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Summary: A mixture of Pd2(dba)3/[η-C5H4CHdN(C6H5)]-
Fe[η-C5H4P(t-Bu)2] (1) efficiently catalyzes the Suzuki
cross-couplings of a range of arylboronic acids and aryl
chlorides, affording the desired biaryl products in high
isolated yields. Two catalytically active Pd(0) intermedi-
ates, viz. 16-electron [η-C5H4CHdN(C6H5)]Fe[η-C5H4P-
(t-Bu)2]Pd(dba) (2) and 14-electron linear Pd{[η-C5H4-
CHdN(C6H5)]Fe[η-C5H4P(t-Bu)2]}2 (3) together with an
oxidative addition product are isolated and crystallo-
graphically established.

Suzuki coupling of aryl halides with arylboronic acids
presents an attractive scientific and technological incen-
tive in organometallic catalysis today.1-3 The challenges
are illustrated by the possible use of coordinatively and
electronically unsaturated Pd(0) in tackling the ener-
getically demanding C-Cl activation.1,2 Some of the best
supporting ligands are bulky phosphines,4 N-hetero-
cyclic carbenes (NHC),5 etc. Our continual interest in
1,1′-bis(diphenylphosphino)ferrocene6,7 chemistry and
phosphineless catalysis8 provides an impetus to develop
a ligand system that does not overexpose or overprotect
the metal, thus achieving a delicate balance between

stability and activity. This can be achieved through the
use of a ferrocenyl moiety as a spatial support in
conjunction with a potentially bidentate hemilabile9

ligand that is sensitive to the metal needs. In this
communication, we report such a new heterodifunc-
tional P,N ligand, [η-C5H4CHdN(C6H5)]Fe[η-C5H4P(t-
Bu)2] (1), which promotes effective and efficient Suzuki
coupling and C-Cl activation and supports the forma-
tion of isolable low-coordinated Pd(0) species.

A Pd2(dba)3/1 mixture (dba ) dibenzylideneacetone)
catalyzes the Suzuki cross-coupling reactions of a
variety of arylboronic acids and aryl chlorides, affording
the desired biaryls in remarkably high isolated yields.
(Table 1) For example, 4-chloroacetophenone couples
with phenylboronic acid in the presence of 1 mol % of
Pd to give a quantitative yield of 4-acetylbiphenyl at
70 °C in THF (entry 1), whereas the reaction of 4-chlo-
robenzonitrile with phenylboronic acid occurs at a low
catalyst load (0.01 mol % Pd) to give a good TON of
10 000 (entry 2), which is comparable to the values for
many other efficient systems, although exceedingly high
TONs are known.4a,e

To gain a better insight into the structure-activity
relationship, we examined the spectroscopic and crys-
tallographic characteristics of the active key intermedi-
ate(s). 31P and 1H NMR analyses of the catalyst mixture
of 1 and Pd2(dba)3 (1:1 ratio of 1 to Pd) in C6D6 revealed
two main products, [η-C5H4CHdN(C6H5)]Fe[η-C5H4P-
(t-Bu)2]Pd(dba) (2) and Pd{[η-C5H4CHdN(C6H5)]Fe[η-
C5H4P(t-Bu)2]}2 (3), in a ratio of ∼4:1 (Scheme 1). There
are no hydride signals or unusual resonances that could
indicate agostic Pd‚‚‚H interactions with the ferrocenyl
or butyl groups. When the ligand concentration is
doubled to 2-fold, 3 becomes the sole species. A C6D6
solution of pure 2 converts to 3 upon addition of 1 molar
equiv of 1. Complex 3 can be synthesized (94%) from 1
and (C5H5)Pd(C3H5) (1:1).10a,b Both 2 (Figure 1) and 3
(Figure 2) were isolated and structurally character-
ized.11 Complex 2 is a 16-electron Pd(0) species with a
heterodifunctional chelate supplemented by an olefin
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(dba) coordination, whereas 3 is a 14-electron linear Pd-
(0) compound supported by a unidentate metalloligand
with dangling imine. These compounds indicate that 1
is potentially hemilabile and difunctional and uses its

bidentate potential to adapt electronically and geo-
metrically to stabilize different forms of unsaturated
Pd(0). In its deficiency, the dba olefin can lend additional
support.

Table 1. Suzuki Cross-Coupling of Aryl Chlorides with Boronic Acids Catalyzed by Pd(0) with Ligand 1a

a Pd:1 ) 1:1; ArCl:Ar′B(OH)2:KF:Cs2CO3 ) 1:1.2:3:3. b The reaction duration was generally not optimized. c Yields of isolated products.
d Pd:1 ) 1:2.

Scheme 1
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The Pd-N bond (2.218(3) Å) of 2 is significantly
longer, and presumably weaker, than its counter-
part in PdCl2Fe[η-C5H4NC(H)Ph-N]2 (2.056(10) and
2.023(11) Å),8a Pd2Cl4{Fe[η-C5H4(CH2)2N(CH3)2]}2
(2.128(4) and 2.128(5) Å),8b and other weak Pd-N
bonds.12a,b Its fragility highlights the value of imine in
protecting and, if needed, exposing the catalytic center.

The Pd-C(dba) bond (mean 2.129 Å) is between that
in a (P,O)Pd(dba) complex (2.102 Å)4g and (dppf)Pt(dba)
(2.134 Å).7a Complex 3, being a rare example of two-
coordinated linear Pd(0) phosphines,10 to our knowledge,
also offers the first crystallographic proof of a difunc-
tional ligand that switches to a monodentate mode to
support a low-coordinate and highly unsaturated Pd-
(0). Although the complex could in principle take up the
usual four-coordinate form through P,N chelation for
both ligands, it opts to adopt the sterically less but
electronically more demanding low-coordinate form.
Negligible contacts between the metal and tBu protons
(Pd‚‚‚H(23B) ) 2.931 Å, which is significantly longer
than those in Pd[(o-Tol)3P]2 and Pd[PPh(t-Bu)2]2 (2.508,
and 2.73 Å, respectively))10 indicate an authentic two-
coordinate Pd(0) with the ferrocenyl moieties providing
“spatial protection” in the vicinity. Its isolation suggests
that low-coordinate Pd(0) may also be stabilized by
ligands other than the documented monophosphines
PR3. The facile torsional twist of the C5 ring has moved
the dangling imine N atom to an anti position, thus
minimizing intramolecular Pd‚‚‚N contacts. There is no
evidence of a Pd-P,N-Pd bridge or intermolecular
Pd‚‚‚N contacts in the solid state.

To illustrate the activity of the isolated 2 and 3, they
catalyze (0.25 mol % Pd) the formation of biphenyl-4-
carbonitrile in near-quantitative yields at 90 °C (eq 1).

Complexes 3 and 2 can be conveniently prepared in situ
by stoichiometric mixing of 1 with Pd2(dba)3. The
catalytic efficiency is comparable to that of other highly
active Pd systems, e.g. P(t-Bu)3,4c ferrocene-derived
triarylphosphine,13a or (pentaphenylferrocenyl)di-tert-
butylphosphine.13b When the catalyst load is lowered to
0.01 mol % (Pd), the activity of 3 is superior to that of
2 (100 and 52%, respectively; see Table 1, entry 2).

If 2 and 3 are active intermediates, they should
undergo oxidative addition with organohalides readily.14
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Mg m-3, F(000) ) 3536, λ(Mo KR) ) 0.710 73 Å, µ ) 1.030 mm-1, T )
223(2) K, crystal dimensions 0.36 × 0.06 × 0.06 mm. Of 27 623
reflections measured, 9068 unique reflections were used in refinement.
Final R ) 0.0471 (Rw ) 0.1051). Crystal data for 3: Mr ) 973.07,
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(12) Å3, Z ) 1, F ) 1.411 Mg m-3, F(000) ) 506, λ(Mo KR) ) 0.710 73
Å, µ ) 1.030 mm-1, T ) 295(2) K, crystal dimensions 0.24 × 0.04 ×
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Figure 1. ORTEP representation of the X-ray structures
of 2. Hydrogen atoms are omitted for clarity. Thermal
ellipsoids are drawn at the 40% probability level. Selected
bond lengths (Å) and angles (deg): Pd(1)-C(1) ) 2.108(4),
Pd(1)-C(2) ) 2.150(3), Pd(1)-N(1) ) 2.218(3), Pd(1)-P(1)
) 2.3385(10), N(1)-C(24) ) 1.281(4); N(1)-Pd(1)-P(1) )
110.94(8), C(1)-Pd(1)-C(2) ) 38.97(13).

Figure 2. ORTEP representation of the X-ray structures
of 3. Hydrogen atoms are omitted for clarity. Thermal
ellipsoids are drawn at the 40% probability level. Selected
bond lengths (Å) and angles (deg): Pd(1)‚‚‚H(23B) ) 2.931,
Pd(1)-P(1) ) 2.2828(16), N(1)-C(1) ) 1.258(7); P(1)-
Pd(1)-P(1A) ) 180.0.

Scheme 2
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Indeed, a mixture of 1 and Pd2(dba)3 (giving mainly 2
in situ) reacts with C6F5I (1:Pd:ArX ) 1:1:3.6) at room
temperature for 1 h to give [η-C5H4CHdN(C6H5)]Fe[η-
C5H4P(t-Bu)2]Pd(I)(C6F5) (4; 41%) as the only identifi-
able product. The latter can also be prepared (31%) from
3 and C6F5I (Scheme 2).

Single-crystal crystallographic analysis of 4 revealed
the oxidative addition Pd(II) product, in which 1 is cis
chelating (Figure 3). The imine faces the more trans-
labilizing aryl. The large P(1)-Pd(1)-N(1) chelate angle
(98.41(13)°) squeezes the I(1)-Pd(1)-C(18) angle to
82.81(16)°, perhaps promoting iodo-aryl contact and
hence the reductive elimination step. Preliminary ex-
periments on 4 suggested that it reacts with phenyl-

boronic acid in the presence of KF/Cs2CO3 in dioxane
to give 2,3,4,5,6-pentafluorobiphenyl in ca. 75% yield,
which is consistent with 4 being an intermediate in the
Suzuki coupling.

Our ferrocene-functionalized difunctional P,N ligand
is highly efficient and effective in promoting Suzuki
couplings. Through its stereogeometrical mobility and
coordination flexibility, it stabilizes yet activates low-
coordinate Pd(0) species, to the extent that they can be
isolated and used under moderate thermal conditions
in catalytic reactions. These are somewhat unexpected
but valuable features that could immensely benefit
other Pd(II/0) catalysts and catalysis. This work further
suggested that low-coordinate and low-valent palladium
could benefit from the structural and dynamic (hemi)-
lability of the difunctional ligands in promoting chal-
lenging cross-couplings. This would complement the
current use of monodentate phosphines in highly un-
saturated metal catalysts.
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Figure 3. ORTEP representation of the X-ray structures
of 4. Hydrogen atoms are omitted for clarity. Thermal
ellipsoids are drawn at the 40% probability level. Selected
bond lengths (Å) and angles (deg): Pd(1)-C(18) )
2.005(5), Pd(1)-N(1) ) 2.146(5), Pd(1)-P(1) ) 2.4003(16),
Pd(1)-I(1) ) 2.6632(7), N(1)-C(1) ) 1.286(6); C(18)-Pd-
(1)-I(1) ) 82.81(16), N(1)-Pd(1)-P(1) ) 98.41(13), C(18)-
Pd(1)-P(1) ) 94.73(16), N(1)-Pd(1)-I(1) ) 84.92(13),
P(1)-Pd(1)-I(1) ) 171.02(4), C(18)-Pd(1)-N(1) )
166.0(2).
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