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Summary: The reaction of alkynes RCtCH (R ) H, Ph)
with (PNP)RuCl, where PNP is (tBu2PCH2SiMe2)2N,
occurs rapidly below 23 °C to give first an η2-alkyne
adduct and then a final product with a vinylidene group,
CdCHR, inserted into the N-Ru bond. Characterization
included X-ray diffraction (R ) Ph) and DFT calcula-
tions to probe mechanistic aspects of the reaction.

The molecule [(tBu2PCH2SiMe2)2N]RuCl, (PNP)RuCl,
is of interest because of its low coordination number (4),
its planar structure, and its triplet ground state for the
d6 configuration of Ru(II).1 Its high degree of unsatura-
tion, a 14-valence-electron configuration, could give it
special chemical reactivity, since it would appear to be
suited for simple addition of 4-electron-donor ligands.
Among those, we have chosen to explore terminal
alkynes as a compact way to deliver 4 electrons (A). This

offers as additional possible products the vinylidene B
and, given the reducing power of the metal due to the
π-donor amide ligand in PNP, the oxidative addition
product C. The pioneering studies of the Fryzuk group2

and others3 have shown the potential for H migration
from a metal to the lone pair present on the amide
nitrogen, which thus makes D another product for
consideration. Overlaid on all of the above is the
question4 of possible “spin forbiddenness” of the reac-
tion: will the change from triplet reactant to singlet
product detectably retard the rate of reaction? Here we
show (1) facile (time of mixing at -60 °C) binding of
RCCH by (PNP)RuCl, (2) facile rearrangement to a
diamagnetic product of H migration to form a vinylidene
group, (3) near-thermoneutral insertion of the vi-
nylidene into the Ru-amide bond vs retention of a
terminal vinylidene on Ru, and (4) DFT calculations
which reveal that proton transfer from acetylene to

amide N provides a viable intermediate for vinylidene
formation. The formation of an N-C(vinyl) bond here
is contrasted with earlier stoichiometric and catalytic
examples, the latter involving electron-poor metal cen-
ters.

When yellow (PNP)RuCl in d8-toluene is combined
with excess HCCH at -196 °C and 1H and 31P{1H} NMR
spectra are recorded in 20 °C increments beginning at
-60 °C, the spectra can be summarized by eq 1 (showing
δ(31P)). Conversion to 1 is complete at -60 °C and is

visible by a color change to deep purple-red. The signals
of 2 grow only above -40 °C, but at -20 °C, some
reversion from 1 to (PNP)RuCl is evident, due to the
changing equilibrium constant K. At +20 °C, all (PNP)-
RuCl has been consumed and 2 is the dominant product,
forming a green solution. Both species 1 and 2 have only
mirror symmetry: two equivalent P atoms, two types
of tBu groups, and two types of SiMe groups. Species 2
has inequivalent acetylene-derived hydrogens (5.1 and
4.7 ppm). Species 1 has a two-proton 1H NMR signal at
-40 °C, but this broadens in apparent decoalescence at
-60 °C. Species 2 shows 13C{1H} NMR signals at 168.3
(CR) and 99.4 (Câ) ppm for the acetylene-derived carbons,
neither of which is sufficiently positive to establish an
RudCdCH2 structure.5,6

Equimolar (PNP)RuCl and PhCtCH react7 in ben-
zene at 22 °C with an immediate color change to red
and complete consumption of (PNP)RuCl to form 2Ph.
A strong 31P{1H} NMR singlet at 50.8 ppm (cf. eq 1) is
accompanied by a weaker peak (4:1 intensity ratio) at
46.4 ppm. The 1H NMR of the more populated species
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2 (50.0 ppm) (1)
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has, like 2 above, two tBu and two SiMe signals. The
13C{1H} NMR spectrum of 2Ph shows signals at 170.4
(CR) and 113.6 (Câ) ppm for the acetylene-derived
carbons. A crystal of 2Ph, grown from benzene, was
shown by X-ray diffraction8 to have the structure in
Figure 1. The structure has an aminovinyl ligand η2

coordinated to Ru via N and one carbon. This is a
product of C-N bond formation, and the C-C π bond
in the vinyl group does not donate to Ru, leaving the
metal still unsaturated (16 electrons). The hydrogen
migration needed to convert an alkyne to a vinylidene
has been shown, both experimentally9 and computa-
tionally,10 to often be a high activation energy process,
and the rate observed here at -20 °C is unusually fast.
The tBu groups anti to C23 do not have agostic interac-
tions with Ru, nor does the ortho C26-H.11 The three
nonmetal atom angles at N1 total 358.9°; therefore, this

tertiary amine nitrogen is essentially planar, with its
lone pair very poorly oriented to bind to Ru, but the
Ru-N distance, 2.270(6) Å, is bonding.

The results of DFT(B3PW91) calculations8 of the
model [(H2PCH2SiH2)2N]RuClC2H2 shown in Figure 2
reveal that the vinylidene isomer B is more stable than
both the η2-acetylene complex A (by 21 kcal/mol) and
the C-H oxidative addition product C (by 40.1 kcal/
mol). The (observed) insertion product is calculated to
be only 1.6 kcal/mol more stable than the vinylidene and
has an Ru-N distance of 2.26 Å. The structure of the
η2-acetylene product A has HCCH lying in the mirror
plane, not perpendicular to it; this product conformation
also minimizes steric repulsion between alkyne and the
tBu groups during adduct formation. We propose this
as the identity of 1. The proton-transfer intermediate
D is indeed a minimum, and the structure shows signs
of hydrogen bonding from NH to the alkyne π density,12

which could be a mechanistic step in the facile conver-
sion (see above) to inserted vinylidene; it would give the
observed stereoisomer of phenyl anti to N in 2Ph. In
contrast, the complex Ru(NH2)H(Me2PC2H4PMe2)2 re-
acts13 with PhCtCH by proton transfer to an evidently
very Brønsted basic amide nitrogen, to form Ru(CCPh)H-
(Me2PC2H4PMe2)2 and release NH3.

Vinylidene insertion into the M-amide (i.e. pyrrole)
bond of FeII(CCHR)(porphyrin)14 occurs only after one-
electron oxidation and coordination of a nucleophile to
MIII in the insertion product obtained. Moreover, since
the nitrogen lone pair in the product is involved with
the porphyrin π-system, there is no NfM bond. In
summary, these precedents illustrate C-N bond forma-
tion when the metal is electrophilic. The analogous
vinylidene insertion into a metal-acetylide bond is
thekey C-C bond-forming event in dimerization of

(7) Reaction of (PNPtBu)RuCl with phenylacetylene: to 10.7
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0.49 (t, JP-H ) 2.5 Hz, <2H, SiCH2P of minor isomer), 0.42 (t, JP-H )
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isomer), 0.33 (s, <6H, SiMe, minor isomer), 0.27 (s, 6H, SiMe, major
isomer), 0.031 (s, 6H, SiMe, major isomer). 31P{1H} NMR (162 MHz,
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PhHCCRuN), 126.9 (s, PhHCCRuN), 125.2 (s, PhHCCRuN), 124.1 (s,
PhHCCRuN), 123.6 (s, PhHCCRuN), 118.3 (s, PhHCCRuN), 113.6 (t,
JC-P ) 5.3 Hz, PhHCCRuN), 37.3 (t, JC-P ) 6.8 Hz, PCMe3, minor
isomer), 36.5 (t, JC-P ) 6.9 Hz, PCMe3, minor isomer), 36.1 (t, JC-P )
5.5 Hz, PCMe3, major isomer), 35.0 (t, JC-P ) 5.5 Hz, PCMe3, major
isomer), 31.5 (t, JC-P ) 2.8 Hz, PCMe3), 30.3 (t, JC-P ) 2.7 Hz, PCMe3),
29.7 (s), 26.4 (br s), 22.5 (s), 11.0 (s, SiMe, minor isomer), 8.8 (s, SiMe,
minor isomer), 7.1 (s, SiMe, major isomer), 5.2 (s, SiMe, major isomer),
2.53 (t, JC-P ) 4 Hz, SiCH2P).
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Figure 1. ORTEP view (50% probability ellipsoids) of the
non-hydrogen atoms of [(tBu2PCH2SiMe2)2NCCHPh]RuCl,
showing selected atom labeling. Unlabeled atoms are
carbon. Notable structural parameters (distances in Å and
angles in deg): Ru1-C23, 1.903(8); Ru1-N1, 2.270(6);
Ru1-Cl1, 2.379(2); C23-C24, 1.347(10); N1-Ru1-Cl1,
168.88(18); C23-C24-C25, 126.7(7); N1-C23-Ru1, 83.9(4).

Figure 2. DFT(B3PW91) optimized geometries and ener-
gies (E + ZPE, kcal/mol) of isomers of (H2PCH2SiH2)2-
NRuClC2H2.
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acetylenes to enynes (eq 2).5,15 Examples of a vinylidene

group inserting into an M-phenyl bond of a pincer
ligand (eq 3) have been established,16 and certain

examples show some unconventional interaction of the
ipso carbon with the metal. The difference is that the
nitrogen lone pair in a metal amide can confer extra
stability to the product. Especially interesting in the
aminovinyl isomer is the presence of an N-Ru interac-
tion (E), because an M-N bond is absent in these

porphyrin precedents (M-N ) 2.53-2.64 Å for metals
smaller than Ru).14,17 The transformation observed here
has a polarity to the C-N bond formation event
completely different from that in studies using very
electrophilic zirconium,18 lanthanide,19 and actinide20

metals,21 where an electron-poor N and a (relatively)

unactivated alkyne couple in the slow step (eq 4); there,
a vinylidene intermediate is not involved.

Finally, any rate reduction due to the “spin forbidden”
character of this reaction is not relevant, on the time
scale of τ1/2 > 1 min at -60 °C.
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