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Summary: A new series of chelating N-heterocyclic car-
bene (NHC) ligands and their complexes with palladium
are described. The ligands feature a chelating phenolic
unit, thereby expanding the class of available NHC
ligands for organometallic catalysis.

N-Heterocyclic carbenes (NHCs) are being used in-
creasingly in organometallic chemistry as neutral two-
electron-donor ligands, commonly replacing phosphines
in that role. The strong σ-donating capability and low
level of π-acidity of these ligands provide their metal
complexes with electronic properties that are often quite
different from those with phosphines or other traditional
neutral ligands.1 This change can sometimes enhance
the reactivity of metal-based catalysts that feature
NHCs. Examples of this improved reactivity include
ruthenium-based olefin metathesis catalysts2 and pal-
ladium-based catalysts for C-C and C-N coupling
reactions.3 Another attractive feature of NHCs is the
possible variability in the substituents on the nitrogen
atoms, which allows for a wide range of steric,4 asym-
metric,5,6 and electronic features. Additionally, it is
possible to functionalize these nitrogen substituents in
such a way as to make ligands capable of chelation.6,7

Such variability has led to the synthesis of NHC
analogues of many traditional ligands.

Seeking to further expand the current repertoire of
available carbene ligands, we are interested in the

synthesis of o-hydroxyaryl-substituted NHCs that are
capable of binding through the phenoxide oxygen and
the carbene carbon to provide an [L,X]-type chelate
(Figure 1). These ligands would be analogous to the
salicylaldimine (sal) framework, a common motif in
organometallic chemistry.7 Typically, functionalized
NHCs are synthesized via nucleophilic attack of a
1-alkylimidazole on an alkyl halide to give an N-
functionalized carbene precursor. This method has been
used with success to synthesize a wide range of chelat-
ing carbene ligands with functionalized alkyl substitu-
tion, including some featuring a [C,O] chelate.8 How-
ever, because nucleophilic attack on an aryl ring by an
imidazole is difficult or impossible, the development of
ligands with functionalized aryl groups is limited. Thus,
a new approach was required to synthesize our targeted
ligands. The only previously reported example of an
N,N′-diaryl carbene capable of chelation through a
phenoxide has been Hoveyda’s example that features a
binaphthol moiety, used in the synthesis of a ruthenium
complex for asymmetric olefin metathesis.6 However,
the synthesis of this ligand is somewhat lengthy. Herein
is described a facile, high-yielding, highly modular
synthesis of differentially aryl substituted NHCs to give
[C,O] chelate ligands, as well as their complexes with
palladium.9 This versatile synthetic method provides a
route to NHC ligands with nearly any substitution
pattern imaginable.

The general protocol for synthesizing phenoxide chelat-
ing carbenes proceeds as shown in Scheme 1: ethyl
chlorooxoacetate is treated with an arylamine in the
presence of triethylamine to give oxanilic acid ester 1.
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Figure 1. Analogy between salicylaldimine ligands and
chelating carbenes.
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Reaction with the desired aminophenol under a variety
of conditions (methods A-C) provides oxalamide 2.
Reduction of 2 with borane-THF complex results in
ethylenediamine 3, which then cyclizes upon treatment
with triethyl orthoformate to carbene precursor 4. This
route allows for the formation of N-heterocyclic carbenes
limited only by the availability of the starting amines.

For each specific ligand (4a-d), a different approach
was required to append the aminophenol moiety in the
second step (methods A-C in Scheme 1). For the
syntheses of ligands 4a and 4b, treatment of 1 (Ar )
mesityl, 2,6-diisopropylphenyl) with 2-aminophenol in
refluxing toluene provided bis-amides 2a and 2b in good
yield (method A, Scheme 2). However, 2-amino-4-meth-
yl-6-tert-butylphenol (6) proved too bulky to react in this
fashion in the synthesis of 4c. Therefore, peptide
coupling of 6 with oxanilic acid 5 was employed to form
bis-amide 2c (method B, Scheme 3). An NHC ligand
even bulkier than 4c was prepared by the introduction
of an adamantyl group in the position ortho to the
phenol (4d; method C, Scheme 4). This was accom-
plished by treatment of 1b with 2-amino-4-methyl-
phenol, in a manner similar to that used for 2a and 2b,
to provide bis-amide 7. Reaction of 7 with 1-adamantol
and catalytic sulfuric acid afforded bis-amide 2d. It
should be noted that the placement of a methyl group
para to the hydroxyl functionality prevents reaction
with adamantol at that position. The variety of substit-
uents on ligands 4a-d highlights the utility and adapt-

ability of this modular route to differentially substituted
carbene ligands.

To test the viability of this new class of N-heterocyclic
carbenes as ligands for transition metals, we decided
to study their complexes of palladium. Although silver
carbene reagents have previously been used to effect
this type of ligation,6,10 simple deprotonation of the
carbene precursor with 2 equiv of potassium hexa-
methyldisilazide (KHMDS) at room temperature in
toluene or THF proved to be an adequate method for
generation of active carbene.11 Reaction with the ap-
propriate metal precursor led to formation of the desired
palladium complexes. The monophosphine methyl-
palladium chloro-bridged dimers ((PR3)PdMeCl)2 (R )
Et, Ph) proved to be excellent metal precursors, provid-
ing metal complexes of the type (NHC)PdMe(PR3) (R )
Et, Ph; Scheme 5).12 Complexes 8a,d have been struc-
turally characterized by X-ray crystallography (Figures
2 and 3). They possess square-planar geometry with the
anionic donors (methyl and phenoxide) trans to each
other.

There have been, hitherto, relatively few examples of
stable alkylpalladium complexes of N-heterocyclic car-
benes.13 This can often be attributed to decomposition

(10) (a) Wang, H. M. J.; Lin, I. J. B. Organometallics 1998, 17, 972-
975. (b) McGuinness, D. S.; Cavell, K. J. Organometallics 2000, 19,
741-748.

Scheme 1. General Synthesis of Chelating
Carbenes

Scheme 2. Method A

Scheme 3. Method B

Scheme 4. Method C
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of such complexes through a reductive elimination
pathway to give imidazolium salts and reduced metal.14

It should be noted that the palladium complexes pre-
sented in this work are quite stable.15 It has been
demonstrated previously that NHC palladium alkyl
complexes are much more stable when the ligand is
capable of chelation, which presumably prevents the
carbene from attaining the orientation necessary for
attack by the alkyl group bound to the metal.16

A simple, high-yielding, and modular protocol for the
synthesis of bidentate diaryl N-heterocyclic carbenes
(and differentially substituted carbenes in general) is
presented. Their effectiveness as stable ligands for pal-
ladium having been established, it is hoped that these
ligands may prove useful in organometallic catalysis.
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Scheme 5. General Procedure for Synthesis of
Metal Complexes

Figure 2. Structure of compound 8a represented by
thermal ellipsoids at 50% probability. Hydrogen atoms
have been omitted for clarity.

Figure 3. Structure of 8d represented by thermal el-
lipsoids at 50% probability. Hydrogen atoms have been
omitted for clarity.
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