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Summary: The reaction of Sn(NMe2)2 with MesPHK
(1:2) in THF gives the title compound [{Sn2(µ-PMes)3}-
K2‚3THF]∞ (1), having a polymeric structure in the solid
state in which the [Sn2(µ-PMes)3]2- dianions behave as
multifunctional σ(Sn), σ(P), and π-arene donors to K+

cations. The trigonal-bipyramidal core arrangement of
the [Sn2(µ-PMes)3]2- dianion represents a monomeric
unit of the metallacyclic tetraanions [{Sn(µ-PR)}2-
(µ-PR)]2

4- and of valence-isoelectronic group 14 and 15
species of the type [{MeE(µ-PR)}2(µ-PR)]4- (E ) Al, In)
and [{P(µ-NR)}2(µ-NR)]2.

The dimeric phosphazane [{P(µ-NiPr)}2(µ-NiPr)]2 (Fig-
ure 1a), reported by Scherer and co-workers in 1980,1
represents an archetypal main-group framework. The
more recent structural characterization of complexes
containing the valence-isoelectronic tetraanions
[{Sn(µ-PR)}2(µ-PR)]2

4- 2 and [{MeE(µ-PR)}2(µ-PR)]2
4- (E

) group 13 metal)3 (Figure 1b,c, respectively) has
revealed that this dimeric macrocyclic arrangement
occurs for a range of other p-block elements. Our
interest in this area has been stimulated in particular
by the potentially extensive coordination chemistry
exhibited by these species and by the growing realiza-
tion that larger macrocyclic homologues of this type may
also be accessible. These features have been illustrated
recently by the characterization of the trimeric Sb(III)
imido trianion [{Sb(µ-NCy)}2(µ-N)]3

3,4 and the neutral
tetrameric phosphazane [{P(µ-NtBu)}2(µ-NH)]4,5 having
the same toroidal architecture as the dimeric relatives.
The study reported here describes the first monomeric
homologue of this class of compounds, a [Sn2(µ-PR)3]2-

dianion that is directly related to metallacyclic
[{Sn(µ-PR)}2(µ-PR)]2

4- tetraanions.
The title compound [{Sn2(µ-PMes)3}K2‚3THF]∞

(1) was obtained in 26% yield from the reaction of

Sn(NMe2)2 with MesPHK (1:2) in THF.6 The
[Sn2(PMes)3]2- dianion of 1 represents a monomeric unit
of the previously reported metallacyclic tetraanions
[{Sn(µ-PR)}2(µ-PR)]2

4-, obtained from the reactions of
Sn(NMe2)2 with tBuPHLi or CyPHLi (1:2 or 1:3) in
THF.2b It is interesting to note that the reaction of
Sn(NMe2)2 and MesPHLi (1:2 or 1:3) in the presence of
TMEDA (Me2NCH2CH2NMe2) gives the [Sn(µ-PMes)}2-
(MesPPMes)]2- dianion, whose [MesPPMes]2- ligand
formally results from the insertion of a PMes group into
one of the Sn-P bonds of the [Sn2(PMes)3]2- dianion of
1.2b The presence of TMEDA in this reaction presumably
enhances the nucleophilicity of the MesPH- anion
sufficiently for attack of one of the Sn(II) centers of the
[Sn2(PMes)3]2- dianion to occur (Scheme 1).9 The 1H and
31P NMR spectra of 1 in THF indicate that a number of
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(6) Synthesis of 1: to a stirred solution of PhCH2K7 (0.7 g, 5.15
mmol) in THF (20 mL) at -78 °C was added MesPH2

8 (0.742 g, 0.7
mL, 4.9 mmol). The reaction mixture was stirred at -78 °C for 15 min
and then warmed to room temperature and stirred for a further 6 h,
producing a red solution. This solution was cooled to -78 °C, and
Sn(NMe2)2 (0.518 g, 2.5 mmol) in THF (10 mL) was added. The reaction
mixture was stirred at room temperature (16 h) to give a red solution.
The solvent was removed under vacuum, and the crude product was
crystallized from THF/toluene (7 mL:3mL) at -15 °C. Yield: 0.32 g
(26%). Dec pt: 110 °C. IR (Nujol, NaCl; ν/cm-1): major bands at 1093
(s), 1019 (s), 780 (s) (air exposure results in the appearance of a P-H
stretching band at 2360 cm-1). 1H NMR (500.2 MHz, d8-THF, 25 °C):
δ 6.62 (s), 6.57 (s), 6.51 (s) (total ca. 2H, aryl C-H), 3.61 (mult, THF),
2.6-2.0 (collection of singlets, ca. 18H, o- and p-Me), 1.79 (mult, THF)
(samples contain variable amounts of THF). 31P{1H} NMR (161.975
MHz, d8-THF, 25 °C): -145.5 (br s), -155.0 (br s) (unidentified
hydrolysis product at -131.3, t. JP-P ) 105.3 Hz with J117,119Sn-31P )
1368.8 Hz (satellites) (JP-H) 194.4 Hz from the 1H-coupled spectrum)).
Anal. Found: C, 45.0; H, 5.1; P, 9.2, Calcd for 1(-3THF): C, 45.3; H,
5.2; P, 10.6.

Scheme 1
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solution species are present. This situation is compli-
cated by the extreme moisture sensitivity and/or reac-
tivity of the compound in solution, which leads to
unavoidable formation of a decomposition product (con-
taining the SnPHMes functionality).6 The absence of a

P-H stretching band in the IR spectrum of solid 1
shows that this species is not a contaminant in the
reaction product itself.

The low-temperature X-ray structure of 1 shows that
the asymmetric unit contains two crystallographically
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Snaith, R. J. Am. Chem. Soc. 1994, 116, 528.

(8) Cowley, A. H.; Norman, N. C.; Pakulski, M.; Layh, M.; Kicher,
E.; Schmidt, M. Inorg. Synth. 1990, 27, 235.
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observed in the reaction of MesPHNa with Sn(NMe2)2 in the presence
of TMEDA, resulting in the deprotonation of a Me group of the Mes
ligands; see: McPartlin, M.; Woods, A. D.; Pask, C. M.; Vogler, T.;
Wright, D. S. Chem. Commun. 2003, 1524.

Figure 1. Valence-isoelectronic macrocycles.

Figure 2. (a) Asymmetric unit in the crystal of 1. Thermal ellipsoids are drawn at the 30% probability level. H atoms
have been omitted for clarity. Key bond lengths (Å) and angles (deg): Sn(1)-P(1) ) 2.667(3), Sn(1)-P(2) ) 2.629(3),
Sn(1)-P(3) ) 2.606(3), Sn(2)-P(1) ) 2.618(3), Sn(2)-P(2) ) 2.628(3), Sn(2)-P(3) ) 2.667(3), Sn(1′)-P(1′) ) 2.648(3),
Sn(1′)-P(2′) ) 2.647(3), Sn(1′)-P(3) ) 2.619(3), Sn(2′)-P(1′) ) 2.628(3), Sn(2′)-P(2′) ) 2.632(3), Sn(2′)-P(3′) ) 2.654(3),
Sn(1)-K(1) ) 4.016(2), Sn(1′)-K(1) ) 3.845(2), K(1)-P(2) ) 3.185(4), K(1)-P(2′) ) 3.235(4), K(1)-C range 3.125(9)-3.22-
(1), Sn(2)-K(2) ) 3.821(3), P(3)-K(2) ) 3.354(4), K(2)-C range 3.04(1)-3.52(1), K(1′)-P(1) ) 3.402(4), K(1′)-C
range 3.27(1)-3.51(9), K(2′)-P(3′) ) 3.268(4), K(2′)-C ) 3.10-3.52(1), P-Sn(1,1′,2,2′)-P range 80.59(9)-84.88(9),
Sn-P(1,2,3,1′,2′,3′)-Sn range 79.40(8)-79.91(8). (b) Part of the infinite polymeric chain structure of 1 running parallel to
the a axis (K(1′A)-P(1), K(1′)-P(1B) ) 3.398(4) Å). (c) Mode of coordination of the three K+ cations by each of the anions
of 1, with additional K‚‚‚Sn bonding augmenting the π-arene and σ(P) bonding. Symmetry transformations used to generate
equivalent atoms: (A) x - 1, y, z; (B) x + 1, y, z.
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independent [Sn2(PMes)3]2- dianions linked via a K+

cation (K(1), Figure 2a). This double unit associates
further to give an infinite-chain polymeric arrangement
parallel to the crystallographic a axis via bridging of a
second independent K+ cation (K(1′) at x - 1, y, z; Fig-
ure 2b).10 The two remaining K+ cations (K(2) and
K(2′)) are found in “terminal” positions and are coordi-
nated by three THF ligands. The Sn-P bonds within
[Sn2(PMes)3]2- dianions (range 2.606(3)-2.667(3) Å) and
the angles at the Sn centers (range 80.59(9)-84.88(9)°)
are typical of those found in Sn(II) phosphinidine
compounds.2,11 The acute angles at the Sn(II) centers
are consistent with the presence of a stereochemically
active metal lone pair which possess a high degree of s
character, directed exo to the trigonal-bipyramidal
cage arrangement of the anions. The very acute inter-
nal angles at the P centers of the dianions (79.40(8)-
79.91(8)°) are at the lower range of the values pre-
viously observed in Sn(II) phosphinidines. The tri-
gonal-bipyramidal core arrangement of the frame-
work of the [Sn2(PMes)3]2- dianion of 1 is rare for main-
group nitrogen and phosphorus compounds, the closest
structural analogue being the neutral phosphinidine
[(tBuSi)2(µ-PCy)3].12

Perhaps the most interesting feature of 1 is the use
of the full range of σ(Sn), σ(P), and π-arene metal
bonding modes available to the [Sn2(PMes)3]2- dianions
in the structure. Overall, each of the [Sn2(PMes)3]2-

anions coordinates three K+ cations with local ap-
proximate C3 symmetry (Figure 2c), with the coordina-
tion of the two independent anions differing largely in
the extent of Sn‚‚‚K interactions involved. The two
cations K(2) and K(2′) have similar environments; in
addition to coordination by three THF ligands they
are bonded to a P center (K(2′,2)-P(3′,3) ) 3.268(4)-
3.354(4) Å) and π-bonding to a Mes ring (range
3.04(1)-3.52(1) Å13). In the case of K(2), however, the
Sn-P bond coordinates in a “side-on” mode involving
an additional interaction with Sn(2) (Sn(2)-K(2) )

3.821(3) Å). In bridging the two independent
[Sn2(PMes)3]2- dianions K(1) also uses “side-on” coor-
dination of two Sn-P bonds (Sn(1,1′)-K(1) ) 3.845(2)-
4.016(2) Å, P(2,2′)-K(1) ) 3.185(4)-3.235(4) Å) and a
π-interaction with a Mes group from each of the dianions
(range 3.13(1)-3.22(1) Å13). The “side-on” interactions
of Sn-P bonds with K(1) and K(2) in the structure
of 1 are unprecedented. The Sn-K and P-K bond
lengths involved compare to ranges of 3.59-4.15 Å14

(cf. 3.821(3)-4.016(2) Å in 1) and 3.04-3.66 Å15 (cf.
3.185(4)-3.354(4) Å), respectively, observed in previ-
ously characterized compounds containing these indi-
vidual bonding types. The coordination of K(1′), in
linking of the structure into a polymer, is similar to that
of K(1), but in this case no Sn-K bonding occurs, with
the cation being bonded only to two P centers
(P(1′,1A′)-K(1′) ) 3.398(4)-3.402(4) Å) and π-bonded
to two Mes groups (3.27(1)-3.514(9) Å13).

In summary, the [Sn2(PMes)3]2- dianion has a unique
structural arrangement for a Sn(II) phosphinidine
which represents a monomeric homologue of a broad
class of related main-group macrocycles. The multifunc-
tional capabilities of the [Sn2(PMes)3]2- dianion (il-
lustrated in the structure of 1) and, indeed, its potential
to oligomerize into higher cyclic homologues in response
to metal coordination should lead to interesting coor-
dination chemistry in the future.
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Pritzkow, H.; Grützmacher, H.; Kaupp, M. Angew. Chem., Int. Ed.
1997, 36, 1894. Westerhausen, M.; Krofta, M.; Wiberg, N.; Nöth, H.;
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