4471.

⁽⁴²⁾ Additionally, in our experience boryl complexes of the type $(\eta^5-C_5R_5)Fe(CO)_2B(Ar)X$ tend if anything to be thermally more stable for R = Me than R = H (see ref 8b).

⁽⁴³⁾ See, for example: Gibson, D. H.; Ong, T.-S.; Ye, M. Organometallics 1991, 10, 1811.

⁽⁴⁴⁾ See, for example: Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. *Principles and Applications of Organotransition Metal Chemistry*; University Science Books: Sausalito, CA, 1987.

material, as judged by ¹¹B NMR. The metal-containing product isolated from dichloromethane solution displays ¹¹B and ¹⁹F NMR resonances indicative of the $[BAr_4^f]^$ anion, and the ¹H and ¹³C NMR spectra are consistent with the presence of (η^5 -C₅Me₅), CO, and coordinated alkene moieties. In particular, the ¹H resonances for the three alkene protons of the ${}^{t}Bu(H)C=CH_{2}$ unit are shifted significantly upfield ($\delta_{\rm H}$ 2.68, 3.11, 3.99) compared to the free alkene ($\delta_{\rm H}$ 4.82, 4.92, 5.85), as expected for coordination to the iron center. Similar upfield shifts are observed for the alkene moiety on coordination to the $[(\eta^5-C_5Me_5)Fe(CO)_2]^+$ fragment for ethylene and styrene (e.g., $\delta_{\rm H}$ 5.24, 5.75, 6.72 to 3.03, 3.97, 4.89 for styrene).⁴⁵ In addition the ES+ mass spectrum displays prominent features corresponding to the molecular ion $[(\eta^5-C_5Me_5)Fe(CO)_2(H_2C=CH^tBu)]^+$ (M⁺, m/z 331, 50%) and to fragment ions formed by loss of either alkene or carbonyl ligands ([M - alkene]⁺, m/z 247, 40%; [M - $2CO]^+$, m/z 275, 100%). Carbonyl stretching frequencies of 2033 and 1997 cm⁻¹ are slightly lower than those reported for $[(\eta^5-C_5Me_5)Fe(CO)_2(H_2C=CHR)][PF_6]$ (R = H, 2050, 2020 cm⁻¹; R = Ph, 2060, 2020 cm^{-1 45}), for which an η^2 mode of alkene coordination might be expected by comparison with the structurally authenticated ruthenium styrene complex,45 but are similar to those reported for the crystallographically characterized complex $[(\eta^5-C_5H_5)Fe(CO)_2(\eta^2-bicyclo[3.2.2]non-1-ene)]$ - $[CF_3SO_3]$ (2030, 2010 cm⁻¹).⁴⁶ Thus the available spectroscopic data point to a cationic complex featuring an η^2 -coordinated alkene fragment, i.e., [(η^5 -C₅Me₅)Fe(CO)₂- $(\eta^2-H_2C=CH^tBu)$ [BAr^f₄] (15), an inference that was subsequently confirmed crystallographically. The structure of 15 (see Table 1 and Supporting Information) features a C-Fe-C angle [37.4(2)°] and Fe-C [2.096(6) and 2.233(7) Å] and C-C distances [1.393(9) Å] for the coordinated alkene ligand that are consistent with previous examples of η^2 coordination to a $[(\eta^5-C_5R_5)Fe-(CO)_2]^+$ fragment.^{46–48} Additionally the angles subtended at the iron center by the carbonyl ligands and by the alkene C=C centroid $[92.6(3)-96.8(3)^{\circ}]$ are consistent with a three-legged piano stool geometry at the metal.

The reactivity of **5** toward more polar multiple bonds was also examined, with a similar outcome being observed. Thus, reaction with benzophenone in dichloromethane over a 3 h period leads to complete consumption of the starting material; recrystallization from dichloromethane/hexane generates the dark red benzophenone complex $[(\eta^5-C_5Me_5)Fe(CO)_2(\eta^1-O=CPh_2)][BAr^{f_4}]$ (**16**) as the metal-containing product in 55–60% yield. The identity of **16** was established by multinuclear NMR, IR, and mass spectrometry and confirmed crystallographically. In particular the stretching frequencies for the CO ligands (2050, 2004 cm⁻¹) show the expected shift to lower wavenumber in comparison with those reported for the analogous ($\eta^5-C_5H_5$) complex (2078,

Figure 7. Molecular structure of the cationic component of $[(\eta^{5}-C_{5}Me_{5})Fe(CO)_{2}(\eta^{1}-OCPh_{2})][BAr_{4}^{f}]$, **16**. Relevant bond lengths (Å), angles (deg), and torsion angles (deg): Fe(1)-C(1) 1.801(5), Fe(1)-C(2) 1.793(5), Fe(1)-O(3) 1.982(3), Fe(1)-(\eta^{5}-C_{5}Me_{5}) centroid 1.723(4), O(3)-C(13) 1.256(5), Fe(1)-O(3)-C(13) 136.6(3), $(\eta^{5}-C_{5}Me_{5})$ centroid-Fe(1)-O(3)-C(13) 141.3(4). Hydrogen atoms are omitted for clarity.

2030 cm⁻¹).⁴⁹ Although no data were reported for the C=O stretch of the coordinated benzophenone ligand for this compound, the measured value for **16** (1612 cm^{-1}) is very similar to that reported for the structurally characterized yttrium complex $(\eta^5-C_5Me_5)_2Y(O=CPh_2)$ -Cl (1614 cm⁻¹), which contains an O-bound η^{1} -O=CPh₂ ligand.⁵⁰ The crystal structure of **16** (Figure 7 and Table 1) confirms this mode of attachment for the benzophenone ligand; the Fe-O distance and Fe-O-C angle [1.982(3) Å and 136.6(3)°] are very similar to those reported previously for cationic η^1 -ketone complexes {e.g., $1.983(5)^{\circ}$ and $136.9(4)^{\circ}$, respectively, for [(η^{5} -C₅H₅)- $Fe(CO)_2(O=CC_6H_6)][BF_4]$, and the lengthening of the benzophenone C=O bond [1.256(5) Å in 16] compared to the free ligand (1.23 Å) mirrors that seen in Tb[N- $(SiMe_3)_2]_3(\eta^1 - O = CPh_2)$ [1.264(14) Å].^{51,52} Although a number of ketone and aldehyde complexes of iron have been reported, complex 16 represents the first structurally characterized iron-containing benzophenone complex.

Within the context of the current study the conversion of **5** to **16** in particular appears somewhat surprising, especially given that the charge neutral chromium aminoborylene complex (OC)₅CrBN(SiMe₃)₂ can be recovered unchanged from acetone solution.⁵³ Strong binding of group 13 diyl ligands to transition metal centers has been predicted by a number of recent computational studies,⁵ and a bond dissociation energy of 147.5 kcal mol⁻¹ has been predicted for the mesitylborylene ligand in $[(\eta^5-C_5Me_5)Fe(CO)_2(BMes)]^+$.^{4b} That the reactivity of **5** toward a number of neutral twoelectron-donor ligands (including relatively weak donors such as ketones) is undoubtedly characterized by sub-

⁽⁴⁵⁾ Guerchais, V.; Lapinte, C.; Thépot, J.-Y.; Toupet, L. Organometallics **1988**, 7 604.

⁽⁴⁶⁾ Bly, S. R.; Bly, R. K.; Hossain, M. M.; Lebioda, L.; Raja, M. J. Am. Chem. Soc. **1988**, *110*, 7723.

⁽⁴⁷⁾ Hu, Y.-R.; Leung, T. W.; Chin, S.-S.; Wojcicki, A.; Calligaris, M.; Nardin, G. Organometallics **1985**, *4*, 1001.

⁽⁴⁸⁾ Turnbull, M. M.; Foxman, B. M.; Rosenblum, M. Organometallics **1988**, 7, 200.

⁽⁴⁹⁾ Schmidt, E. K. G.; Theil, C. H. J. Organomet. Chem. **1981**, 209, 373.

⁽⁵⁰⁾ Evans, W. J.; Fujimoto, C. H.; Johnston, M. A.; Ziller, J. W. Organometallics **2002**, *21*, 1825.

⁽⁵¹⁾ Boudjouk, P.; Woell, J. B.; Radonovich, L. J.; Eyring, M. C. Organometallics **1982**, *1*, 582.

⁽⁵²⁾ Allen, M. Aspinall, H. C.; Moore, S. R.; Hursthouse, M. B.; Karvalov, A. I. *Polyhedron* **1992**, *11*, 409.

⁽⁵³⁾ Braunschweig, H. Personal communication.

stitution of the mesitylborylene ligand would therefore appear to be thermodynamically counterintuitive. On the other hand, extrusion of the MesB fragment from the coordination sphere of a cationic group 8 metal center has some precedent in silylene chemistry, with $[(\eta^5-C_5Me_5)Ru(PMe_3)_2(SiMe_2)]^+$ ultimately undergoing substitution at ruthenium with tertiary phosphines. $[(\eta^{5}-C_{5}Me_{5})Ru(PMe_{3})_{2}(PR_{3})]^{+}$ (R = Me or Ph) and oligomeric (Me₂Si)_{*n*} are the final products identified in this case.^{2e} A similar irreversible extrusion of the MesB fragment from 5 is conceivable, although given the observation of a *common* boron-containing product from all of the displacement reactions described above, together with the known (high) reactivity of "free" borylenes toward hydrocarbons, a more likely possibility is irreversible reaction of the BMes fragment with the common dichloromethane solvent. A number of experimental observations add weight to this hypothesis.

Although complete characterization of the common boron-containing product was prevented by its high volatility and extreme moisture sensitivity, its measured ¹¹B chemical shift ($\delta_{\rm B}$ 17.0) is consistent with a species such as $[Mes(Cl_2CH)B(\mu-H)]_2$ formed by dimerization of the initial product of BMes insertion into one of the C-H bonds of dichloromethane (cf. chemical shifts of $\delta_{\rm B}$ 17.5 and 25.9 for B₂H₆ and (MesBH₂)₂, respectively^{40,54}).⁵⁵ Additionally, ¹H signals consistent with mesityl and BH protons show similar concentration/time profiles, and rapid insertion reactions of "free" borylenes into C-H and C-C bonds have previously been reported in a number of studies.⁵⁶ Of particular relevance is the intramolecular C-H insertion reaction undergone by the putative borylene (Me₃Si)₃CB to generate the hydride-bridged dimer [(Me₃Si)₂C(Me₂Si)CH₂B(µ-H)]₂.⁵⁷ Although other insertion reactions of the MesB fragment (e.g., into the C-Cl bond of dichloromethane) can be envisaged, we believe that kinetic data in particular are most consistent with a C-H insertion process (vide infra).

The fact that the same boron-containing product is generated in each of the borylene displacement reactions (even with relatively poor donors such as benzophenone) prompted us to examine whether, under forcing conditions, a similar substitution of the borylene ligand might be brought about by the dichloromethane solvent alone.⁵⁸ At room temperature **5** is stable in dichloromethane solution over a period of several days. However at 40 $^{\circ}$ C, a solution of **5** in CD₂Cl₂ decomposes over a period of ca. 24 h. This decomposition process, monitored by ¹¹B and ¹H NMR reveals not only that the same boroncontaining product is formed as in other ligand displacement reactions but that the decomposition process is first order in [5] (Figure 8). This result renders

Figure 8. Plots of ln([5]/[5]₀) versus time (s) for the thermolysis of cationic borylene 5 in deuterio (\blacklozenge) and normal dichloromethane (\bullet). The linear plots ($R^2 = 0.994$ and 0.988, respectively) yield values of $1.5\overline{2}\times10^{-5}$ and 5.78 \times 10⁻⁵ s⁻¹ for the first-order rate constants $k_{\rm D}$ and $k_{\rm H}$, repectively.

unlikely a bimolecular decomposition process involving interaction between two molecules of 5. Furthermore, comparison of the kinetic data for the reactions in CD_2Cl_2 and CH_2Cl_2 reveals a primary kinetic isotope effect ($k_{\rm H}/k_{\rm D} = 3.8$), an observation consistent not only with involvement of the dichloromethane solvent in the rate-determining step of the borylene displacement reaction but also with a significant degree of C-H bond breakage in the transition state. It therefore seems probable that insertion of the BMes fragment into one of the C–H bonds of the CH₂Cl₂ solvent is occurring during the ligand displacement process. Clearly, given the high BDE calculated for 5, the observation of facile ligand displacement at 40 °C must imply significant involvement of the dichloromethane molecule during the displacement of the BMes fragment from the metal coordination sphere. The thermodynamics of the insertion process (i.e., the formation of B-H and B-C bonds) would then explain the displacement of the BMes ligand even by relatively poor donors.

An alternative approach to determining the fate of the boron-containing fragment in ligand displacement reactions of 5 is the use of trapping reagents which might be expected to give tractable and readily characterized products on reaction with any mesitylborylene generated. West has previously reported the trapping of "free" borylene by an internal alkyne to generate a stable boracyclopropene, and we initially investigated the reaction of 5 with similar trapping agents.⁵⁹ However, the course of such reactions using either neat alkyne [e.g., bis(trimethylsilyl)acetylene] or a solution in dichloromethane did not appear to be straightforward, and no spectroscopic evidence was obtained at any point for the generation of a boracyclopropene, Mes-BC₂R₂.⁵⁹ Tokitoh and co-workers, on the other hand, have reported the photolytic generation of sterically encumbered arylborylenes and their trapping with dialkyldichalcogenides (e.g., Me₂S₂) to generate species of the type ArB(ER)₂.⁶⁰ Hence we investigated the use of such trapping agents in the chemistry of 5. Accordingly, the reaction of 5 with Me_2S_2 in hexane at room temperature leads to quantitative and very rapid (by

⁽⁵⁴⁾ Entwhistle, C. D.; Marder, T. B.; Howard, J. A. K.; Fox, M. A.; Mason, S. A. J. Organomet. Chem. 2003, 680, 165.

⁽⁵⁵⁾ The species giving rise to the resonance at $\delta_{\rm B}$ 17 does not appear to be the product of a hydrolysis reaction. Independent hydrolysis of 5 generates (MesBO)3 and MesB(OH)2, which give rise to ¹¹B NMR resonances at ca. 30 ppm.

⁽⁵⁶⁾ See, for example: Grigsby, W. J.; Power, P. P. J. Am. Chem. *Soc.* **1996**, *118*, 7981, and references therein. (57) Mennekes, T., Paetzold, P.; Boese, R. Angew. Chem., Int. Ed.

^{1990 29 899}

⁽⁵⁸⁾ Dichloromethane complexes of the type $[(\eta^5-C_5R_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO)_2(CH_2-C_5)Fe(CO$ Cl₂]⁺ have previously been reported: (a) Reger, D. L.; Coleman, C. J. Organomet. Chem. **1977**, *131*, 153. (b) Johnston, P. Hutchings, G. J.; Denner, L.; Boeyens, J. C. A.; Coville, N. J. Organometallics 1987, 6, 1292.

^{(59) (}a) Pachaly, B.; West, R. Angew. Chem., Int. Ed. Engl. 1984, 23, 454. (b) Eisch, J. J.; Shafii, B.; Odon, J. D.; Rheingold, A. L. *J. Am.* Chem. Soc. 1990, 112, 1847.

⁽⁶⁰⁾ Ito, M.; Tokitoh, N.; Kawashima, T.; Okazaki, R. Tetrahedron Lett. 1999. 40. 5557.

Scheme 9. Reactivity of 5 toward Dimethyl Disulfide: Chemical Trapping of the Borylene Fragment^a

^{*a*} Reaction conditions: (i) Me_2S_2 1.5 equiv, hexane, 2 h.

¹¹B NMR) conversion to a single boron-containing species, giving rise to a broad signal at $\delta_{\rm B}$ 66.0. Isolation of the oily hexane-soluble product and comparison of spectroscopic data with those reported previously confirm that this product is the bis(methylthio)borane MesB(SMe)₂ (**17**) (Scheme 9).¹⁹ A similar reaction with Me₂Se₂ also generates a single boron-containing product, the ¹¹B NMR resonance of which ($\delta_{\rm B}$ 75.4) is appropriate for a bis(methylseleno)aryl borane [e.g., $\delta_{\rm B}$ 76.6 and 70.3 for 2,4,6-(R₂HC)₃C₆H₂B(SeMe)₂ (R = SiMe₃) and PhB(SeMe)₂, respectively].^{40,60} Chemical trapping experiments therefore mirror the results of thermolysis studies in being consistent with rapid insertion of the ejected BMes ligand into reactive available linkages.

Conclusions

Application of halide abstraction chemistry to asymmetric haloboryl complexes of the type $(\eta^5-C_5Me_5)Fe$ - $(CO)_2B(ER_n)X$ leads to the development of the first synthetic route to *cationic* multiply bonded group 13 diyl complexes. Thus, abstraction of bromide from $(\eta^5-C_5-$ Me₅)Fe(CO)₂B(Mes)Br (2) by Na[BAr^{f_4}] leads to the isolation of colorless crystalline $[(\eta^5-C_5Me_5)Fe(CO)_2-$ (BMes) [BAr^{*f*}₄] (5) in 50–60% yield, while similar chemistry applied to $(\eta^5$ -C₅Me₅)Fe(CO)₂B(NMe₂)Br (7) at -20 °C leads to the generation of the highly reactive aminoborylene $[(\eta^5 - C_5 Me_5)Fe(CO)_2(BNMe_2)][BAr_4^{f_4}]$ (8), which can be characterized in solution by multinuclear NMR and IR spectroscopies and chemically trapped by chloride to yield the known compound $(\eta^5-C_5Me_5)Fe(CO)_2B$ -(NMe₂)Cl (9). In the case of arylborylene complexes, both the steric properties of the putative borylene substituent (and of the metal fragment) and the inherent coordinating properties/reactivity of the counterion employed appear to play key roles in the isolation (or otherwise) of stable, tractable cationic borylene complexes. Thus the need for suitable steric shielding of *both* boron and metal centers is demonstrated by the reactions of $(\eta^{5}$ - C_5Me_5)Fe(CO)₂B(Ph)Cl (**4**) or (η^5 - C_5H_5)Fe(CO)₂B(Ar)Br $(Ar = Mes \text{ or } 2,6\text{-}Trp_2C_6H_3)$ with Na[BAr^f_4], which lead to the generation of no detectable borylene products. On the other hand, the use of alternative halide abstraction agents containing more reactive anions such as [BPh_4]⁻ or [BF_4]⁻ leads to the isolation of complexes derived from attack at either the boron or iron center.

Crystallographic, spectroscopic, and DFT studies of **5** are consistent with an Fe=B double bond comprising a B \rightarrow Fe σ interaction, supplemented by Fe \rightarrow B π backbonding into one of the formally vacant p orbitals at boron. On the basis of a DFT population analysis the Fe–B bond has a 62:38 σ : π breakdown of the covalent contribution to bonding compared to a 64:36 breakdown for archetypal Fischer carbene $[(\eta^5-C_5H_5)Fe(CO)_2-(=CH_2)]^+$.

DFT-based analyses of the charge distribution and LUMO composition for **5** indicate that both boron and iron centers may be likely centers for nucleophilic attack. Such predictions are borne out in practice by an investigation of the reactivity of **5** toward a number of different classes of reagent. Thus reactions proceeding to $(\eta^5-C_5Me_5)Fe(CO)_2B(Ar)X$ via nucleophilic addition at the boron center predominate for the halide ions Cl⁻, Br⁻ and I⁻ and for BF₄⁻, whereas substitution of the borylene ligand at the iron center is observed for BPh₄⁻, CO, H₂C=C(H)'Bu, and Ph₂C=O. Despite unfavorable ligand binding thermodynamics, the latter chemistry is thought to be driven by irreversible removal of the MesB ligand, which can be trapped, for example, by insertion into the S–S bond of Me₂S₂ trapping agent.

Acknowledgment. We would like to acknowledge the support of the EPSRC (grants GR/R04669/01 and GR/S07667/01, and Ph.D. studentship for D.L.C.), the Royal Society, and Cardiff University for the funding of this project. The assistance of the EPSRC National Mass Spectrometry Service Centre, University of Wales Swansea, and the EPSRC Crystallography Service, University of Southampton (structure of compound 13), is also gratefully acknowledged. All calculations were carried out using the Helix computing facility at Cardiff University.

Supporting Information Available: Full details (including CIF files) of the crystallographic studies of compounds **5**, **10**, **12**, **14**, **15**, and **16**, together with those for **13** (not reported in main text); variable-temperature NMR spectra for fluoroboryl complex **12**; details of the DFT optimized structures for **5**, **8**, and $[(\eta^5-C_5H_5)Fe(PMe_3)_2(BMes)]^+$; and a complete listing of the molecular orbital energies and compositions for **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM049793E