Facile Insertion of Terminal Acetylenes into the RuII-**NR2 Bond of a 14-Valence-Electron Complex**

Amy N. Walstrom, Lori A. Watson, Maren Pink, and Kenneth G. Caulton*

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, Indiana 47405

Received July 23, 2004

Summary: The reaction of alkynes RC=CH (R = H, Ph) with (PNP)RuCl, where PNP is (^tBu₂PCH₂SiMe₂)₂N, occurs rapidly below 23 °*C to give first an η2-alkyne adduct and then a final product with a vinylidene group, C*=*CHR*, inserted into the N–*Ru bond. Characterization included X-ray diffraction* $(R = Ph)$ *and DFT calculations to probe mechanistic aspects of the reaction.*

The molecule [('Bu₂PCH₂SiMe₂)₂N]RuCl, (PNP)RuCl, is of interest because of its low coordination number (4), its planar structure, and its triplet ground state for the d^6 configuration of $Ru(II)$.¹ Its high degree of unsaturation, a 14-valence-electron configuration, could give it special chemical reactivity, since it would appear to be suited for simple addition of 4-electron-donor ligands. Among those, we have chosen to explore terminal alkynes as a compact way to deliver 4 electrons (**A**). This

offers as additional possible products the vinylidene **B** and, given the reducing power of the metal due to the *π*-donor amide ligand in PNP, the oxidative addition product **C**. The pioneering studies of the Fryzuk group2 and others³ have shown the potential for H migration from a metal to the lone pair present on the amide nitrogen, which thus makes **D** another product for consideration. Overlaid on all of the above is the question⁴ of possible "spin forbiddenness" of the reaction: will the change from triplet reactant to singlet product detectably retard the rate of reaction? Here we show (1) facile (time of mixing at -60 °C) binding of RCCH by (PNP)RuCl, (2) facile rearrangement to a diamagnetic product of H migration to form a vinylidene group, (3) near-thermoneutral insertion of the vinylidene into the Ru-amide bond vs retention of a terminal vinylidene on Ru, and (4) DFT calculations which reveal that proton transfer from acetylene to amide N provides a viable intermediate for vinylidene formation. The formation of an $N-C$ (vinyl) bond here is contrasted with earlier stoichiometric and catalytic examples, the latter involving electron-poor metal centers.

When yellow (PNP)RuCl in d_8 -toluene is combined with excess HCCH at -196 °C and ¹H and ³¹P{¹H} NMR spectra are recorded in 20 °C increments beginning at -60 °C, the spectra can be summarized by eq 1 (showing δ ⁽³¹P)). Conversion to **1** is complete at -60 °C and is

(PNP)RuCl + HC=CH
$$
\frac{\text{fast}}{K}
$$
 1 (26.0 ppm) $\frac{\text{slower}}{K}$
2 (50.0 ppm) (1)
visible by a color change to deep purple-red. The signals
of **2** grow only above -40 °C, but at -20 °C, some

of **2** grow only above -40 °C, but at -20 °C, some reversion from **1** to (PNP)RuCl is evident, due to the changing equilibrium constant *^K*. At +20 °C, all (PNP)- RuCl has been consumed and **2** is the dominant product, forming a green solution. Both species **1** and **2** have only mirror symmetry: two equivalent P atoms, two types of ^t Bu groups, and two types of SiMe groups. Species **2** has inequivalent acetylene-derived hydrogens (5.1 and 4.7 ppm). Species **1** has a two-proton 1H NMR signal at -40 °C, but this broadens in apparent decoalescence at -60 °C. Species **2** shows ¹³C{¹H} NMR signals at 168.3 (C_{α}) and 99.4 (C_{β}) ppm for the acetylene-derived carbons, neither of which is sufficiently positive to establish an $Ru=C=CH₂$ structure.^{5,6}

Equimolar (PNP)RuCl and PhC=CH react⁷ in benzene at 22 °C with an immediate color change to red and complete consumption of (PNP)RuCl to form **2Ph**. A strong ${}^{31}P{^1H}$ NMR singlet at 50.8 ppm (cf. eq 1) is accompanied by a weaker peak (4:1 intensity ratio) at 46.4 ppm. The 1H NMR of the more populated species

(5) Bianchini, C.; Innocenti, P.; Peruzzini, M.; Romerosa, A.; Zanobini, F. *Organometallics* **1996**, *15*, 272.

(6) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. *J. Am. Chem. Soc.* **1996**, *118*, 4585.

^{*} To whom correspondence should be addressed. E-mail: caulton@indiana.edu.

⁽¹⁾ Watson, L. A.; Ozerov, O. V.; Pink, M.; Caulton, K. G. *J. Am. Chem. Soc.* **2003**, *125*, 8426.

^{(2) (}a) Fryzuk, M. D.; Montgomery, C. D.; Rettig, S. J. *Organome-tallics* **1991**, *10*, 467. (b) Fryzuk, M. D.; Huang, L.; McManus, N. T.; Paglia, P.; Rettig, S. J.; White, G. S. *Organometallics* **1992**, *11*, 2979. (c) Fryzuk, M. D.; Gao, X.; Joshi, K.; MacNeil, P. A.; Massey, R. L. *J. Am. Chem. Soc.* **1993**, *115*, 10581. (d) Fryzuk, M. D.; Gao, X.; Rettig, S. J. *J. Am. Chem. Soc.* **1995**, *117*, 3106. (e) Fryzuk, M. D.; MacNeil, P. A. *Organometallics* **1983**, *2*, 682. (f) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. *Organometallics* **1985**, *4*, 1145.

^{(3) (}a) Watson, L. A.; Coalter, J. N.; Ozerov, O. V.; Pink, M.; Huffman, J. C.; Caulton, K. G. *New J. Chem.* **2003**, *27*, 263. (b) Watson, L. A.; Caulton, K. G. *Mol. Phys.* **2002**, *100*, 385. (c) Ozerov, O. V.; Huffman, J. C.; Watson, L. A.; Caulton, K. G. *Organometallics* **2003**, *22*, 2539.

^{(4) (}a) Harvey, J. N.; Poli, R. *Dalton* **2003**, 4100. (b) Harvey, J. N.; Poli, R.; Smith, K. M. *Coord. Chem. Rev.* **²⁰⁰³**, *²³⁸*-*239*, 347. (c) Jensen, V. R.; Poli, R. *J. Phys. Chem. A* **2003**, *107*, 1424.

Figure 1. ORTEP view (50% probability ellipsoids) of the non-hydrogen atoms of [('Bu₂PCH₂SiMe₂)₂NCCHPh]RuCl, showing selected atom labeling. Unlabeled atoms are carbon. Notable structural parameters (distances in Å and angles in deg): Ru1-C23, 1.903(8); Ru1-N1, 2.270(6); Ru1-Cl1, 2.379(2); C23-C24, 1.347(10); N1-Ru1-Cl1, 168.88(18); C23-C24-C25, 126.7(7); N1-C23-Ru1, 83.9(4).

has, like 2 above, two ^tBu and two SiMe signals. The ¹³C{¹H} NMR spectrum of 2^{Ph} shows signals at 170.4 (C_{α}) and 113.6 (C_{β}) ppm for the acetylene-derived carbons. A crystal of **2Ph**, grown from benzene, was shown by X-ray diffraction 8 to have the structure in Figure 1. The structure has an aminovinyl ligand *η*² coordinated to Ru via N and one carbon. This is a product of C-N bond formation, and the C-^C *^π* bond in the vinyl group does not donate to Ru, leaving the metal still unsaturated (16 electrons). The hydrogen migration needed to convert an alkyne to a vinylidene has been shown, both experimentally⁹ and computationally, 10 to often be a high activation energy process, and the rate observed here at -20 °C is unusually fast. The ^tBu groups anti to C23 do not have agostic interactions with Ru, nor does the ortho C26-H.¹¹ The three nonmetal atom angles at N1 total 358.9°; therefore, this

Figure 2. DFT(B3PW91) optimized geometries and energies $(E + \text{ZPE}, \text{ kcal/mol})$ of isomers of $(H_2PCH_2SiH_2)_2$ - $N\text{RuClC}_2\text{H}_2$.

tertiary amine nitrogen is essentially planar, with its lone pair very poorly oriented to bind to Ru, but the Ru-N distance, 2.270(6) Å, is bonding.

The results of DFT(B3PW91) calculations⁸ of the model $[(H_2PCH_2SiH_2)_2N]RuClC_2H_2$ shown in Figure 2 reveal that the vinylidene isomer **B** is more stable than *both* the η^2 -acetylene complex **A** (by 21 kcal/mol) and the C-H oxidative addition product **^C** (by 40.1 kcal/ mol). The (observed) insertion product is calculated to be *only* 1.6 kcal/mol more stable than the vinylidene and has an Ru-N distance of 2.26 Å. The structure of the *η*2-acetylene product **A** has HCCH lying in the mirror plane, not perpendicular to it; this product conformation also minimizes steric repulsion between alkyne and the t Bu groups *during* adduct formation. We propose this as the identity of **1**. The proton-transfer intermediate **D** is indeed a minimum, and the structure shows signs of hydrogen bonding from NH to the alkyne π density,¹² which could be a mechanistic step in the facile conversion (see above) to inserted vinylidene; it would give the observed stereoisomer of phenyl anti to N in **2Ph**. In contrast, the complex $Ru(NH_2)H(Me_2PC_2H_4PMe_2)_2$ reacts¹³ with PhC=CH by proton transfer to an evidently very Brønsted basic amide nitrogen, to form Ru(CCPh)H- $(Me_2PC_2H_4PMe_2)_2$ and release NH₃.

Vinylidene insertion into the M-amide (i.e. pyrrole) bond of Fe^{II}(CCHR)(porphyrin)¹⁴ occurs *only* after oneelectron oxidation and coordination of a nucleophile to MIII in the insertion product obtained. Moreover, since the nitrogen lone pair in the product is involved with the porphyrin π -system, there is no N \rightarrow M bond. In summary, these precedents illustrate C-N bond formation when the metal is electrophilic. The *analogous* vinylidene insertion into a metal-acetylide bond is thekey C-C bond-forming event in dimerization of

⁽⁷⁾ **Reaction of (PNPt Bu)RuCl with phenylacetylene**: to 10.7 mg (0.171 mmol) of (PNP^tBu)RuCl in C₆D₆ was added 1.88 μL of PhCCH (C_8H_6 , 1 equiv). Upon addition of phenylacetylene at 22 °C there was a rapid, distinct color change of the solution from yellow to deep reddish brown. ¹H NMR (400 MHz, C₆D₆): *δ* 7.4–7.3 (m, *PhCCH*), 7.2–7.0 (m, *PhCCH*), 6.9 (m, *PhHCCRuN)*, 6.27 (s, 1H, Ph*HCCRuN)*, 7.2–7.0 (m, *PhCCH*), 6.9 (m, *PhHCCRuN*), 6.27 (s, 1H, Ph*HCCRuN*),
2.71 (s, 1H, free PhCC*H*), 1.48 (t, $J_{P-H} = 8$ Hz, >18H, PC*Me*₃), 1.37 (t, $J_{P-H} = 8$ Hz, >18H, PC*Me*₃), 1.37 (t, $J_{P-H} = 8$ Hz, >18H, PC*Me*₃) 2.5 Hz, 2H, SiC*H*2P of minor isomer), 0.40 (s, <6H, Si*Me*, minor isomer), 0.33 (s, <6H, Si*Me*, minor isomer), 0.27 (s, 6H, Si*Me*, major isomer), 0.031 (s, 6H, SiMe, major isomer). ${}^{31}P{^1H}$ NMR (162 MHz, C_6D_6): δ 50.8 (s, major isomer), 46.1 (s, minor isomer). ¹³C{¹H} NMR (101 MHz, C₆D₆): *δ* 170.4 (t, *J*_{C-P} = 9.2 Hz, PhHC*C*RuN), 139.4 (s, *Ph*HC*CRuN*), 126.9 (s, *PhHCCRuN*), 124.1 (s *Ph*HCCRuN), 126.9 (s, *Ph*HCCRuN), 125.2 (s, *Ph*HCCRuN), 124.1 (s, *PhHCCRuN), 123.6 (s, PhHCCRuN), 118.3 (s, PhHCCRuN), 113.6 (t, <i>J_{C-P}* = 5.3 Hz, *PhHCCRuN), 37.3 (t, J_{C-P}* = 6.8 Hz, *PCMe₃, minor* isomer), 36.5 (t, $J_{C-P} = 6.9$ Hz, P*CMe₃*, minor isomer), 36.1 (t, $J_{C-P} =$ isomer), 36.5 (t, $J_{C-P} = 6.9$ Hz, PCMe₃, minor isomer), 36.1 (t, $J_{C-P} = 5.5$ Hz, PCMe₃, major isomer), 35.0 (t, $J_{C-P} = 5.5$ Hz, PCMe₃, major isomer), 35.0 (t, $J_{C-P} = 2.8$ Hz, PCMe₃, major isomer), 31.5 (t, $J_{$

^{2.53 (}t, *J*_{C-P} = 4 Hz, Si*C*H₂P).

(8) See the Supporting Information.

(9) (a) Ipaktschi, J.; Mohsseni-ala, J.; Uhlig, S. *Eur. J. Chem.* **2003**, 4313. (b) Perez-Carreno, E.; Paoli, P.; Ienco, A.; Mealli, C. *Eur. J. Chem.* **1999**, 1315. (c) Bullock, R. M. *J. Chem. Soc., Chem. Commun.* **1989**, 165.

^{(10) (}a) Dolker, N.; Frenking, G. *J. Organomet. Chem.* **²⁰⁰¹**, *⁶¹⁷*- *618*, 225. (b) Stegmann, R.; Frenking, G. *Organometallics* **1998**, *17*, 2089.
(11) C26–H does not hydrogen bond to Cl1.

⁽¹¹⁾ C26-H does not hydrogen bond to Cl1. (12) Rzepa, H. S.; Smith, M. H.; Webb, M. L. *J. Chem. Soc., Perkin Trans. 2* **1994**, 703.

⁽¹³⁾ Fulton, J. R.; Sklenak, S.; Bouwkamp, M. W.; Bergman, R. G. *J. Am. Chem. Soc.* **2002**, *124*, 4722.

acetylenes to enynes (eq 2).^{5,15} Examples of a vinylidene

group inserting into an M-phenyl bond of a pincer ligand (eq 3) have been established,¹⁶ and certain

examples show some unconventional interaction of the *ipso* carbon with the metal. The difference is that the nitrogen lone pair in a metal amide can confer extra stability to the product. Especially interesting in the aminovinyl isomer is the presence of an N-Ru interaction (**E**), because an M-N bond is absent in these

porphyrin precedents ($M-N = 2.53-2.64$ Å for metals smaller than Ru).^{14,17} The transformation observed here has a polarity to the C-N bond formation event completely different from that in studies using very electrophilic zirconium,¹⁸ lanthanide,¹⁹ and actinide²⁰ metals, 21 where an electron-poor N and a (relatively)

unactivated alkyne couple in the slow step (eq 4); there, a vinylidene intermediate is not involved.

$$
^{Cp_2M-N}_{RC} \gtrsim C \longrightarrow Cp_2M - C \qquad (4)
$$

Finally, any rate reduction due to the "spin forbidden" character of this reaction is not relevant, on the time scale of $\tau_{1/2} > 1$ min at -60 °C.

Acknowledgment. This work was supported by the National Science Foundation. L.A.W. is holder of the Indiana University Wells Fellowship.

Supporting Information Available: Full crystallographic details (CIF file) and tables giving details of the ground-state geometries from DFT calculations. This material is available free of charge via the Internet at http://pubs.acs.org.

OM049435B

- (19) (a) Li, Y.; Marks, T. J. *J. Am. Chem. Soc.* **1996**, *118*, 9295. (b) Li, Y.; Marks, T. J. *Organometallics* **1996**, *15*, 3770. (c) Li, Y.; Marks,
- T. J. *Organometallics* **1994**, *13*, 439. (d) Gagne, M. R.; Stern, C. L.; Marks, T. J. *J. Am. Chem. Soc.* **1992**, *114*, 275. (e) Gagne, M. R.; Nolan,
- S. P.; Marks, T. J. *Organometallics* **1990**, *9*, 1716.
- (20) Straub, T.; Haskel, A.; Neyroud, T. G.; Kapon, M.; Botoshansky, M.; Eisen, M. S. *Organometallics* **2001**, *20*, 5017. (21) (a) Mueller, T. E.; Beller, M. *Chem. Rev.* **1998**, *98*, 675. (b)

Pohlki, F.; Doye, S. *Chem. Soc. Rev.* **2003**, *32*, 104.

^{(14) (}a) Mansuy, D.; Morgenstern-Badarau, I.; Lange, M.; Gans, P. *Inorg. Chem.* **1982**, *21*, 1427. (b) Chevrier, B.; Weiss, R.; Lange, M.; Chottard, J. C.; Mansuy, D. *J. Am. Chem. Soc.* **1981**, *103*, 2899. (c) Olmstead, M. M.; Cheng, R. J.; Balch, A. L. *Inorg. Chem.* **1982**, *21*, 4143. (d) Balch, A. L.; Cheng, R. J.; La Mar, G. N.; Latos-Grazynski, L. *Inorg. Chem.* **1985**, *24*, 2651.

^{(15) (}a) Baratta, W.; Hermann, W. A.; Rigo, P.; Schwarz, J. *J. Organomet. Chem.* **2000**, 593–594, 489. (b) Bianchini, C.; Frediani, P.; Masi, D.; Peruzzini, M.; Zanobini, F. *Organometallics* **1994**, 13, 146. (c) Bianchi Organometallics 1996, 15, 3968. (e) Wen, T. B.; Yang, S.-Y.; Zhou, Z.
Y.; Lin, Z.; Lau, C.-P.; Jia, G. Organometallics 2000, 19, 3757.
(16) (a) Wen, T. B.; Zhou, Z. Y.; Jia, G. Organometallics 2003, 22,

^{4947. (}b) Jia, G.; Lee, H. M.; Xia, H. P.; Williams, I. D. *Organometallics* **1996**, *15*, 5453. (c) Gusev, D. G.; Maxwell, T.; Dolgushin, F. M.; Lyssenko, M.; Lough, A. J. *Organometallics* **2002**, *21*, 1095.

⁽¹⁷⁾ Batten, P.; Hamilton, A. L.; Johnson, A. W.; Mahendran, M.; Ward, D.; King, T. J. *J. Chem. Soc., Perkin Trans. 1* **1977**, *14*, 1623.

⁽¹⁸⁾ Walsh, P. J.; Baranger, A. M.; Bergman, R. G. *J. Am. Chem. Soc.* **1992**, *114*, 1708.