Postmetalation Ligand Modification on the Periphery of a Diruthenium Compound: Toward Novel Metallayne Scaffoldings

Wei-Zhong Chen and Tong Ren*

Department of Chemistry and Center for Supramolecular Science, University of Miami, Coral Gables, Florida 33146

Received April 26, 2004

Summary: A diruthenium compound bearing a peripheral iodo substituent cross-couples with acetylenes under Sonogashira conditions to yield a novel family of diruthenium compounds bearing a peripheral alkyne functionality, which can be further functionalized at the axial positions via a reaction with lithiated butadiynyl.

Boosted by the immense interest in carbon-rich materials such as fullerenes and carbon nanotubes, there have been growing efforts in recent years in both the synthesis of new metallaynes¹ and their material applications as nonlinear optical chromophores² and active species in molecular electronic devices.³ Equally exciting is the possibility of using metallaynes as scaffoldings for 2-D and 3-D carbon-rich networks that may rival fullerene in both the beauty and diversity of material properties.⁴ Our laboratory has reported a host of diruthenium compounds bearing axial *σ*-ethynyl/ polyynyl ligands⁵ and demonstrated the facile electron delocalization along the conjugated backbone. 6 Ru₂ metallaynes are both intense visible-near-infrared chromophores and excellent electrophores with multiple reversible redox couples over a broad potential window.5 Clearly of great interest is whether $Ru₂$ metallaynes can be (i) incorporated in 2- and 3-D supramolecular assemblies and (ii) used as the reporter group in chemical and biochemical sensors. To achieve these objectives, Ru2 metallaynes need to be functionalized in the direction(s) orthogonal to the Ru_2 - σ -alkynyl vector, and our initial exploratory efforts are described in this contribution.

Critical to the orthogonal functionalization of Ru_2 -metallayne is the accessibility of the $Ru_2^{\rm II,III} (LL)_3$ -

Figure 1. ORTEP representation of molecule **1** at the 30% probability level. Selected bond lengths (Å): Ru1-Ru2, 2.3220(7); Ru1-Cl, 2.405(2).

(OAc)Cl type compounds $(LL = N, N$ -diarylformamidinate). Ru₂(*D*mAni*F*)₃(OAc)Cl (1; *DmAniF* is *N*,*N*′-bis(*m-*methoxyphenyl)formamidinate) was obtained in 87% yield using a modification of the recently published procedures,⁷ and its molecular structure is provided in Figure 1. As shown in Scheme 1, the acetate in compound **1** can be readily displaced with *N*,*N*′-dimethyl-4-iodobenzamidinate (I-DMBA) to yield Ru₂^{II,III}(*D*mAni*F*)₃(I-DMBA)Cl (2). The presence of the iodo substituent gives access to a variety of Pd-catalyzed cross-coupling reactions.8 Hence, treating **2** with the terminal alkynes $HC = CY (Y = SiⁱPr₃, Fc)$ under Sonogashira conditions furnished compounds **3a**,**b**. To our knowledge, the conversion of **2** to **3** is the first example of postmetalation modification of a bridging ligand in a paddle-wheel species *by design*. Compounds **3a**,**b** reacted with 3 equiv of LiC₄SiMe₃ to yield *trans*-bis-(butadiynyl) derivatives **4a**,**b** analogous to the established alkynylation chemistry of diruthenium compounds.5 We also sought an alternative route to **4**: treating 2 with 3 equiv of LiC₄SiMe₃ resulted in *trans*-Ru2 III,III(*D*mAni*F*)3(I-DMBA)(C4SiMe3)2 (**5**; 46%). However, the reaction between 5 and HC_2Y under Sonogashira conditions yielded a mixture of Ru₂ compounds

^{*} To whom correspondence should be addressed. E-mail: tren@ miami.edu. Tel: (305) 284-6617. Fax: (305) 284-1880.

^{(1) (}a) Low, P. J.; Bruce, M. I. *Adv. Organomet. Chem.* **2001**, *48*, 71. (b) Manna, J.; John, K. D.; Hopkins, M. D. *Adv. Organomet. Chem.* **1995**, *38*, 79. (c) Special Issues on Carbon Rich Organometallics: *J. Organomet. Chem.* **2003**, *683*. (d) Szafert, S.; Gladysz, J. A. *Chem. Rev.* **2003**, *103*, 4175. (e) Bruce, M. I.; Low, P. J. *Adv. Organomet. Chem.* **2004**, *50*, 179.

^{(2) (}a) Whittall, I. R.; McDonagh, A. M.; Humphrey, M. G.; Samoc, M. *Adv. Organomet. Chem.* **1998**, *42*, 291. (b) *Ibid*. **1999**, *43*, 349.

^{(3) (}a) Paul, F.; Lapinte, C. *Coord. Chem. Rev.* **1998**, *178–180*, 431.
(b) Schull, T. L.; Kushmerick, J. G.; Patterson, C. H.; George, C.; Moore,
M. H.; Pollack, S. K.; Shashidhar, R. *J. Am. Chem. Soc.* **2003**, *125*, 3202.

^{(4) (}a) Bunz, U. H. F. *J. Organomet. Chem.* **2003**, 683, 269. (b) Bunz, U. H. F.; Rubin, Y.; Tobe, Y. *Chem. Soc. Rev.* **1999**, 28, 107. (c) Diederich, F. *Nature* **1994**, 369, 199.

^{(5) (}a) Ren, T.; Xu, G.-L. *Comments Inorg. Chem.* **2002**, *23*, 355. (b) Hurst, S. K.; Ren, T. *J. Organomet. Chem.* **2003**, *670*, 188.

^{(6) (}a) Ren, T.; Zou, G.; Alvarez, J. C. *Chem. Commun.* **2000**, 1197. (b) Xu, G.-L.; Zou, G.; Ni, Y.-H.; DeRosa, M. C.; Crutchley, R. J.; Ren, T. *J. Am. Chem. Soc.* **2003**, *125*, 10057. (c) Xu, G.-L.; DeRosa, M. C.; Crutchley, R. J.; Ren, T. *J. Am. Chem. Soc.* **2004**, *126*, 3728.

^{(7) (}a) Angaridis, P.; Berry, J. F.; Cotton, F. A.; Lei, P.; Lin, C.; Murillo, C. A.; Villagrán, D. *Inorg. Chem. Commun.* **2004**, 7, 9. (b) Barral, M. C.; Herrero, S.; Jiménez-Aparicio, R.; Torres, M. R.; Torres, M. R.; T *Inorg. Chem. Commun.* **1999**, *2*, 301.

^{(8) (}a) *Metal-catalyzed Cross-coupling Reactions*; Diederich, F., Stang, P. J., Eds.; Wiley-VCH: Weinheim, Germany, 1998. (b) Brands-ma, L. *Preparative Acetylenic Chemistry*; Elsevier: Amsterdam, 1988. (c) Siemsen, P.; Livingston, R. C.; Diederich, F. *Angew. Chem., Int. Ed.* **2000**, *39*, 2632.

Scheme 1*^a*

a Legend: (i) 2 equiv of *N*,*N*-dimethyl-4-iodobenzamidine, LiCl, Et₃N; 79%; (ii) HC₂Y, *trans*-Pd(PPh3)₂Cl₂, CuI, ⁱPr₂NH, THF, room temperature, yield 41% (**3a**), 49% (**3b**); (iii) Bu4NF, THF; quantitative; (iv) 3 equiv of LiC4TMS, THF, yield 43% (**4a**), 37% (**4b**).

Figure 2. Cyclic voltammograms of compounds **1**, **4a**, and **5** recorded in a 0.20 M THF solution of Bu_4NPF_6 at a scan rate of 0.10 V/s.

free of axial alkynyl ligands instead of **4**. Clearly, the axial Ru-butadiynyl bonds are unstable under Sonogashira conditions.

Similar to other $Ru_2(LL)_3(OAc)Cl$ type compounds,⁷ compound **1** is purple. Compounds **2** and **3a**,**b** are green, which is typical for $Ru_2(DArF)_4Cl$ type compounds.⁹ Compounds **¹**-**³** are paramagnetic, with effective magnetic moments corresponding to an $S = \frac{3}{2}$ ground state. On the other hand, compounds **4a**,**b** and **5** are diamagnetic and deep red, both being characteristics of *trans-* $Ru_2(DArF)_4(C_2R)_2$ species (*DArF* is diarylformamidinate).10 All compounds display at least three redox couples (cyclic voltammograms of compounds **¹**-**⁵** are provided in the Supporting Information). As typified by the CV of **1** in Figure 2, compounds of $Ru_2^{\Pi, \Pi(LL)}$ ₃(LL')-Cl type (**1**-**3**; LL′ is either OAc or I-DMBA) exhibit a one-electron oxidation (**B**) and two one-electron reductions (**C** and **D**). The first reduction of **1** is irreversible, due to the fast dissociation of the axial Cl⁻ ligand, and the resultant $Ru_2(LL)_3(LL')$ species is reoxidized at a more positive potential (**E**).9b Similar to the previously studied bis(alkynyl) $\rm Ru_2^{III,III}$ compounds, 10 compounds **4** and **5** exhibit one irreversible oxidation (**A**) and two reversible one-electron reductions (**B** and **C**), and the latter reflect the robustness of Ru-C bonds upon reduction.

Figure 3. ORTEP representation of molecule **4a** at the 20% probability level. Selected bond lengths (Å): Ru1-Ru2, 2.5467(7); Ru1-C1, 1.976(6); Ru2-C8, 1.988(7); Ru-N(averaged), 2.051[6].

Compounds **¹**-**⁵** are generally crystalline, and the molecular structures of **1**, **4a**, and **5** have been determined through X-ray diffraction studies.¹¹ The structural plots of **4a** and **5** are presented in Figures 3 and 4, respectively, along with some selected geometric parameters. While the Ru-Ru bond is short in the parent compound **1** (2.3220(7) Å), bis(butadiynyl) derivatives **4a** and **⁵** have significantly elongated Ru-Ru

^{(9) (}a) Cotton, F. A.; Ren, T. *Inorg. Chem.* **1995**, *34*, 3190. (b) Lin, C.; Ren, T.; Valente, E. J.; Zubkowski, J. D.; Smith, E. T. *Chem. Lett.* **1997**, 753.

^{(10) (}a) Xu, G.-L.; Ren, T. *Inorg. Chem.* **2001**, *40*, 2925. (b) Lin, C.; Ren, T.; Valente, E. J.; Zubkowski, J. D. *J. Chem. Soc., Dalton Trans.* **1998**, 571. (c) Bear, J. L.; Han, B.; Huang, S.; Kadish, K. M. *Inorg. Chem.* **1996**, *35*, 3012. (d) Bear, J. L.; Han, B.; Huang, S. *J. Am. Chem. Soc.* **1993**, *115*, 1175.

⁽¹¹⁾ X-ray single-crystal data for crystals of **1**, **4a**, and **5** were collected on a Bruker SMART1000 CCD diffractometer using Mo $K\alpha$ collected on a Bruker SMART1000 CCD diffractometer using Μο Κα
radiation at 300 K. Crystal data for **1**'H₂O: C₄₇H₄₈N₆O₉Ru₂Cl, fw =
1078.50. triclinic. *P*I. *a* = 13.173(1) Å. *b* = 15.358(1) Å. *c* = 16.802(1 1078.50, triclinic, $P\overline{1}$, \overline{a} = 13.173(1) Å, b = 15.358(1) Å, c = 16.802(1) Å, α = 116.426(1)°, β = 107.284(1)°, γ = 96.207(1)°, V = 2789.2(4) Å³, Å, $\alpha = 116.426(1)$ °, $\beta = 107.284(1)$ °, $\gamma = 96.207(1)$ °, $V = 2789.2(4)$ Å³,
 $Z = 2$, $D_{\text{caled}} = 1.284$ g cm⁻³. Of 14 739 reflections measured, 9687 were
unique ($R_{\text{int}} = 0.040$). Least-squares refinement based on 59 tions with $I \ge 2\sigma(I)$ and 586 parameters led to convergence with final $R1 = 0.065$ and wR2 = 0.189. Crystal Data for **4a**: $C_{79}H_{93}N_8O_6Ru_2$ -
Si₃, fw = 1537.0, triclinic, *P*1, *a* = 15.375(2) Å, *b* = 17.521(2) Å, *c* =
18.281(3) Å, $\alpha = 80.35(1)$ °, $\beta = 82.95(1)$ °, $\nu = 66.348(9)$ °, 18.281(3) Å, $\alpha = 80.35(1)^\circ$, $\beta = 82.95(1)^\circ$, $\gamma = 66.348(9)^\circ$, $V = 4439(1)$
Å³, *Z* = 2, *D*_{calcd} = 1.150 g cm⁻³. Of 28 565 reflections measured, 19 986
were unique (*R*_{ax} = 0.062). Least-squares refinement were unique ($R_{\text{int}} = 0.062$). Least-squares refinement based on 7921 reflections with *I* $\geq 2\sigma(I)$ and 876 parameters led to convergence with final R1 = 0.067 and wR2 = 0.182. Crystal Data for **5**: $C_{68}H_{73}N_8O_6$ -
Ru₂Si₂I, fw = 1483.6, monoclinic, *P*2₁/*n*, *a* = 21.260(1) Å, *b* = 10.406-
(1) Å, *c* = 33.170(1) Å, *B* = 107.811(1)°, *V* = 6986.2(4) (1) Å, $c = 33.170(1)$ Å, $\beta = 107.811(1)$ °, $V = 6986.2(4)$ Å³, $Z = 4$, D_{cal}
= 1.411 g cm⁻³. Of 44 520 reflections measured, 16 601 were unique = 1.411 g cm⁻³. Of 44 520 reflections measured, 16 601 were unique (R_{int} = 0.071). Least-squares refinement based on 8316 reflections with $I \ge 2\sigma(\hbar)$ and 784 parameters led to convergence with final R1 = 0.053 $I \ge 2\sigma(I)$ and 784 parameters led to convergence with final R1 = 0.053 and $wR2 = 0.078$.

Figure 4. ORTEP representation of molecule **5** at the 30% probability level. Selected bond lengths (Å): Ru1-Ru2, 2.5581(5); Ru1-C1, 1.949(5); Ru2-C8, 1.954(5); Ru-N(averaged), 2.050[4].

bonds, reflecting the loss of *^σ*(Ru-Ru) upon the formation of two *^σ*(Ru-C) bonds (Ru1-C1 and Ru2-C8). The coordination geometries around the diruthenium core in compounds **4a** and **5** are very similar to those previously reported for the $Ru_2(DArF)_4(C_2R)_2$ type compounds,10 which indicates a minimal impact on the electronic properties of Ru₂ metallaynes upon the covalent modification of the *N,N* ′*-*bidentate bridging ligand.

Recent years have witnessed significant progress in supramolecular chemistry based on linking dimetallic units at the equatorial positions,¹² where the ditopic linkers are typically *preformed*. Our preliminary studies

outlined in Scheme 1 demonstrated the facile synthesis of a series of novel $Ru₂$ compounds $3-5$, which may provide a viable alternative in constructing supramolecules. One can easily envision the formation of a linked dimer through either the homocoupling of **3c** under Glaser conditions or cross-coupling between **2** and **3c** under Sonogashira conditions. Furthermore, the presence of the peripheral iodo substituent in compound **2** should enable both the functionalization of biological macromolecules such as proteins and nucleic acids with the diruthenium unit and incorporation of the diruthenium unit into a dendrimer. These interesting aspects are being vigorously pursued in our laboratory.

Acknowledgment. We are grateful to the National Science Foundation (Grant No. CHE0242623), the Office of Naval Research (Contract No. N00014-03-1-0531), and the University of Miami (CCD-diffractometer fund) for providing financial support.

Supporting Information Available: Text giving details of syntheses and characterizations of compounds **¹**-**⁵** and X-ray crystallographic files in CIF format for compounds **1**, **4a,** and **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

OM049702D

^{(12) (}a) Cotton, F. A.; Lin, C.; Murillo, C. A. *Acc. Chem. Res.* **2001**, *34*, 759. (b) Cotton, F. A.; Lin, C.; Murillo, C. A. *Proc. Nat. Acad. Sci. U.S.A.* **2002**, *99*, 4810. (c) Cotton, F. A.; Donahue, J. P.; Murillo, C. A. J. Am. Chem. Soc. **2003**, 125, 5436. (d) Angaridis, P.; Berry, J. F.; Cotton, F. A.; Murillo, C. A.; Wang, X. *J. Am. Chem. Soc.* **2003**, 125, 10327. (e) Bera, J. K.; Clerac, R.; Fanwick, P. E.; Walton, R. A. *Dalton* **2002**, 2168. (f) Kuang, S. M.; Fanwick, P. E.; Walton, R. A. *Inorg. Chem.* **2002**, *41*, 405.