Published on June 30, 2004 on http://pubs.acs.org | doi: 10.1021/om049682f

Downloaded by NAT LIB UKRAINE on July 6, 2009

Protolytic Stability of (dfepe)Pt(Ph)O₂CCF₃: Supporting Evidence for a Concerted S_E2 Protonolysis Mechanism

Eric W. Kalberer, James F. Houlis, and Dean M. Roddick*

Department of Chemistry, Box 3838, University of Wyoming, Laramie, Wyoming 82071

Received May 5, 2004

An extension of prior protonolysis studies of platinum–carbon bonds to Pt–aryl bonds is reported. The protolytic stability of (dfepe)Pt(Ph)(O₂CCF₃) (dfepe = (C₂F₅)₂PCH₂CH₂P(C₂F₅)₂) in trifluoroacetic acid is found to be much less than (dfepe)Pt(Me)(O₂CCF₃), indicating that a concerted S_E2 protonolysis mechanism is most likely operative in these electron-poor platinum systems. VT NMR experiments show that benzene coordination to the (dfepe)Pt²⁺ center in neat fluorosulfonic acid to form (dfepe)Pt(η^6 -C₆H₆)²⁺ at -80 °C is competitive with benzene dissociation in this weakly coordinating medium.

Introduction

Metal-carbon bond protonolysis processes have received increasing recent attention as a model of the microscopic reverse of heterolytic C-H bond activation.¹ However, uncertainty still remains regarding the detailed mechanism of metal–carbon bond cleavage by H⁺ and the factors that control the kinetics and thermodynamics of this process.²⁻⁴ Several years ago we examined the protolytic behavior of perfluoroalkylphosphine platinum methyl complexes, (dfepe)Pt(Me)(X) $(dfepe = (C_2F_5)_2PCH_2CH_2P(C_2F_5)_2; X = O_2CCF_3, OTf,$ OSO₂F). These compounds are remarkable for the unusually high protolytic resistance observed for Pt-Me bonds relative to donor phosphine analogues. Despite extensive kinetic studies (and the failure to observe any detectable Pt(IV) hydride intermediates), we were unable to determine whether these protonolyses proceed via a stepwise $S_E(ox)$ or a concerted S_E^2 mechanism.⁵

Prior Pt(II)–alkyl and Pt(II)–aryl protonolysis studies are similarly ambiguous and have invoked both $S_E(ox)$ and S_E2 limiting mechanisms in very closely related (L)₂Pt(R)(X) systems.²⁻⁴ Noting the contrasting selectivity of mixed Au(III)(aryl)(alkyl) and Pt(II)(aryl)(alkyl) complexes toward protonolysis $(k_{prot}(Au-Ar) \gg k_{prot})$ (Au–Me); $k_{\text{prot}}(\text{Pt}-\text{Ar}) \ll k_{\text{prot}}(\text{Pt}-\text{Me}))$, Puddephatt proposed that relative M-Me and M-Ph protonolysis rates in an isostructural series may serve to distinguish between $S_E(ox)$ and S_E2 mechanisms: for cases in which $k(Me)/k(Ph) \gg 1$, a stepwise S_E(ox) mechanism can be inferred, whereas metal complexes where k(Ph)/k(Me) \gg 1 can alternatively imply a concerted S_E2 mechanism.^{4b} The underlying factors for this kinetic discrimination are as follows: (1) S_E2 proton addition to a metal-aryl bond is promoted via a "Wheland-type" charge-delocalized intermediate,⁶ and (2) metal protonation and alkane reductive elimination steps in a stepwise S_E(ox) process are generally favored for L_nM-Me systems relative to L_n M-Ph. The preference for Au(III)-aryl bond cleavage follows from the inaccessibility of a Au(V) hydride S_E(ox) intermediate. To our knowledge, this simple mechanistic test has not been extended beyond the initial reported work, which focused on platinum and gold donor phosphine systems.

In this article we report the synthesis of (dfepe)- $Pt(Ph)O_2CCF_3$ and its protolytic stability relative to the methyl analogue (dfepe) $Pt(Me)O_2CCF_3$. The formation of a dicationic arene complex after Pt-aryl bond protonolysis under highly acidic conditions is also presented.

Results and Discussion

Synthesis and Protonolysis of (dfepe)Pt(Ph)-**O₂CCF₃ (1).** The inherent instability of (dfepe)Pt(Ph)₂ toward reductive elimination of biphenyl at ambient temperatures has been demonstrated in previous work.⁷ Accordingly, (cod)Pt(Ph)O₂CCF₃ was either isolated or

⁽¹⁾ Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996, 118, 5961.

^{(2) (}a) Romeo, R., Plutino, M. R.; Elding, L. I. *Inorg. Chem.* 1997, 36, 5909. (b) Alibrandi, G.; Minniti, D.; Romeo, R.; Uguagliati, P.; Calligaro, L.; Belluco, U.; Crociani, B. *Inorg. Chim. Acta* 1985, 100, 107. (c) Belluco, U.; Michelin, R. A.; Uguagliati, P.; Crociani, B. J. Organomet. Chem. 1983, 250, 565. (d) de Luca, N.; Wojcicki, A. J. Organomet. Chem. 1980, 193, 359.
(3) (a) Barone, V.; Bencini, A.; Totti, F.; Uytterhoeven, M. G.

^{(3) (}a) Barone, V.; Bencini, A.; Totti, F.; Uytterhoeven, M. G. *Organometallics* **1996**, *15*, 1465. (b) Komiya, S.; Kochi, J. K. *J. Am. Chem. Soc.* **1976**, *98*, 7599.

^{(4) (}a) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. Organometallics **1995**, *14*, 4966. (b) Jawad, J. K.; Puddephatt, R. J.; Stalteri, M. A. Inorg. Chem. **1982**, *21*, 332. (c) Lucey, D. W.; Helfer, D. S.; Atwood, J. D. Organometallics **2003**, *22*, 826.

⁽⁵⁾ Bennett, B. L.; Hoerter, J. M.; Houlis, J. F.; Roddick, D. M. Organometallics 2000, 19, 615.

⁽⁶⁾ A reviewer has also suggested that less orbital reorganization for $M-C(sp^2)$ versus $M-C(sp^3)$ protonolysis may favor the S_E2 pathway for M-aryl systems.

⁽⁷⁾ Merwin, R. K.; Schnabel, R. C.; Koola, J. D.; Roddick, D. M. Organometallics 1992, 11, 2972.

prepared in situ by the addition of 1 equiv of CF_3CO_2H to $(cod)Pt(Ph)_2$ in dichloromethane followed by the addition of dfepe to cleanly form (dfepe)Pt(Ph)O_2CCF_3 (1) (Scheme 1). Complex 1 exhibits two ¹⁹⁵Pt-coupled phosphorus resonances at δ 68.2 ($^1J_{PtP} = 1270$ Hz) and 49.0 ($^1J_{PtP} = 4735$ Hz) assigned as the phosphorus groups trans to the phenyl and O₂CCF₃ groups, respectively.

The protolytic stability of **1** was monitored by ¹H and ³¹P NMR in neat trifluoroacetic acid. After several hours at 20 °C, resonances for **1** were completely replaced by a single resonance at 59.4 ppm due to (dfepe)Pt(O₂-CCF₃)₂.⁵ Thus, the acid stability of **1** is considerably less than that of (dfepe)Pt(Me)(O₂CCF₃), which loses methane only at very high temperatures ($t_{1/2}$ (150 °C) \approx 9 h). It is significant that (dfepe)Pt(benzyl)(O₂CCF₃) has a high protolytic stability similar to (dfepe)Pt(Me)(O₂-CCF₃), demonstrating that the aromatic ring must be alpha to the metal center in order to facilitate protonolysis.⁸

Recent work has shown that Ar–H and Me–H reductive elimination rates are comparable in Pt(IV) systems,⁹ and it is very unlikely that the greatly increased resistance to protonolysis of (dfepe)Pt(Me)(X) relative to (dfepe)Pt(Ph)(X) could be attributed to an anomalously large difference in metal basicities. Therefore, we conclude that a concerted S_E2 protonolysis mechanism is operative specifically for **1** (Scheme 2) and for (dfepe)-Pt(R)X compounds in general.

[(dfepe)Pt(η^6 -C₆H₆)]²⁺ Formation. The stability of 1 in fluorosulfonic acid was also examined. Dissolving 1 in FSO₃H at 20 °C immediately produced (dfepe)Pt-(OSO₂F)₂ as the only product. At -80 °C, however, dissolution of 1 generated a 1:2 mixture of (dfepe)Pt-(OSO₂F)₂ as well as a new symmetrically substituted product at 76.1 ppm. The large ¹J_{PtP} observed for (dfepe)Pt(OSO₂F)₂ under these conditions, 4140 Hz, is diagnostic for weak coordination by the fluorosulfonate

anion in a square-planar coordination geometry. Interestingly, the observed ${}^{1}J_{PtP}$ for the new product at 76.1 ppm is significantly higher (4455 Hz). ¹H NMR revealed the presence of free benzene at δ 6.38 as well as a new singlet at δ 7.04 in a 1:2 ratio, corresponding to the product ratio observed by ³¹P NMR that we assign to the arene complex dication, $[(dfepe)Pt(\eta^6-C_6H_6)]^{2+}$ (2). A similar mixture of $(dfepe)Pt(OSO_2F)_2$ and **2** was obtained by the addition of 1 equiv of benzene to (dfepe)- $Pt(OSO_2F)_2$ in FSO₃H at -20 °C, and addition of excess (>3 equiv) benzene gave >90% conversion to 2. Addition of excess benzene to triflic acid solutions of (dfepe)Pt-(OTf)₂ similarly afforded the arene dication. However, attempts to isolate 2 from triflic acid solution by precipitation with ether yielded only (dfepe)Pt(OTf)₂. Addition of excess (10 equiv) C₆D₆ to a solution of (dfepe)Pt(η^6 -C₆H₆)²⁺ in HOTf at 20 °C resulted in complete C_6D_6/C_6H_6 ligand exchange within 5 min.

Arene coordination is dependent on both the donating ability of the arene substrate and the labilizing acid media: under identical conditions in triflic acid, no $[(dfepe)Pt(\eta^6-C_6H_5F)]^{2+}$ was formed in the presence of 20 equiv of fluorobenzene or 1,2-difluorobenzene. In trifluoroacetic acid, addition of greater than 10 equiv of benzene to a solution of $(dfepe)Pt(O_2CCF_3)_2$ did not produce detectable amounts of **2**.

We could not readily differentiate between inter- and intramolecular arene complex formation after the initial proton transfer step because the same mixture of $(dfepe)Pt(OSO_2F)_2$ and **2** was produced by either protonation of **1** or addition of free benzene to (dfepe)Pt-(OSO₂F)₂. To address this issue, we examined the protonolysis of (dfepe)Pt(C_6H_5)(O_2CCF_3) in the presence of 3 equiv of added C_6D_6 in FSO₃H at -70 °C. Upon dissolution, the initial ¹H NMR spectrum showed a 2.8:1 ratio of $[(dfepe)Pt(\eta^6-C_6H_6)]^{2+}$ to free C_6H_6 , not the 1:3 ratio expected from statistical scrambling of released C₆H₆ with the added C₆D₆.¹⁰ The quantity of unbound C₆H₆ did not change significantly with time, suggesting that it was formed during the initial mixing period and did not arise from ligand exchange at this temperature. Thus, we may conclude that benzene protonolysis product is preferentially retained in the inner coordination sphere and incorporated into the observed η^6 -arene product. Formation of a $(dfepe)Pt(\eta^2-C_6H_6)(OSO_2F)^+$ intermediate prior to the ultimate formation of 2 is reasonable, since η^2 -arene coordination has been observed in (diimine)Pt(II) chemistry.¹¹ However, addition

⁽⁸⁾ White, S.; Kalberer, E. W.; Bennett, B. L.; Roddick, D. M. Organometallics 2001, 20, 5731.

⁽⁹⁾ Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2000**, *122*, 10846.

⁽¹⁰⁾ No H/D exchange of free $C_6 D_6$ with $FSO_3 H$ was observed under these conditions.

^{(11) (}a) Reinartz, S.; White, P. S.; Brookhart, M.; Templeton, J. L. *J. Am. Chem. Soc.* **2001**, *123*, 12724. (b) Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw, J. E. *J. Am. Chem. Soc.* **2000**, *122*, 10846.

of excess benzene to (dfepe)Pt(Me)(OSO₂F) in FSO₃H does not result in any spectroscopic changes due to the formation of (dfepe)Pt(Me)(η^2 -benzene)⁺.

At ambient temperatures the resonances due to arene complex 2 in FSO₃H diminish over the course of several hours concomitant with the growth of resonances due to (dfepe)Pt(OSO₂F)₂ and a \sim 2:1 mixture of benzenesulfonyl fluoride and diphenyl sulfone.¹² Subsequent addition of additional excess benzene to solutions of 1 in FSO₃H cleanly regenerated 2. These observations are consistent with the reversible coordination of benzene to (dfepe)Pt²⁺ coupled with the electrophilic aromatic substitution reaction of free benzene with FSO₃H (Scheme 3).¹³

Summary

In all electron-rich mixed aryl/alkyl platinum(II) systems examined to date, preferential protonolysis of Pt(II)–alkyl bonds is observed, which is consistent with an $S_{E}(ox)$ mechanism involving the intermediacy of Pt(IV) hydrides. These systems all possess donor phosphine or diimmine supporting ligands. The (dfepe)-Pt(II) system has a substantially lower electron density and is the only class of Pt(II) compounds that we are aware of which displays a distinct kinetic protonolysis preference for Pt(II)-aryl bonds. We have previously noted the inaccessibility of the formal Pt(IV) oxidation state in (dfepe)Pt systems.⁵ We believe that this pronounced lowering of electron density is accompanied by a discrete change to a concerted S_E2 protonolysis mechanism, a mechanism that is generally operative in maingroup organometallic systems.¹⁴ We expect that competitive $S_E 2$ and $S_E(ox) M-C$ cleavage mechanisms will be encountered in platinum(II) systems with ancillary ligands of intermediate donating ability.

(dfepe)Pt²⁺ is shown to bind readily to benzene under conditions where the counterions are weakly binding. Although the single ¹H and ¹³C NMR aromatic resonances observed for $(dfepe)Pt(C_6H_6)^{2+}$ at low temperature could be accommodated by a highly fluxional $(dfepe)Pt(\eta^2-C_6H_6)(OSO_2F)^+$ coordination geometry, the inability of (dfepe)Pt(Me)⁺ to form a (dfepe)Pt(Me)(η^2 arene)⁺ complex leads us to favor a (dfepe)Pt(η^6 -C₆H₆)²⁺ bonding description. The lowered coordination ability of arene to the (dfepe)Pt(II) center extends the lability

trend established for other d⁸ (dfepe)M systems: while (dfepe) $Ru(\eta^6-C_6H_6)$ undergoes arene exchange very slowly at 180 °C,¹⁵ and (dfepe)Ir(η^6 -C₆H₆)⁺ exchanges at 80 °C,¹⁶ we observe rapid arene exchange for (dfepe)Pt(η^6 - $C_6H_6)^{2+}$ at 20 °C and favorable arene complex formation only in the presence of very weakly coordinating anions. This lability trend correlates with the relative backbonding capabilities of these isoelectronic moieties.

Experimental Section

General Procedures. All manipulations were conducted under N₂ using high-vacuum, Schlenk, and glovebox techniques. All reactions were carried out under an ambient pressure of approximately 590 Torr (elevation ~2195 m). All organic solvents were dried over sodium benzophenone ketyl and stored under vacuum. Deuterated solvents were dried over activated 3 or 4 Å molecular sieves. Fluorosulfonic acid was distilled under nitrogen and stored at -30 °C in an inert atmosphere glovebox prior to use. Elemental analyses were performed by Desert Analytics. NMR spectra were recorded with a Bruker Avance DRX-400 instrument. ³¹P NMR spectra were referenced to an 85% H₃PO₄ external standard. (dfepe)-Pt(OTf)₂ and (dfepe)Pt(OSO₂F)₂ were prepared as described previously.⁵ (cod)Pt(Ph)₂ was prepared according to a modification of Manzer's procedure:¹⁷ after arylation, quenching of the excess Grignard was carried out with NH₄Cl in methanol; removal of volatiles and extraction with ether afforded high (>80%) yields of pure diphenyl after crystallization.

(cod)Pt(Ph)O₂CCF₃. (cod)Pt(Ph)₂ (105 mg, 23 mmol) was dissolved in 10 mL of CH₂Cl₂, and 1 equiv of CF₃CO₂H (17µL) was added via syringe. The reaction mixture was stirred for 5 h, and all volatiles were removed. Ether was added, and the solution was filtered, concentrated, and cold filtered at -78 °C, yielding 80 mg of off-white product (71% yield). Anal. Calcd for C₁₈H₉O₂F₂₃P₂Pt: C, 38.96; H, 3.40. Found: C, 38.61; H, 3.58. ¹H NMR (400 MHz, C₆D₆, 27 °C): δ 1.20 (m, 4H); δ 1.55 (m, 4H), 3.94 (s, 2H; ${}^{2}J_{PtH} = 40$ Hz) 5.31 (s, 2H), 6.95 (t, ${}^{3}J_{HH}$ = 7 Hz, 1H; p-C₆H₅), 7.07 (t, ${}^{3}J_{HH}$ = 7 Hz, 2H; m-C₆H₅), 7.32 (d, ${}^{3}J_{HH} = 7$ Hz, ${}^{3}J_{PtH} = 36$ Hz, 2H; o-C₆H₅).

(dfepe)Pt(Ph)O₂CCF₃ (1). A solution of 0.465 g (1.02 mmol) of $(cod)Pt(Ph)_2$ in 15 mL of CH_2Cl_2 was cooled to -78°C, 80 µL CF₃CO₂H (1.03 equiv) was added via syringe, and the solution was allowed to warm to ambient temperature over the course of 15 min with stirring. After 4 h, 0.35 mL of dfepe (1.24 mmol) was added. Volatiles were removed after 16 h at ambient temperature, and the residue was redissolved in 10 mL of CH2Cl2 and filtered to remove a small amount of insoluble white solid. Cooling to -78 °C and filtering afforded 0.74 g of crude product, which NMR indicated was contaminated with a small amount of (dfepe)₂Pt. Washing this crude product thoroughly with petroleum ether to remove residual (dfepe)₂Pt gave 0.640 g (66.2%) of (dfepe)Pt(Ph)O₂CCF₃ as an analytically pure white solid. Anal. Calcd for C₁₈H₉F₂₃P₂O₂-Pt: C, 22.85; H, 0.95. Found: C, 22.84; H, 0.91. ¹H NMR (400 MHz, acetone-d₆, 27 °C): δ 7.33 (m, 2H; Pt(C₆H₅)), 7.16 (m, 2H; Pt(C₆H₅)), 7.06 (m, 1H, Pt(C₆H₅)), 3.38 (m, 2H; PCH₂), 3.12 (m, 2H; PCH₂). ³¹P NMR (161.7 MHz, C₆D₆, 27 °C): δ 68.2 (m, ${}^{1}J_{\text{PtP}} = 1270$ Hz; trans to Ph), 49.0 (m, ${}^{1}J_{\text{PtP}} = 4735$ Hz; trans to O₂CCF₃).

[(dfepe)Pt(η^6 -C₆H₆)]²⁺ (2). To a solution of 25 mg of (dfepe)-Pt(OSO₂F)₂ or (dfepe)Pt(OTf)₂ in 0.5 mL of FSO₃H or HOTf, respectively, was added 5 μ L (~3 equiv) of benzene. After 30 min, ¹H and ³¹P NMR indicated the clean generation of 2 as the major solution species, with <10% unreacted starting material. Spectroscopic data in FSO₃H: ¹H NMR (400 MHz,

⁽¹²⁾ NMR spectroscopic data for PhSO₂F in FSO₃H: 1 H: δ 7.15 (d, J = 8 Hz, 2H; oC_{6} H₅), 7.01 (t, J = 8 Hz, 1H; pC_{6} H₅), 6.82 (t, J = 8 Hz, 2H; mC_{6} H₅). ¹⁹F: δ 64.52. NMR spectroscopic data for Ph₂SO₂ in FSO₃H: ¹H: δ 7.12 (d, J = 8 Hz, 2H; oC_{6} H₅), 6.90 (t, J = 8 Hz, 1H; $p-C_6H_5$), 6.79 (t, J = 8 Hz, 2H; $m-C_6H_5$).

⁽¹³⁾ Tanaka, M.; Souma, Y. J. Org. Chem. **1992**, 57, 3738. (14) Protonolysis via a S_E^2 mechanism is proposed for Pt(IV)systems: Kondo, Y.; Ishikawa, M.; Ishihara, K. Inorg. Chim. Acta 1996, 241, 81.

⁽¹⁵⁾ Koola, J. D.; Roddick, D. M. J. Am. Chem. Soc. 1991, 113, 1450.

 ^{(16) (}a) Hoerter, J. M.; Roddick, D. M. Unpublished results. (b)
 Schnabel, R. C.; Roddick, D. M. Organometallics 1996, 15, 3550.
 (17) Clark, H. C.; Manzer, L. E. J. Organomet. Chem. 1973, 59, 411.

Protolytic Stability of (dfepe)Pt(Ph)O₂CCF₃

 $\begin{array}{l} -20\ ^\circ C):\ \delta\ 7.22\ (s,\ 6H;\ Pt(C_6H_6)),\ 2.45\ (m,\ 4H;\ PCH_2).\ ^{31}P\ NMR\\ (161.7\ MHz,\ -20\ ^\circ C):\ \delta\ 70.5\ (ps.\ p,\ ^2J_{PF}=87\ Hz,\ ^1J_{PtP}=4470\\ Hz).\ Spectroscopic\ data\ in\ HOTf:\ ^1H\ NMR\ (400\ MHz,\ 27\ ^\circ C):\\ \delta\ 6.84\ (s,\ 6H;\ Pt(C_6H_6)),\ 2.11\ (m,\ 4H;\ PCH_2).\ ^{31}P\ NMR\ (161.7\ MHz,\ 27\ ^\circ C):\ \delta\ 77.2\ (ps.\ p,\ ^2J_{PF}=89\ Hz,\ ^1J_{PtP}=4480\ Hz).\\ ^{13}C\{^1H\}\ NMR\ (100.6\ MHz,\ 27\ ^\circ C):\ \delta\ 117.4\ (s,\ ^1J_{PtC}=91\ Hz).\\ \end{array}$

Acknowledgment. This work has been supported by the National Science Foundation (Grant CHE-0093049) and the Wyoming DOE-EPSCoR Program.

OM049682F