Influence of the Solvent in the Synthesis of Osmium Complexes Containing Cyclopentadienyl Ligands with a Pendant Donor Group

Miguel A. Esteruelas,* Ana M. López, Enrique Oñate, and Eva Royo *Departamento de Quı*´*mica Inorga*´*nica, Instituto de Ciencia de Materiales de Arago*´*n, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain*

Received July 2, 2004

Summary: The course of the reactions between complex OsH2Cl2(Pi Pr3)2 (1) and the functionalized cyclopentadienyllithium derivatives $Li[C_5H_4(CH_2)_2E]$ *(E = NMe₂ (2), OMe (3)) strongly depends on the solvent used. Thus, in the presence of donor solvents such as THF, the salts [OsH2*{*η5-C5H4(CH2)2E*}*(Pi Pr3)2][OsHCl2(CO)(Pi Pr3)2] (E*) *NMe2 [4][5], OMe [6][5]) with a carbonylated osmium anion are produced, while in hydrocarbon solvents the chloride salts* $[OsH_2{\lbrace \eta^5 \text{--} C_5H_4(CH_2)_2E \rbrace} (P^i Pr_3)_2]Cl$ ($E = NMe_3$ [4]Cl. OMe [6]Cl) are formed *NMe2 [4]Cl, OMe [6]Cl) are formed.*

The cyclopentadienyl group is one of the most important ligands in organometallic chemistry. In 1991, Janiak and Schumann estimated that at that time more than 80% of all known organometallic complexes of transition metals contained the cyclopentadienyl fragment or a derivative thereof.¹

Complexes containing cyclopentadienyl ligands with a pendant donor group are attracting increased interest in recent years.2 As a consequence of the reversible coordination of the pendant group, these ligands stabilize highly reactive fragments, facilitating the study of some reaction mechanisms.³

For the iron triad, the chemistry of the osmiumcyclopentadienyl complexes is a field much less studied than the chemistry of related iron and ruthenium compounds.4 In accordance with this, a significant number of iron and ruthenium complexes containing a cyclopentadienyl ligand with a pendant donor group have been prepared,^{2c} while the osmium counterparts were unknown until very recently.

In a previous work,⁵ we have shown the preparation and full characterization of the first osmium(IV) and

(5) Esteruelas, M. A.; Lo´pez, A. M.; On˜ ate, E.; Royo, E. *Organometallics* **2004**, *23*, 3021.

osmium(II) derivatives with the 2-diphenylphosphinoethylcyclopentadienyl ligand, which are also the first osmium complexes containing a cyclopentadienyl ligand with a pendant donor group. We now wish to report that the reaction used at that time is also useful to obtain compounds with the 2-dimethylaminoethylcyclopentadienyl and 2-methoxiethylcyclopentadienyl ligands. Furthermore, we show that although these reactions are a method of general use to obtain osmium complexes containing a cyclopentadienyl ligand with a pendant donor group, the choice of the solvent is critical for the course of the reaction.

The typical procedure to introduce a cyclopentadienyl group into a transition metal involves the reaction between a cyclopentadienyl derivative of an s- or p-block element and a transition metal halide. The method has proved to be efficient in the osmium chemistry. Thus, the six-coordinate dihydride-dichloro complex $O_SH₂$ $Cl_2(P^i Pr_3)_2$ (1) reacts with $T(C_5H_5)$ to give the cyclopentadienyl derivative $\text{Os}(\eta^5\text{-C}_5\text{H}_5) \text{Cl}(\text{P}^i\text{Pr}_3)_2,$ ⁶ and the reaction of 1 with $Li[C_5H_4(CH_2)_2PPh_2]$ affords the 2-diphenylphosphinoethylcyclopentadienyl compound

 $[OsH₂{\eta⁵-C₅H₄(CH₂)₂PPh₂}{(PⁱPr₃)}Cl⁵ This prompted us$ to investigate the reactions of **1** with the lithium compounds $Li[C_5H_4(CH_2)_2E]$ ($E = NMe_2$ (2), OMe (3)), which are prepared by treatment of the corresponding modified cyclopentadienes with *n*-butyllithium in THF. They have the advantage of their high solubility in THF over the potassium counterparts.7

Interestingly, the treatment at about 25 °C of the dihydride dichloro complex **1** with the cyclopentadienyl derivatives 2 and 3 in THF leads to the salts $[OsH₂{\eta⁵}$ C5H4(CH2)2NMe2}(Pi Pr3)2][OsHCl2(CO)(Pi Pr3)2] ([**4**][**5**]) and $[OsH₂{\eta⁵-C₅H₄(CH₂)₂OMe}{PⁱPr₃)₂}[OsHCl₂(CO)(Pi²-₂)]$ Pr3)2] ([**6**][**5**]), respectively, which were isolated as white solids in $60-65\%$ yield. It should be noted that the anion present in both salts is the same and that this anion contains a carbonyl group (Scheme 1).

The formation of **5** and the presence of the carbonyl group in this complex were confirmed by an X-ray diffraction analysis on a monocrystal of [**4**][**5**]. Figure 1 shows the structure of both the cation and the anion of the salt. The distribution of ligands around the osmium atom of the cation **4** can be described as a four-legged piano stool geometry, with the cyclopentadienyl ring occupying the three-membered face while the phosphine ligands lie in the four-membered face mutually *transoid*

^{*} To whom correspondence should be addressed. E-mail: maester@ posta.unizar.es.

⁽¹⁾ Janiak, C.; Schumann, H. *Adv. Organomet. Chem.* **1991**, *33*, 291. (2) (a) Jutzi, P.; Siemeling, U. J. Organomet. Chem. **1995**, 500, 175.
(b) Siemeling, U. Chem. Rev. **2000**, 100, 1495. (c) Butenschön, H. Chem.
Rev. **2000**, 100, 1527. (d) Qian, Y.; Huang, J.; Bala, M. D.; Lian, B.;

Zhang, H.; Zhang, H. *Chem. Rev.* **2003**, 103, 2633.
(3) See for example: (a) Kettenbach, R. T.; Bonrath, W.; Butenschön, H. *Chem. Ber.* **1993**, *126*, 1657. (b) Van der Zeijden, A. A. H.; Jime´nez, J.; Mattheis, C.; Wagner, C.; Merzweiler, K. *Eur. J. Inorg. Chem.* **1999**, 1919. (c) Klei, S. R.; Tilley, T. D.; Bergman, R. G. *Organometallics* **2002**, *21*, 4905. (d) Daugulis, O.; Brookhart, M.; White, P. S. *Organometallics* **2003**, 22, 4699. (e) Yong, L.; Hofer, E.; Wartchow, R.; Butenschön, H. *Organometallics* **2003**, 22, 5463. (f) Becker, E.; Mereiter, K.; Puchberger, M.; Schmid, R.; Kirchner, K.; Doppiu, A.; Salzer, A. *Organo-
metallics* **2003**, 22, 3164. (g) Esteruelas, M. A.; Fernández, F. J.; López,
A. M.; Oñate, E. *Organometallics* **2003**, 22, 1787.

^{(4) (}a)Baya, M.; Buil, M. L.; Esteruelas, M. A.; Oñate, E. *Organometallics* **2004**, *23*, 1416, and references therein. (b) Albers, M. O.; Robinson, D. J.; Singleton, E. *Coord. Chem. Rev.* **1987**, *79*, 1. (c) Davis, S. G.; NcNally, J. P.; Smallridge, A. J. *Adv. Organomet. Chem.* **1990**, *30*, 1.

⁽⁶⁾ Esteruelas, M. A.; Lo´pez, A. M.; Ruiz, N.; Tolosa, J. I. *Organometallics* **1997**, *16*, 4657.

⁽⁷⁾ Jutzi, P.; Dahlhaus, J. *Coord. Chem. Rev.* **1994**, *137*, 179.

Scheme 1

Figure 1. Molecular diagram of complex $[OsH₂{\eta⁵}$ C5H4(CH2)2NMe2}(Pi Pr3)2][OsHCl2(CO)(Pi Pr3)2] ([**4**][**5**]). Thermal ellipsoids are shown at 50% probability.

disposed $(P(1)-Os(1)-P(2) = 111.90(9)°)$. The geometry around the osmium atom of the anion **5** can be rationalized as a distorted octahedron with the phosphine groups mutually *trans* disposed $(P(3)-Os(2)-P(4)) =$ 170.35(9)°) and chloride ligands mutually *cis* disposed $(Cl(1A)-Os(2)-Cl(2) = 87.59(12)°).$

The cationic complexes **4** and **6** are the result of the replacement of the chloride ligands in **1** by the modified cyclopentadienyl groups. Since THF contains an oxygen atom and is the only reagent that is present in both reactions shown in Scheme 1, it seems reasonable to think that THF is the source of the carbonyl group of **5**. In agreement with this, we have observed that when the preparations of **2** and **3** are carried out in pentane, and the reactions shown in Scheme 1 are performed in toluene, the corresponding salts [**4**]**Cl** and [**6**]**Cl** are obtained in 82-85% yield (Scheme 2).

The chloride salts of **4** and **6** were isolated as white solids. In the 1H NMR spectrum of both compounds, the most noticeable resonance is a triplet at -14.2 ppm with a H-P coupling constant of 29.1 Hz. The ${}^{31}P\{{}^{1}H\}$ NMR spectra show singlets at about 32 ppm.

Cations **4** and **6** can be deprotonated by reaction with a methanol solution of KOH. The addition of this base

to tetrahydrofuran solutions of both cations produces the extraction of one of the hydride ligands and the formation of the neutral compounds $OsH\{\eta^5-C_5H_4-C_6H_5\}$ $(\text{CH}_2)_2 \to \text{F}(P^i Pr_3)_2$ ($E = NMe_2$ (7), OMe (8)), which were
isolated as white solids in 92–95% yield. In the ¹H NMR isolated as white solids in $92-95\%$ yield. In the ¹H NMR spectra, the hydride ligand of these complexes gives rise to triplets at -15.53 (7) and -15.60 (8) ppm, with H-P coupling constants of about 31 Hz. The $^{31}P{^1H}$ NMR spectra show singlets at about 30 ppm.

 $P'Pr_3$ $[NEt_4][5]$

Scheme 3 shows a sequence of reactions that allows us to rationalize the formation of **5**. It is well known that organolithium compounds produce the fragmentation of donor solvents. The decomposition products of THF are ethylene and the lithium enolate of acetalde-

hyde.8 Thus, in the presence of **2** and **3** some amount of THF decomposes to give this lithium enolate. The reaction of the latter with **1** would afford the previously reported five-coordinate carbonyl derivative OsHCl(CO)- (Pi Pr3)2 (**9**),9 which should coordinate a chloride ligand from the salt [**4**]**Cl** or [**6**]**Cl**, to give the anion species **5**. Similar chloride coordination was recently observed for the five-coordinate ruthenium analogue RuHCl(CO)(Pi - $\rm Pr_2Ph)_2$.¹⁰

In support of this proposal, we have observed that the addition of *n*-butyllithium to THF solutions of **1** leads to **9** and that the treatment of **9** with [Et₄N]Cl affords the tetraethylamonium salt of **5** as a white solid in 94% yield. Analogously, the treatment of **9** with the chloride salts of **4** and **6** leads to corresponding salts of anion **5**, [**4**][**5**] and [**6**][**5**]. The formation of **9** from **1** is a process similar to that of decarbonylation of aldehydes to afford metal carbonyl derivatives and hydrocarbons. The reaction involves a hydride-acyl intermediate which evolves by deinsertion of methyl and subsequent reductive elimination of methane.¹¹

In agreement with the presence of the carbonyl and hydride ligands in **5**, the IR spectrum in Nujol of the tetraethylammonium salt shows $ν(C=0)$ and $ν(Os-H)$ bands at 1867 and 2135 cm^{-1} , respectively. In the ¹H NMR spectrum in dichloromethane*-d*² at 223 K, the hydride ligand gives rise to a triplet at -17.43 ppm, with a H-P coupling constant of 18 Hz. The $^{31}P\{^1H\}$ NMR spectrum shows a singlet at 22.1 ppm.

In conclusion, osmium complexes containing a cyclopentadienyl group with a pendant N -, P - $,5$ or O-donor group can be prepared by reaction of the known dihydride-dichloro complex $\rm{OsH}_{2}Cl_{2}(P^{i}Pr_{3})_{2}^{12}$ with the corresponding functionalized cyclopentadienyllithium compound. The reactions and the preparation of the modified cyclopentadienyllithium derivatives must be carried out in hydrocarbon solvents, and the use of donor solvents, in particular THF, should be avoided. They can react with the cyclopentadienyllithium systems to give organic fragments, which promote undesired secondary reactions of the osmium precursor.

Experimental Section

General Information. All manipulations were performed at an argon/vacuum manifold using standard Schlenk techniques. Solvents were dried by known procedures and used freshly distilled. $OsH_2Cl_2(P^i Pr_3)_2$ (1)¹² and $C_5H_5(CH_2)_2E$ (E = NMe_2) OMe^{13} were prepared according to previous reports NMe2, OMe)13 were prepared according to previous reports. Corresponding lithium salts of the cyclopentadienyl ligands, $Li[C_5H_5(CH_2)_2E]$ (E = NMe₂ **2**, OMe **3**), were prepared by addition of n-BuLi to pentane solutions of the cyclopentadiene systems, according to a modified procedure of previously reported synthesis.⁷ In the NMR spectra, ¹H and ¹³C{¹H} chemical shifts are reported relative to tetramethylsilane and

the ${}^{31}P{^1H}$ ones relative to H_3PO_4 (85%). Coupling constants *J* are given in hertz.

 $\textbf{Preparation of [OsH}_{2} \{ \eta^5\textbf{-} \textbf{C}_5 \textbf{H}_4 (\textbf{C} \textbf{H}_2)_2 \textbf{N} \textbf{M} \textbf{e}_2 \}(\textbf{P}^{\text{i}} \textbf{P} \textbf{r}_3)_2] [\textbf{O} \textbf{s}^{\text{-} \textbf{S}} \textbf{S}_4]$ $\text{HCl}_2(\text{CO})(\text{P}^{\text{i}}\text{Pr}_3)_2$ ([4][5]). THF (20 mL) was added to a mixture of $1(1.0 \text{ g}, 1.71 \text{ mmol})$ and $\text{Li}[C_5H_4(CH_2)_2NMe_2]$ (0.30 g, 2.10 mmol). Stirring the reaction mixture for 12 h at about 25 °C gave an orange suspension. The solvent was removed under vacuum, and dichloromethane $(3 \times 5 \text{ mL})$ was then added to the solid residue. The resulting suspension was filtered to separate the LiCl precipitate and the filtrate concentrated under reduced pressure, washed with toluene (1 \times 5 mL) and pentane (1 \times 5 mL), and dried under vacuum to give a white powder solid. Yield: 0.70 g (65%). Anal. Calcd for C46Cl2H101NOOs2P4: C, 43.86; H, 8.08; N, 1.11. Found: C, 43.88; H, 7.85; N, 1.04. IR (Nujol): *^ν*(CO) 1853, *^ν*(Os-H) 2138 cm-1. MS (FAB+): *^m*/*^z* 651, (M+), 577 (M- - Cl + H)+. 1H NMR (300 MHz, CD2Cl2, 293 K): *δ* 5.42, 5.22 (both m, each 2H, C5H4), 2.68 (m, 6H, PCH anion), 2.60, 2.44 (both m, each 2H, CH_2CH_2N), 2.20 (s, 6H, N(CH₃)₂), 2.06 (m, 6H, PCH cation), 1.31-1.21 (m, 72H, PC*C*H3/cation+anion), -14.18 (t, 2H, $J(PH) = 29.4, 0s-H$, -17.30 (very br, 1H, Os-H). ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, 293 K): *δ* 32.3 (s, PⁱPr₃ cation), 22.5 (very br, Pi Pr3 anion). 1H NMR (300 MHz, CD2Cl2, 223 K): *δ* 5.33, 5.15 (both br, each $2H, C_5H_4$), $2.75-2.50$ (br, 6H, PCH), 2.55, 2.38 (both m, each 2H, CH2CH2N), 2.16 (s, 6H, N(CH3)2), 2.10-1.70 (br, 6H, PCH), 1.20 (br, 72H, PCCH3), -14.18 (t, $2H, J(PH) = 29.4, Os-H$, -17.31 (t, $1H, J(PH) = 18.0, Os-H$ H). ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, 223 K): *δ* 32.4 (s, Pⁱ- Pr_3 cation), 21.6 (s, Pr_3 anion). ¹³C{¹H} NMR (75.4 MHz, CD_2Cl_2 , 293 K, plus APT): 110.7 (-, s, ipso C_5H_4), 85.0, 77.3 (+, s, C5H4), 61.5 (-, s, CH2*C*H2N), 45.4 (+, s, N(CH3)2), 30.6 (+, m, PCH cation), 27.6 (-, s, CH_2CH_2N), 25.3 (+, m, PCH anion), 19.8, 19.7 (+, both s, PC*C*H3).

 $\textbf{Preparation of [OsH}_{2} \{ \eta^5\textbf{-} \text{C}_5 \text{H}_{4}(\text{CH}_{2})_{2} \text{OMe} \} \{ \text{PiPr}_{3})_{2}\}[\text{Os-H}_{2} \{ \text{C}_6 \text{H}_{2} \}$ **HCl2(CO)(Pi Pr3)2] ([6][5]).** Treatment of **1** (1.10 g, 1.89 mmol) with $Li[C_5H_4(CH_2)_2OMe]$ (0.27 g, 2.08 mmol) in 20 mL of THF under a protocol analogous to that described for [**4**][**5**] affords a white solid. Yield: 0.71 g (60%). Anal. Calcd for $C_{45}Cl_2H_{98}O_2$ -Os2P4: C, 43.36; H, 7.92. Found: C, 43.39; H, 7.81. IR (Nujol): *^ν*(CO) 1852, *^ν*(Os-H) 2138 cm-1. MS (FAB+): *^m*/*^z* ⁶³⁸ (M⁺), 577 (M⁻ - Cl + H)⁺. ¹H NMR (300 MHz, CD₂Cl₂, 293 K): $δ$ 5.47, 5.22 (both m, each 2H, C₅H₄), 3.49 (m, 2H, CH2C*H2*O), 3.30 (s, 3H, OCH3), 2.71 (m, 2H, C*H2*CH2O), 2.68 (m, 6H, PCH/anion), 2.10 (m, 6H, PCH/cation), 1.32-1.10 (m, 72H, PCCH₃ cation+anion), -14.19 (t, 2H, $J(PH) = 29.4$, Os-H), -17.30 (very br, 1H, Os-H). ${}^{31}P{^1H}$ NMR (121.4 MHz, CD₂Cl₂, 293 K): δ 32.9 (s, PⁱPr₃ cation), 22.5 (very br, PⁱPr₃ anion). ¹H NMR (300 MHz, CD₂Cl₂, 223 K): δ 5.33, 5.31 (both br, each 2H, C5H4), 3.43 (m, 2H, CH2C*H*2O), 3.30 (s, 3H, OCH3), 2.60 (m, 2H, C*H2*CH2O), 2.50-2.40 (br, 12H, PCH), 1.21 (br, 72H, PCCH₃), -14.23 (t, 2H, $J(PH) = 29.4$, Os-H), -17.33 (t, 1H, $J(PH) = 18.0$, Os-H). ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, 223 K): δ 32.9 (s, PⁱPr₃ cation), 20.4 (s, PⁱPr₃ anion). ¹³C{¹H} NMR (75.4 MHz, CD_2Cl_2 , 293 K): 182.6 (br, C=O), 109.5 (s, ipso-C5H4), 85.4 (m, C5H4), 77.5 (s, C5H4), 73.1 (s, CH2*C*H2O), 58.9 (s, CH3O), 30.6 (m, PCH), 30.4 (m, PCH), 29.8 (s, *C*H2- CH2O), 25.3 (m, PCH), 19.8, 19.7 (both s, PC*C*H3).

 $Preparation of [NEt_4][OsHCl_2(CO)(P^iPr_3)_2] ([NEt_4][5]).$ Toluene (10 mL) was added to a mixture of OsHCl(CO)(Pi $\mathrm{Pr}_3)_2$ $(0.30 \text{ g}, 0.49 \text{ mmol})$ and [NEt₄][Cl] $(0.11 \text{ g}, 0.64 \text{ mmol})$. The initial red solution change to pale yellow, and a white precipitate was formed. After stirring the reaction mixture for 2 h at about 25 °C, the solution was separated by filtration and the solid residue washed with diethyl ether $(2 \times 2 \text{ mL})$ and pentane $(1 \times 5$ mL) and dried under vacuum to give a white powder. Yield: 0.34 g (94%). Anal. Calcd for $C_{27}Cl_2H_{63}$ -NOOs2P2: C, 43.77; H, 8.57; N, 1.89. Found: C, 44.01; H, 8.90; N, 2.03. IR (Nujol): *^ν*(CO) 1867, *^ν*(Os-H) 2135 cm-1. MS (FAB⁺): m/z 576 (M⁻ - Cl)⁺. ¹H NMR (300 MHz, CD₂Cl₂, 293 K): *δ* 3.36 (q, 8H, $J(HH) = 7.3$, N-CH₂CH₃), 2.68 (m, 6H, PCH), $1.34-1.24$ (m, $48H$, $NCH_2CH_3 + PCHCH_3$). ${}^{31}P_1{}^{1}H$

⁽⁸⁾ Wardell, J. L. *In Comprehensive Organometallic Chemistry*; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press Ltd: London, 1982; Vol. 1, p 49.

⁽⁹⁾ Esteruelas, M. A.; Werner, H. *J. Organomet. Chem.* **1986**, *303*, 221.

⁽¹⁰⁾ Werner, H.; Stüer, W.; Weberndörfer, B.; Wolf, J. *Eur. J. Inorg. Chem.* **1999**, 1707.

⁽¹¹⁾ Barrio, P.; Esteruelas, M. A.; On˜ ate, E. *Organometallics* **2004**, *23*, 1340, and references therein.

⁽¹²⁾ Aracama, M.; Esteruelas, M. A.; Lahoz, F. J.; Lo´pez, J. A.; Meyer, U.; Oro, L. A.; Werner, H *Inorg. Chem.* **1991**, *30*, 288.

⁽¹³⁾ Rees, W. S., Jr.; Dippel, K. A. *Org. Prep. Proced. Int*. **1992**, *24/ 5*, 527.

NMR (121.4 MHz, CD₂Cl₂, 293 K): *δ* 22.5 (very br). ¹H NMR (300 MHz, CD2Cl2, 223 K): *δ* 3.21 (m, 8H, NC*H2*CH3), 2.55 (br, 6H, PCH), 1.27 (m, 48H, NCH2C*H3* ⁺ PCHC*H3*), -17.43 $(t, J(PH) = 18.0, Os-H)$. ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, 223 K): *δ* 22.1 (s).

Preparation of [OsH2{*η***5-C5H4(CH2)2NMe2**}**(Pi Pr3)2][Cl] ([4]Cl).** Toluene (20 mL) was added to a mixture of **1** (1.10 g, 1.89 mmol) and $Li[C_5H_4(CH_2)_2NMe_2]$ (0.29 g, 2.07 mmol). Stirring the reaction mixture for 12 h at about 25 °C gave a yellow suspension. The solvent was removed under vacuum, and dichloromethane $(3 \times 5 \text{ mL})$ was then added to the solid residue. The resulting suspension was filtered to separate the LiCl precipitate, and the combined filtrate was concentrated under reduced pressure, washed with toluene $(1 \times 5$ mL) and pentane $(1 \times 5 \text{ mL})$, and dried under vacuum to give a white powder. Yield: 1.06 g (82%). Anal. Calcd for $C_{27}CH_{58}NOSP_{2}$: C, 47.38; H, 8.54; N, 2.05. Found: C, 47.26; H, 8.48; N, 2.00. IR (Nujol): *ν*(Os-H) 2123 cm⁻¹. MS (FAB⁺): *m/z* 651 (M⁺). ¹H NMR (300 MHz, CDCl₃, 293 K): *δ* 5.49, 5.26 (both m, each 2H, C₅H₄), 2.58, 2.43 (both m, each 2H, CH₂CH₂N), 2.18 (s, 6H, N(CH₃)₂), 2.08 (m, 6H, PCH), 1.20 (dd, 36H, *J*(HH) = 7.2, *J*(PH) = 14.1, PCCH₃), -14.24 (t, 2H, *J*(PH) = 29.1, Os-H). ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, 293 K): *δ* 32.9 (s). ¹³C- 1H NMR (75.4 MHz, CD_2Cl_2 , 293 K plus APT): δ 110.6 (-, s, ipso-C5H4), 84.9, 77.2 (+, both s, C5H4), 61.2 (-, s, CH2*C*H2N), 45.2 (+, s, N(CH3)2), 30.1, 30.5 (+, second-order system, PCH), 27.2 (-, s, *^C*H2CH2N), 19.5 (+, s, PC*C*H3).

 $\textbf{Preparation of [OsH}_{2} \{ \eta^5\textbf{-} \text{C}_5 \text{H}_{4}(\text{CH}_{2})_{2} \text{OMe} \} \{ \text{PiPr}_{3} \}_{2}$ [[Cl] **([6]Cl).** Treatment of **1** (1.16 g, 1.99 mmol) with $Li[C_5H_4(CH_2)_2$ -OMe] (0.28 g, 2.16 mmol) in 20 mL of toluene under a protocol analogous to that described for [**4**]**Cl** afforded a white powder. Yield: 1.13 g (85%). Anal. Calcd for C₂₆ClH₅₅OOsP₂: C, 46.51; H, 8.26. Found: C, 46.37; H, 8.41. IR (Nujol): *^ν*(Os-H) 2141, 2116 cm-1. MS (FAB+): *m*/*z* 638 (M+). 1H NMR (300 MHz, CDCl₃, 293 K): δ 5.52, 5.20 (both m, each 2H, C₅H₄), 3.45 (m, 2H, CH2C*H2*O), 3.24 (s, 3H, OCH3), 2.66 (m, 2H, C*H*2CH2O), 2.04 (m, 6H, PCH), 1.17 (dd, 36H, *J*(HH) = 7.2, *J*(PH) = 13.8,
PCCH₀) -14.22 (t. 2H, *J*(HP) = 29.1, Os-H)³¹P¹H) NMR PCCH_3), -14.22 (t, $2H$, $J(\text{HP}) = 29.1$, $\text{Os}-\text{H}$). ${}^{31}\text{P} \{ {}^{1}\text{H} \}$ NMR (75.4) (121.4 MHz, CDCl3, 293 K): *δ* 31.9 (s). 13C{1H} NMR (75.4 MHz, CDCl₃, 293 K, plus APT): δ 108.9 (-, s, ipso-C₅H₄), 85.2, 77.1 (+, both s, C_5H_4), 72.7 (-, s, CH_2CH_2O), 58.6 (+, s, OCH₃), 29.9 (+, second-order system, PCH), 29.1 (-, s, CH₂CH₂O), 19.3 $(+, s, PCCH₃).$

Preparation of OsH{*η***5-C5H4(CH2)2NMe2**}**(Pi Pr3)2 (7).** A 0.19 M solution of KOH in methanol (9.2 mL, 1.75 mmol) was added to a solution of [**4**]**Cl** (1.0 g, 1.46 mmol) in 20 mL of THF. The initial colorless solution changed to a yellow suspension during the stirring of the mixture for 12 h at about 25 °C. The solvent was removed under reduced pressure and the residue extracted with pentane $(3 \times 10 \text{ mL})$. The combined filtrate was concentrated to dryness and the resulting foamy white solid washed with cold ⁱ PrOH and dried under vacuum. Yield: 0.90 g (95%). Anal. Calcd for $C_{27}H_{57}NOSP_2$: C, 50.05; H, 8.87; N, 2.16. Found: C, 50.19; H, 8.59; N, 2.03. IR (Nujol): *^ν*(Os-H) 2062 cm-1. MS (FAB+): *^m*/*^z* 649 (M+). 1H NMR (300 MHz, C₆D₆, 293 K): δ 4.78, 4.11 (both m, each 2H, C₅H₄), 2.68 $(m, 4H, CH_2CH_2N), 2.19$ (s, 6H, $N(CH_3)_2)$, 1.91 (m, 6H, PCH), 1.16, 1.15 (both dd, each 18H, $J(HH) = 10.2$, $J(PH) = 17.4$, PCCH₃), -15.53 (t, 1H, $J(PH) = 30.6$, Os-H). ³¹P{¹H} NMR (121.4 MHz, C6D6, 293 K): *δ* 29.6 (s). 13C{1H} NMR (75.4 MHz, C_6D_6 , 293 K, plus APT): δ 94.9 (-, s, ipso-C₅H₄), 72.8 (+, s, C_5H_4), 69.2 (+, m, C_5H_4), 63.9 (-, s, CH_2CH_2N), 45.9 (+, s, N(CH3)2), 31.6 (+, second-order system, PCH), 28.7 (-, s *^C*H2- CH₂N), 21.0, 20.9 (+, both s, PCCH₃).

 $\mathbf{Preparation\ of\ OsH}\{\eta^5\text{-}C_5\text{H}_4(\text{CH}_2)_2\text{OMe}\}(\text{P}^{\text{i}}\text{Pr}_3)_2\text{ (8). A}$ solution of [**6**]**Cl** (1.5 g, 2.23 mmol) in 20 mL of THF was treated with a 0.19 M solution of KOH in methanol (14 mL, 2.70 mmol) under a protocol analogous to that described for **7** to yield 1.30 g (92%). Anal. Calcd for $C_{26}H_{54}OOSP_2$: C, 49.19; H, 8.57. Found: C, 49.41; H, 8.35. IR (Nujol): *^ν*(Os-H) 2065 cm⁻¹. MS (FAB⁺): m/z 636 (M⁺). ¹H NMR (300 MHz, C₆D₆,

293 K): δ 4.75, 4.13 (both m, each 2H, C₅H₄), 3.66 (m, 2H, CH2C*H*2O), 3.17 (s, 3H, OCH3), 2.77 (m, 2H, C*H*2CH2O), 1.90 (m, 6H, PCH), 1.16, 1.13 (both dd, each 18H, $J(HH) = 8.7$, $J(PH) = 16.2$, PCCH₃), -15.60 (t, 1H, $J(PH) = 30.9$, Os-H). ³¹P{¹H} NMR (121.4 MHz, C₆D₆, 293 K): *δ* 29.5 (s). ¹³C{¹H} NMR (75.4 MHz, C₆D₆, 293 K, plus APT): δ 93.5 (-, s, ipso- C_5H_4), 76.5 (-, s, CH_2CH_2O), 72.8 (+, s, C_5H_4), 69.5 (+, m, C_5H_4), 58.6 (+, s, OCH₃), 31.6 (+, second-order system, PCH), 30.8 (-, s, *^C*H2CH2O), 21.0 (+, s, PC*C*H3).

X-ray Analysis of [4][5]. A crystal was mounted on a Bruker Smart APEX CCD diffractometer at 100.0(2) K equipped with a normal focus, 2.4 kW sealed tube source (Mo radiation, $\lambda = 0.71073$ Å) operating at 50 kV and 40 mA. Data were collected over the complete sphere by a combination of four sets. Each frame exposure time was 10 s covering 0.3° in *ω*. The cell parameters were determined and refined by leastsquares fit of 2238 collected reflections. The first 100 frames were collected at the end of the data collection to monitor crystal decay. Absorption correction was performed with the SADABS program.14 Lorentz and polarization corrections were also performed. The structure was solved by Patterson and Fourier methods and refined by full matrix least-squares using the Bruker SHELXTL program package¹⁵ minimizing $w(F_o²)$ $-F_c^2$ ². The non-hydrogen atoms were anisotropically refined.
The hydrogen atoms were calculated and refined riding on The hydrogen atoms were calculated and refined riding on bonded carbon atoms. The hydride ligands were observed in the difference Fourier maps and refined freely with a common thermal parameter or refined riding on bonded Os atoms. In the last cycles of refinement a chloride and a CO ligand situated in *trans* positions were observed disordered about the osmium atom and were refined using two moieties with restrained geometry and restrained anisotropic thermal parameters (occupancy: 0.75 and 0.25, respectively). Two isopropyl groups (anion and cation) and the NMe₂ group were also disordered and refined with two moieties, respectively, complementary occupancy factors, restrained geometry, and restrained anisotropic thermal parameters. Finally, 1.5 molecules of toluene were observed as solvent of crystallization.

Crystal data: $C_{27}H_{58}NOSP_2$, $C_{19}H_{43}Cl_2OP_2Os$, $1.5 \times C_7H_8$, $M_{\rm w}$ 1397.66, colorless, prism $(0.12 \times 0.10 \times 0.04$ mm), triclinic, space group $P\bar{1}$, $a = 12.9411(17)$ Å, $b = 13.9892(18)$ Å, $c =$ 19.645(3) Å, $\alpha = 70.554(2)°$, $\beta = 79.482(2)°$, $\gamma = 69.884(2)°$, *V* $=$ 3139.7(7) Å³, $Z = 2$, $D_{\text{calc}} = 1.478$ g cm⁻³, $F(000) = 1426$, T $= 100.0(2)$ K; $\mu = 4.266$ mm⁻¹. A total of 28 533 measured reflections ($2\theta = 3-57^{\circ}$, ϖ scans 0.3°), 14 170 unique ($R_{\text{int}} =$ 0.0801); min./max. transmn factors 0.762/0.598. Final agreement factors were $R_1 = 0.0499$ (6072 observed reflections, $I \geq$ $2\sigma(I)$) and $wR_2 = 0.0859$; data/restraints/parameters 14 170/ 468/753; GoF = 0.707. Largest peak and hole = 1.519 and -1.336 e/Å³. All the highest electronic residuals were observed in close proximity of the Os centers and make no chemical sense.

Acknowledgment. Financial support from the MCYT of Spain (Proyects BQU2002-00606 and PPQ2000- 0488-P4-02) is acknowledged. E.R. thanks CSIC and the European Social Fund for funding through the I3P Program.

Supporting Information Available: Tables of crystallographic data and bond lengths and angles. This material is available free of charge via the Internet at http://pubs.acs.org.

OM049514N

⁽¹⁴⁾ Blessing, R. H. *Acta Crystallogr., Sect. A* **1995**, *51*, 33. (15) *SHELXTL* Package v.6.1.; Bruker-AXS: Madison, WI, 2000.