A Metallocene with Ga-**Zr Bonds: Cp2Zr(GaR)2** $(Cp = C_5H_5; R = -C_6H_3-2, 6-(2,4,6\cdot i\text{-}Pr_3C_6H_2)_2)$

Xiao-Juan Yang, Brandon Quillian, Yuzhong Wang, Pingrong Wei, and Gregory H. Robinson*

Department of Chemistry, The University of Georgia, Athens, Georgia 30602-2556

Received August 21, 2004

Summary: The reaction of sodium metal with Cp2ZrCl2 and RGaCl₂ in hexane affords $Cp_2Zr(GaR)_2$ $(R = -C_6H_3$ *-2,6-(2,4,6-i-Pr3C6H2)2) as deep green-black air-sensitive crystals. Essentially, Cp2Zr(GaR)2 is isoelectronic with the well-known 18-electron zirconocene dicarbonyl, Cp2- Zr(CO)2, complex. The title compound is the first example of an organometallic compound containing Ga*-*Zr bonds* $(Ga-Zr = 2.6350(8)$ Å).

Although the chemistry of metallocenes has been extensively developed, examples of direct transitionmetal-main-group-metal bonds involving metallocene complexes have not been reported. $1-3$ Herein, we report the synthesis and molecular structure of $Cp_2Zr(GaR)_2$ $(R = -C_6H_3-2.6-(2.4.6-i\text{-}Pr_3C_6H_2)_2$ as the first example of a structurally characterized organometallic compound containing a gallium-zirconium bond. Moreover, C_{p_2} $Zr(GaR)_2$ is the first compound containing a main-groupmetal-transition-metal bond with a sandwich metallocene complex. The fact that the donor properties of :GaR seem to mimic those of :CO also is intriguing.

The utilization of sterically demanding ligands has proven to be particularly effective in the stabilization of novel main-group compounds.1,4-⁶ In particular, *m*terphenyl ligands have been successfully employed for this purpose in developing the organometallic chemistry of the heavier main-group metals.⁷⁻⁹ We have utilized such ligands to prepare metalloaromatic gallium ring compounds, $M'_{2}[GaR]_{3}$ (M' = Na, K; R = $-C_{6}H_{3}$ -2,6- $Mes_2C_6H_2$, $10-14$ and the provocative Na₂[GaR]₂ digal-

- (2) Uhl, W.; Melle, S.; Frenking, G.; Hartmann, M. *Inorg. Chem.* **²⁰⁰¹**, *⁴⁰*, 750-755.
- (3) Baker, R. J.; Jones, C.; Platts, J. A. *J. Am. Chem. Soc.* **2003**, *¹²⁵*, 10534-10535.
- (4) West, R.; Fink, M. J.; Michl, J. *Science* **¹⁹⁸¹**, *²¹⁴*, 1343-1344. (5) Linti, G.; Schnöckel, H. *Coord. Chem. Rev.* **2000**, *206-207*, 285-319.
- (6) Stürmann, M.; Saak, W.; Marsmann, H.; Weidenbruch, M. Angew. Chem., Int. Ed. 1999, 38, 187-189.
- *Angew. Chem., Int. Ed.* **¹⁹⁹⁹**, *³⁸*, 187-189. (7) Cotton, F. A.; Cowley, A. H.; Feng, X. *J. Am. Chem. Soc.* **1998**, *¹²⁰*, 1795-1799.
- (8) Phillips, A. D.; Wright, R. J.; Olmstead, M. M.; Power, P. P. *J. Am. Chem. Soc.* **2002**, *124*, 5390. (9) Pu, L.; Twamley, B.; Power, P. P. *J. Am. Chem. Soc.* **2000**, *122*,
-
- ³⁵²⁴-3525. (10) Li, X.-W.; Pennington, W. T.; Robinson, G. H. *J. Am. Chem. Soc.* **¹⁹⁹⁵**, *¹¹⁷*, 7578-7579.
- (11) Li, X.-W.; Xie, Y.; Schreiner, P. R.; Gripper, K. D.; Crittendon, R. C.; Campana, C. F.; Schaefer, H. F.; Robinson, G. H. *Organometallics*
- **¹⁹⁹⁶**, *¹⁵*, 3798-3803. (12) Xie, Y.; Schreiner, P. R.; Schaefer, H. F.; Li, X.-W.; Robinson, G. H. *J. Am. Chem. Soc.* **¹⁹⁹⁶**, *¹¹⁸*, 10635-10639.
- (13) Xie, Y.; Schreiner, P. R.; Schaefer, H. F.; Li, X.-W.; Robinson, G. H. *Organometallics* **¹⁹⁹⁸**, *¹⁷*, 114-122.

lyne compound (R = $-C_6H_3$ -2,6-(2,4,6-*i*-Pr₃C₆H₂)₂).¹⁵⁻²² The present study was undertaken to explore earlytransition-metal metallocenes as partners in transitionmetal-main-group-metal bonding, facilitated by sterically demanding ligands.

The air- and moisture-sensitive title compound was prepared by sodium reduction of zirconocene dichloride, Cp_2ZrCl_2 , with RGaCl₂²³ (eq 1).²⁴

 $R = C_6H_3 - 2.6-(2.4.6 - i Pr_3C_6H_2)$

A number of points are noteworthy regarding structure and bonding. The *m*-terphenyl ligands effectively

(14) Robinson, G. H. *Acc. Chem. Res.* **¹⁹⁹⁹**, *³²*, 773-782.

(15) Su, J.; Li, X.-W.; Crittendon, R. C.; Robinson, G. H. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 5471-5472.

(16) Xie, Y.; Grev, R. S.; Gu, J.; Schaefer, H. F.; Schleyer, P. v. R.; Su, J.; Li, X.-W.; Robinson, G. H. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 3773- 3780.

(17) Xie, Y.; Schaefer, H. F.; Robinson, G. H. *Chem. Phys. Lett.* **2000**, *³¹⁷*, 174-180.

(18) Robinson, G. H. *Chem. Commun.* **2000**, 2175–2181.
(19) Robinson, G. H. *Adv. Organomet. Chem.* **2001**, *47*, 283–294.
(20) Klinkhammer, K. W. *Angew. Chem., Int. Ed.* **1997**, *36*, 2320–
22. 2322.

(21) Bytheway, I.; Lin, Z. *J. Am. Chem. Soc.* **¹⁹⁹⁸**, *¹²⁰*, 12133- 12134.

(22) Grützmacher, H.; Fässler, T. F. *Chem. Eur. J.* **2000**, *6*, 2317-2325.

(23) Su, J.; Li, X.-W.; Robinson, G. H. *Chem. Commun.* **¹⁹⁹⁸**, 2015- 2016.

- (24) Under an inert atmosphere of dry argon a solution of $RGaCl₂$ $(2.22 \text{ g}, 3.55 \text{ mmol})$ in hexane (40 mL) was added to a flask containing finely cut sodium metal (0.50 g, 21.7 mmol) and Cp₂ZrCl₂ (1.04 g, 3.55 mmol). With stirring at room temperature, the color of the solution gradually changed to dark green-black and some gray solid precipi-tated. After filtration and concentration of the solution (to approximately 10 mL), in vacuo, dark green-black crystals of $\text{Cp}_2\text{Zr}(\text{GaR})_2$ $(0.59 \text{ g}; 25\% \text{ yield})$ were isolated (upon standing for several days). Mp: 218–220 °C dec. Anal. (E+R Microanalytical Laboratories, Corona, NY)
Calcd (found) for C₈₂H₁₀₈Ga₂Zr (1324.40): C, 74.36 (74.29); H, 8.22
(8.55). ¹H NMR (C₆D₆): δ 1.19 (d, 24H, J = 6.8 Hz, ο-CH(C*H*₆)), 1.35
 (d, 24H, *J* = 6.8 Hz, *ο*-CH(C*H*₃)), 1.51 (d, 24H, *J* = 6.8 Hz, *p*-CH(C*H*₃)),
2.92 (m, 12H, C*H*(CH₃)), 4.01 (s, 10H, *η*⁵-C₅H₅), 7.14 (m, 6H, −C₆H₃),
7.26 (s, 8H, −C_eH₂), X-ray intensity data we 7.26 (s, 8H, $-C_6H_2$). X-ray intensity data were collected on a Bruker
SMART TM CCD-based X-ray diffractometer system with graphitemonochromated Mo Kα radiation (λ = 0.710 73 Å). Cell parameters
and an orientation matrix for data collection corresponded to an orthorhombic crystal system, with unit cell parameters $a = 15.829(2)$
Å, $b = 17.574(3)$ Å, $c = 29.319(4)$ Å, $V = 8156(2)$ Å³, $D_{\text{caled}} = 1.079$ g
cm⁻³, and $Z = 8$ for C₄₁H₃₄GaZr_{0.5}. The structure was solved in t bundled software package. Using 3522 observed reflections (*I* > 2*σ*-(*I*)), refinement converged at R1 = 0.064 and wR2 = 0.157.
- 10.1021/om049343m CCC: \$27.50 © 2004 American Chemical Society Publication on Web 09/21/2004

 * To whom correspondence should be addressed. E-mail: <code>robinson@</code> chem.uga.edu.

⁽¹⁾ Fischer, R. A.; Weiss, J. *Angew. Chem., Int. Ed.* **¹⁹⁹⁹**, *³⁸*, 2830- 2850.

Figure 1. Molecular structure of Cp₂Zr(GaR)₂ (thermal ellipsoids are shown at 30% probability levels). Selected bond distances (Å) and angles (deg): $Ga(1)-C(1)$, 2.003- (5) ; Ga(1)-Zr(1), 2.6350(8); C(1)-Ga(1)-Zr(1), 172.44(16); $Ga(1)-Zr(1)-Ga(1a)$, 100.39(4); $Cp_{\text{centroid}}-Zr-Cp_{\text{centroid}}$, 137.4.

dominate the molecular structure of $\text{Cp}_2\text{Zr}(\text{GaR})_2$ (Figure 1), as the central Cp_2Zr unit is essentially dwarfed by the two GaR units. The molecule resides about a twofold axis. Other notable structural features of Cp_2Zr - $(GaR)_2$ are the Ga-Zr bonds. As $Cp_2Zr(GaR)_2$ is the first structurally characterized organometallic compound containing $Ga-Zr$ bonds, it is difficult to place the $Ga-$ Zr bond distance of 2.6350(8) Å in perspective. However, it is noteworthy that the sum of the gallium and zirconium covalent radii approaches 2.850 Å. The pseudo-tetrahedral environment about zirconium in Cp2- $Zr(GaR)_2$ is easily compared with those of zirconocene dichloride, Cp₂ZrCl₂,²⁵ and zirconocene dicarbonyl, Cp₂- $Zr(CO)_2$.²⁶ The Cp_{centroid}-Zr-Cp_{centroid} bond angle of 123.24[°] in Cp₂ $Tc(GaR)_2$ compares to values of 129.3 and 137.4° in $Cp_2Zr(GaR)_2$ compares to values of 129.3 and 143.4° in Cp_2ZrCl_2 and $Cp_2Zr(CO)_2$, respectively. The Ga-Zr-Ga bond angle of $100.39(4)$ ° in Cp₂Zr(GaR)₂ is only slightly wider than the Cl-Zr-Cl bond angle of 97.0° in Cp₂ZrCl₂. The C-Zr-C bond angle in Cp₂Zr- $(CO)_2$, however, is more acute at 89.0°. The Ga-Ga separation of 4.049 Å in $\text{Cp}_2\text{Zr}(\text{GaR})_2$ is well beyond any significant metal-metal interaction.

The gallium atoms in $Cp_2Zr(GaR)_2$ are unambiguously two-coordinate. While other organometallic compounds containing two-coordinate gallium atoms recently have been reported,²⁷⁻³⁰ the literature reveals a paucity of

organometallic compounds containing terminal twocoordinate $R-Ga-M$ (M = transition metal) moieties.^{31,32} The title compound is similar to $RGaFe(CO)₄$ $(R = -C_6H_3-2,6-(2,4,6-i\text{-}Pr_3C_6H_2)_2$,³² in which the gallium atom also is two-coordinate. The Ga-C bond distance of 2.003(5) Å in $Cp_2Zr(GaR)_2$ is slightly longer than that observed in $RGa-Fe(CO)_4$ (1.943(3) Å). The slightly distorted C-Ga-Zr bond angles observed for $\text{Cp}_2\text{Zr}(\text{GaR})_2$ of 172.44(16)° compare with the almost perfectly linear $C-Ga-Fe$ bond angle of 179.2(1) \degree for RGaFe(CO)4. While a proposal for multiple Ga-Fe bond character in $RGaFe(CO)₄$ was initially suggested,³² an alternative interpretation involving a Ga-Fe single bond was subsequently proposed.³³ Still others³⁴ concluded that common chemical bonding models may simply be "inappropriate" to adequately describe the $Ga-Fe$ bond in $RGaFe(CO)_4$. The nature of the $Ga-Zr$ bonds in $Cp_2Zr(GaR)_2$, however, appears to be similar to that of the Ga-Fe bond in $RGaFe(CO)₄:$ in both compounds the :GaR fragments seem to mimic the neutral two-electron Lewis base donor properties of : $C\equiv$ O.

The gallium atoms appear to have been reduced by sodium from $Ga(III)$ in $RGaCl₂$ to $Ga(I)$ in the : GaR moieties, while zirconium is reduced from $Zr(IV)$ in $Cp₂$ - $ZrCl₂$ to $Zr(II)$ in $Cp₂Zr(GaR)₂$. Indeed, the preparation of $\text{Cp}_2\text{Zr}(\text{GaR})_2$ bears some resemblance to the preparation of $\text{Cp}_2\text{Zr}(\text{CO})_2$: the formal 16-electron zirconocene dichloride was reduced by Na/Hg in the presence of carbon monoxide to give the formal 18 -electron Cp₂Zr- $(CO)_2$ complex.³⁵ Similarly, the 16-electron Cp_2ZrCl_2 complex in this study is readily converted to the 18 electron $\text{Cp}_2\text{Zr}(\text{GaR})_2$ complex. However, :GaR may be regarded as an electron-deficient species, while : $C\equiv 0$ is saturated.

The title compound will be useful as a benchmark as we further explore the fascinating organometallic chemistry at the transition-metal-main-group-metal interface.

Acknowledgment. We are grateful to the National Science Foundation and to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this work. (AHR, AGR).

Supporting Information Available: Full details of the X-ray crystallographic studies, including a CIF file. This material is available free of charge via the Internet at http://pubs.acs.org.

OM049343M

- (28) Wehmschulte, R. J.; Steele, J. M.; Young, J. D.; Khan, M. A. *J. Am. Chem. Soc.* **²⁰⁰³**, *¹²⁵*, 1470-1471. (29) Bunn, N. R.; Aldridge, S.; Coombs, D. L.; Rossin, A.; Willock,
- D. J.; Jones, C.; Ooi, L.-L. *Chem. Commun.* **²⁰⁰⁴**, 1732-1733.
- (30) Ueno, K.; Watanabe, T.; Tobita, H.; Ogino, H. *Organometallics* **²⁰⁰³**, *²²*, 4375-4377.
- (31) Weiss, D.; Winter, M.; Merz, K.; Knüfer, A.; Fischer, R. A.; Fröhlich, N.; Frenking, G. *Polyhedron* **2002**, *21*, 535–542.
(32) Su, J.; Li, X.-W.; Crittendon, R. C.; Campana, C. F.; Robinson,
- G. H. *Organometallics* **¹⁹⁹⁷**, *¹⁶*, 4511-4513.
- (33) Cotton, F. A.; Feng, X. *Organometallics* **¹⁹⁹⁸**, *¹⁷*, 128-130.
- (34) Boehme, C.; Frenking, G. *Chem. Eur. J.* **¹⁹⁹⁹**, *⁵*, 2184-2189.

⁽²⁵⁾ Corey, J. Y.; Zhu, Z.-H.; Brammer, L.; Rath, N. P. *Acta Crystallogr.* **¹⁹⁹⁵**, *C51*, 565-567.

⁽²⁶⁾ Atwood, J. L.; Rogers, R. D.; Hunter, W. E.; Floriani, C.; Fachinetti, G.; Chiesi-Villa, A. *Inorg. Chem.* **¹⁹⁸⁰**, *¹⁹*, 3812-3817. (27) Hardman, N. J.; Wright, R. J.; Phillips, A. D.; Power, P. P. *J.*

Am. Chem. Soc. **²⁰⁰³**, *¹²⁵*, 2667-2679.

⁽³⁵⁾ Thomas, J. L.; Brown, K. T. *J. Organomet. Chem.* **1976**, *111*, $297 - 301$.